首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 1.0 Ma Kidnappers supereruption (~ 1200 km3 DRE) from Mangakino volcanic centre, Taupo Volcanic Zone, New Zealand, produced a large phreatomagmatic fall deposit followed by an exceptionally widespread ignimbrite. Detailed sampling and analysis of glass shards and mineral phases have been undertaken through a proximal 4.0 m section of the fall deposit, representing the first two-thirds of erupted extra-caldera material. Major and trace element chemistries of glass shards define three distinct populations (types A, B and C), which systematically change in proportion through the fall deposit and are inferred to represent three magma types. Type B glass and biotite first appear at the same level (~ 0.95 m above base) in the fall deposit suggesting later tapping of a biotite-bearing magma. Plagioclase and Fe–Ti oxide compositions show bimodal distributions, which are linked to types A and B glass compositions. Temperature and pressure (T–P) estimates from hornblende and Fe–Ti oxide equilibria from each magma type are similar and therefore the three magma bodies were adjacent, not vertically stacked, in the crust. Most hornblende model T–P estimates range from 770 to 840 °C and 90 to 170 MPa corresponding to storage depths of ~ 4.0–6.5 km. Hornblende model T–P estimates coupled with in situ trace element fingerprinting imply that the magma bodies were individually well mixed, and not stratified. Compositional gaps between the three glass compositional types imply that no mixing between these magmas occurred. We interpret these data, coupled with the systematic changes in shard compositional proportions through the fall deposit, to reflect that three independent melt-dominant bodies of magma contributed large (A, ~ 270 km3), medium (B, ~ 90 km3) and small (C, ~ 40 km3) volumes (as reflected in the fall deposits) and were systematically tapped during the eruption. We propose that the systematic evacuation of the three independent magma bodies implies that there was tectonic triggering and linkage of eruptions. Our results show that supereruptions can be generated by near simultaneous multiple eruptions from independent magma chambers rather than the evacuation of a large single unitary magma chamber.  相似文献   

2.
Two mineralogically and chemically distinct rhyolite magmas (T1 and T3) were syn-erupted from the same conduit system during the 21.9 ka basalt intrusion-triggered Okareka eruption from Tarawera volcano, New Zealand. High spatial resolution U–Th disequilibrium dating of zircon crystals at the ~ 3–5 μm scale reveals a protracted yet discontinuous zircon crystallization history within the magmatic system. Both magma types contain zircon whose interiors predate the eruption by up to 200 ka. The dominant age peak in the T1 magma is ~ 30 ka with subordinate peaks at ~ 45, ~ 75, and ~ 100 ka, whereas the T3 magma has a dominant zircon interior age peak at ~ 90 ka with smaller modes at ~ 35 and ~ 150 ka. These patterns are consistent with isolated pockets of crystallization throughout the evolution of the system. Crystal rim analyses yield ages ranging from within error of the eruption age to at least ~ 90 ka prior to eruption, highlighting that zircon crystallization frequently stalled long before the eruption. Continuous depth profiling from crystal rims inward demonstrates protracted growth histories for individual crystals (up to ~ 100 ka) that were punctuated by asynchronous hiatuses of up to 30 ka in duration. Disparate zircon growth histories can result from localized thermal perturbations caused by mafic intrusions into a silicic reservoir. The crystal age heterogeneity at hand-sample scale requires considerable crystal transport and mixing. We propose that crystal mixing was achieved through buoyancy instabilities caused by mafic magma flow through crystal mush. A terminal pre-eruptive rejuvenation event was capable of mobilizing voluminous melts that erupted, but was too short (< 102–103 years) to result in extensive zircon growth. The contrasting, punctuated zircon histories argue against closed-system fractional crystallization models for silicic magmatism that require protracted cooling times following a mostly liquid starting condition.  相似文献   

3.
In situ LA-ICPMS U-Pb, trace element, and Hf isotope data in zircon demonstrate a Carboniferous age for eclogite-facies metamorphism in Siluro-Devonian protoliths in the Huwan shear zone, Dabie Mountains, Central China. This age contrasts with the more prevailing Triassic age for high- to ultrahigh pressure (HP to UHP) metamorphism in the Qinling-Dabie-Sulu orogen. Metamorphic zircon in two eclogite samples from Sujiahe is characterized by low Th/U ratios, small negative Eu anomalies, flat HREE patterns, and low 176Lu/177Hf ratios. These geochemical signatures suggest that the zircon crystallized in the presence of garnet and in the absence of plagioclase feldspar. Furthermore, temperatures of ~ 655 and ~ 638 °C, calculated using the Ti content of zircon, are consistent with their formation during eclogite-facies metamorphism. The weighted mean 206Pb/238U age of 309 ± 4 Ma (2δ) for this zircon improves previous age estimates for eclogite-facies metamorphism in the Huwan shear zone, ranging from 420 to 220 Ma. Metamorphic zircon from one eclogite sample from Hujiawan, most likely formed during prograde metamorphism, yields an equivalent age estimate of 312 ± 11 Ma. Magmatic zircon cores in the three samples yield ages for the magmatic protoliths of the eclogites ranging from 420 ± 7 to 406 ± 5 Ma, and post-dating the middle Paleozoic collision of the North China and the Qinling terrain. The zircon crystals in the three eclogite samples display a large variation of εHf (t) values of ? 4.9 to 21.3. The metamorphic zircon overgrowths show the same range of εHf (t) values as those of the inherited magmatic crystal interiors. This suggests that the metamorphic zircon overgrowths may have formed by dissolution-reprecipitation of pre-existing magmatic zircon thereby preserving their original Hf isotopic composition. The high εHf (t) values suggest that the protoliths were derived from depleted mantle sources, most likely Paleotethyan oceanic crust; while the low εHf (t) values are attributed to crustal contamination. Some eclogites in the Huwan shear zone have a distinctive signature of continental crust most probably derived from the Yangtze Craton. The coexistence of Paleozoic oceanic crust and Neoproterozoic continental crust with similar metamorphic ages in the Huwan shear zone implies that Paleozoic Paleotethyan oceanic crust was produced within a marginal basin of the northern Yangtze Craton. The opening of the Paleo-Tethyan ocean was slightly younger than the collision of the North China Craton and the Qinling terrain during the Late Paleozoic in the Qinling-Dabie-Sulu orogen. Subduction of the Paleo-Tethyan oceanic crust and associated continental basement resulted in the 309 ± 2 Ma (2σ) eclogite-facies metamorphism in the Huwan shear zone. The subsequent Triassic continent-continent collision led to the final coalescence of the Yangtze and Sino-Korean cratons. Amalgamation of the Yangtze and North China cratons was, therefore, a multistage process extending over at least 200 Ma.  相似文献   

4.
The Kamchatka Peninsula in far eastern Russia represents the most volcanically active arc in the world in terms of magma production and the number of explosive eruptions. We investigate large-scale silicic volcanism in the past several million years and present new geochronologic results from major ignimbrite sheets exposed in Kamchatka. These ignimbrites are found in the vicinity of morphologically-preserved rims of partially eroded source calderas with diameters from ~ 2 to ~ 30 km and with estimated volumes of eruptions ranging from 10 to several hundred cubic kilometers of magma. We also identify and date two of the largest ignimbrites: Golygin Ignimbrite in southern Kamchatka (0.45 Ma), and Karymshina River Ignimbrites (1.78 Ma) in south-central Kamchatka. We present whole-rock geochemical analyses that can be used to correlate ignimbrites laterally. These large-volume ignimbrites sample a significant proportion of remelted Kamchatkan crust as constrained by the oxygen isotopes. Oxygen isotope analyses of minerals and matrix span a 3‰ range with a significant proportion of moderately low-δ18O values. This suggests that the source for these ignimbrites involved a hydrothermally-altered shallow crust, while participation of the Cretaceous siliceous basement is also evidenced by moderately elevated δ18O and Sr isotopes and xenocryst contamination in two volcanoes. The majority of dates obtained for caldera-forming eruptions coincide with glacial stages in accordance with the sediment record in the NW Pacific, suggesting an increase in explosive volcanic activity since the onset of the last glaciation 2.6 Ma. Rapid changes in ice volume during glacial times and the resulting fluctuation of glacial loading/unloading could have caused volatile saturation in shallow magma chambers and, in combination with availability of low-δ18O glacial meltwaters, increased the proportion of explosive vs effusive eruptions. The presented results provide new constraints on Pliocene–Pleistocene volcanic activity in Kamchatka, and thus constrain an important component of the Pacific Ring of Fire.  相似文献   

5.
A new model is proposed for passive degassing from sub-volcanic magma chambers. The water content in stably stratified shallow magma chamber will be equated to its solubility at the upper boundary by convection. Water from a lower layer high in water content can enrich the contact zone of the upper layer and lead to further convective overturn of this boundary layer. A complete set of equations describing convection with bubble formation and dissolution is reduced to a simplified form by assuming a small bubble content. The development and pattern of flow driven by vesiculation is modeled numerically in a 2D magma chamber for relatively low Raleigh numbers (5×105). Bubbles rising from the magma will collect near the roof in a layer of 8–10 vol% and then escape upward to fumaroles. The Stokes flux of bubbles escaping from an andesitic magma with viscosity 104 P and a top surface of about 500×500 m corresponds with observed total magmatic water fluxes of 35 kg/s. Pressure within the chamber is buffered by elastic (and local visco-elastic) deformations in the solid rocks bounding the chamber to the range between ambient and close to lithostatic values. In a chamber closed to fresh magma inputs, the decrease in volume due to such gentle volatile escape lowers the reference pressure. Bubbles flux from the lower layer induced by variation of the saturation level around stratification boundary may be efficient mechanism for the water transport between layers.  相似文献   

6.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   

7.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

8.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

9.
The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. We present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative data on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s−0.5, and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s−0.5, and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm2 s−1 and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. Further research is needed to investigate this phenomenon in other natural and engineered porous media.  相似文献   

10.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

11.
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g? 1 Os, 1.5 ± 0.6 pg g? 1 Ir, 6.8 ± 2.7 pg g? 1 Ru, 16 ± 15 pg g? 1 Pt, 33 ± 30 pg g? 1 Pd and 0.29 ± 0.10 pg g? 1 Re (~ 0.00002 × CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (~ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle–crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments.If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust–mantle concentration ratios (D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust–mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a ‘missing component’ of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.  相似文献   

12.
The Pacific margin of Canada has been subjected to tectonism, dramatic sea level change and vigorous storm and tidal energy since glacial times resulting in a complex seafloor. Extensive multibeam mapping of this shelf has provided an opportunity to understand how these processes have impacted sedimentology and morphology. Bathymetric restriction of the tidally dominated flow between the inland seas and the open Pacific has resulted in the development of very large subaqueous dune fields and terrace moats. For example, in the southern Strait of Georgia nearly symmetrical dunes with wavelengths between 100 and 300 m, dune heights up to 28 m, cover the seafloor in 170–210 m water depth. In northern Hecate Strait a 72 km2 area of large 2D dunes occurs at the transition with Dixon Entrance which opens to the Pacific Ocean and steep (>10°) wave-cut terraces and drowned spits, a result of sea level changes during the Holocene, are now being undercut to generate moats 7 m deep, in a narrowing shelf trough. Currents, with velocities ranging between 0.2 and 2.2 m s?1, are dominated by semi-diurnal tidal streams that are continually modified by wind and estuarine circulation. There appears to be a clear association of grain size, water depth and flow velocity controlling the size of the subaqueous dunes.  相似文献   

13.
In the frame of the R&D activities performed on the Boom Clay for assessing the suitability of deep clayey formations for radioactive waste disposal, the transferability of the scientific results obtained on the Boom Clay in Mol to the whole Campine Basin is investigated. Boreholes were drilled at different locations (e.g. Mol, Doel, Essen) and cores were sampled over the entire thickness of the Boom Clay formation on which the migration parameters for iodide and tritiated water (HTO) are determined.At Essen, the transport parameters in the Boom Clay can be considered as homogeneous in the range from 159 m to 241 m Below Drilling Table. The average hydraulic conductivity is (5.4 ± 1.7) × 10−12 m/s. The average ηR value for iodide is 0.25 ± 0.03 and 0.42 ± 0.05 for HTO. For HTO, this high value is mainly due to a higher value in the Putte Member (0.46 ± 0.03) compared to the other members (0.39 ± 0.02). The apparent diffusion coefficient is (1.3 ± 0.1) × 10−10 m2/s for HTO and (1.1 ± 0.2) × 10−10 m2/s for iodide. The expected effect of ionic strength (increasing with depth) on the ηR value of iodide is of the same size as the measurement error, what might explain why it was not observed.On a lateral (horizontal) level, the hydraulic conductivity at the Essen-1 borehole (5.4 × 10−12 m/s) lies between that of Boom Clay in Mol-1 (2.5 × 10−12 m/s) and that of Boom Clay in Doel-2b (1.4 × 10−11 m/s). For iodide, the higher ηR value in Essen-1 and Doel-2b (ηR  0.25) than in Mol-1 (ηR  0.16) can partly be explained by a higher ionic strength of the pore water. Apart from the Putte Member at Essen-1, the HTO porosities of the Terhagen Member and the Transition zone in Essen are in the range of the average porosities observed in Mol and Doel (ηR  0.37–0.39). For both iodide and HTO, the value of the apparent diffusion coefficient Dapp is similar in Mol-1 and in Doel-2b, with a clearly higher value for HTO than for iodide. In Essen-1, the apparent diffusion coefficients for iodide and HTO are nearly equal, and slightly smaller than the iodide value in Mol-1/Doel-2b. Accordingly, the HTO apparent diffusion coefficient is considerably smaller in Essen-1 than in Mol-1/Doel-2b.  相似文献   

14.
The Chinese Continental Scientific Drilling (CCSD) project is located at the Sulu ultrahigh-pressure metamorphic (UHPM) belt. It offers a unique opportunity for studying the radiogenic heat production of both shallower and deeper rocks. Based on the concentrations of radiogenic elements U, Th and K on 349 samples from main hole of CCSD (CCSD MH), pilot holes and exposures, we determined radiogenic heat productions of all major rock types in the Sulu UHPM belt. Results show the mean values of orthogneiss and paragneiss are respectively 1.65 ± 0.81 and 1.24 ± 0.61 µW m? 3. Due to different composition and grade of retrogressive metamorphism, the eclogites display significant scatter in radiogenic heat production, ranging from 0.01 to 2.85 µW m? 3, with a mean of 0.44 ± 0.55 µW m? 3. The radiogenic heat production in ultramafic rocks also varies within a large range of 0.02 to 1.76 µW m? 3, and the average turns out to be 0.18 ± 0.31 µW m? 3. Based on the measurements and crustal petrologic model, the vertical distribution model of heat production in Sulu crust is established. The resulting mean heat production (0.76 µW m? 3) contributes 24 mW m? 2 to the surface heat flow. 1-D thermal model indicates that the temperature at the Moho reaches above 750 °C, and the thermal thickness of the lithosphere is ~ 75 km, in good agreement with the geophysical results. The high teat flow (~ 75 mW m? 2) together with thin lithosphere presents strong support for the extension events during the late Cretaceous and Cenozoic.  相似文献   

15.
The Narmada–Son Lineament (NSL) Zone is the second most important tectonic feature after Himalayas, in the Indian geology. Magnetotelluric (MT) studies were carried out in the NSL zone along a 130 km long NNE-SSW trending profile. The area of investigation extends from Edlabad (20°46′16″; 75°59′05″) in the South to Khandwa (21°53′51″; 76°18′05″) in the North. The data shows in general the validity of a two-dimensional (2D) approach. Besides providing details on the shallow crustal section, the 2D modeling results resolved four high conductive zones extending from the middle to deep crust, spatially coinciding with the major structural features in the area namely the Gavligarh, Tapti, Barwani-Sukta and Narmada South faults. The model for the shallow section has brought out a moderately resistive layer (30–150 Ω m) representing the exposed Deccan trap layer, overlying a conductive layer (10–30 Ω m) inferred to be the subtrappean Gondwana sediments, the latter resting on a high resistive basement/upper crust. The Deccan trap thickness varies from around a few hundred meters to as much as 1.5 km along the traverse. A subtrappean sedimentary basin like feature is delineated in the northern half of the traverse where a sudden thickening of subtrappean sediments amounting to as much as 2 km is noticed. The high resistive upper crust is relatively thick towards the southern end and tends to become thinner towards the middle and northern part of the traverse. The lower crustal segment is conductive over a major part of the profile. Considering the generally enhanced heat flow values in the NSL region, coupled with characteristic gravity highs and enhanced seismic velocities coinciding with the mid to lower crustal conductors delineated from MT, presence of zones of high density mafic bodies/intrusives with fluids, presumably associated with magmatic underplating of the crust in the zone of major tectonic faults in NSL region are inferred.  相似文献   

16.
The Masaya Caldera Complex has been the site of three highly explosive basaltic eruptions within the last six thousand years. A Plinian eruption ca. 2 ka ago formed the widespread deposits of the Masaya Triple Layer. We distinguish two facies within the Masaya Triple Layer from each other: La Concepción facies to the south and Managua facies to the northwest. These two facies were previously treated as two separated deposits (La Concepción Tephra and the Masaya Triple Layer of Pérez and Freundt, 2006) because of their distinct regional distribution and internal architectures. However, chemical compositions of bulk rock, matrix and inclusion glasses and mineral phases demonstrate that they are the product of a single basaltic magma batch. Additionally, a marker bed containing fluidal-shaped vesicular lapilli allowed us to make a plausible correlation between the two facies, also supported by consistent lateral changes in lithologic structure and composition, thickness and grain size.We distinguish 10 main subunits of the Masaya Triple Layer (I to X), with bulk volumes ranging between 0.02 and 0.22 km3, adding up to 0.86 km3 (0.4 km3 DRE) for the entire deposit. Distal deposits identified in two cores drilled offshore Nicaragua, at a distance of ~ 170 km from the Masaya Caldera Complex, increase the total tephra volume to 3.4 km3 or ~ 1.8 km3 DRE of erupted basaltic magma.Isopleth data of five major fallout subunits indicate mass discharges of 106 to 108 kg/s and eruption columns of 21 to 32 km height, affected by wind speeds of < 2 m/s to ~ 20 m/s which increased during the course of the multi-episodic eruption. Magmatic Plinian events alternated with phreatoplinian eruptions and phreatomagmatic explosions generating surges that typically preceded breaks in activity. While single eruptive episodes lasted for few hours, the entire eruption probable lasted weeks to months. This is indicated by changes in atmospheric conditions and ash-layer surfaces that had become modified during the breaks in activity. The Masaya Triple Layer has allowed to reconstruct in detail how a basaltic Plinian eruption develops in terms of duration, episodicity, and variable access of external water to the conduit, with implications for volcanic hazard assessment.  相似文献   

17.
SHRIMP zircon U–Pb dating, mineral chemical, element geochemical and Sr–Nd–Pb–Hf isotopic data have been determined for the Yulong monzogranite-porphyry in the eastern Tibet, China. The Yulong porphyry was emplaced into Triassic strata at about 39 Ma. The rocks are weakly peraluminous and show shoshonitic affinity, i.e., alkalis-rich, high K2O contents with high K2O / Na2O ratios, enrichment in LREE and LILE. They also show some affinities with the adakite, e.g., high SiO2 and Al2O3, and low MgO contents, depleted in Y and Yb, and enrichment in Sr with high Sr / Y and La / Yb ratios, and no Eu anomalies. The Yulong porphyry has radiogenic 87Sr / 86Sr (0.7063–0.7070) and unradiogenic 143Nd / 144Nd (εNd =  2.0 to − 3.0) ratios. The Pb isotopic compositions of feldspar phenocrysts separated from the Yulong porphyry show a narrow range of 206Pb / 204Pb ratios (18.71–18.82) and unusually radiogenic 207Pb / 204Pb (15.65–15.67) and 208Pb / 204Pb (38.87–39.00) ratios. In situ Hf isotopic composition of zircons that have been SHRIMP U–Pb dated is characterized by clearly positive initial εHf values, ranging from + 3.1 to + 5.9, most between + 4 and + 5. Phenocryst clinopyroxene geothermometry of the Yulong porphyry indicates that the primary magmas had anomalously high temperature (> 1200 °C). The source depth for the Yulong porphyry is at least 100 km inferred by the metasomatic volatile phase (phlogopite–carbonate) relations. Detailed geochemical and Sr–Nd–Pb–Hf isotopic compositions not only rule out fractional crystallization or assimilation-fractional crystallization processes, but also deny the possibility of partial melting of subducted oceanic crust or basaltic lower crust. Instead, low degree (1–5%) partial melting of a metasomatized lithosphere (phlogopite–garnet clinopyroxenite) is compatible with the data. This example gives a case study that granite can be derived directly by partial melting of an enriched lithospheric mantle, which is important to understand the source and origin of diverse granites.  相似文献   

18.
Several crystal-rich, intermediate to silicic magmas erupted at arc volcanoes record a reheating event shortly prior to eruption: they provide evidence for remobilization of crystal mushes by mafic magmas. As hybridization between the mush and the mafic magma is often limited, bulk mixing could not be the dominant process in transferring heat. Conductive heating from a basaltic underplate plays a role, but a few characteristics of these rejuvenated mushes suggest that reheating occurs faster than predicted by conduction.In the upper crust, a process that can transport heat faster than conduction, and still remain chemically nearly imperceptible, is the upward migration of a hot volatile phase (“gas sparging”) that originates in underplated mafic magmas. Using numerical simulations, we quantified the thermal effects of two-phase flow (a silicic melt phase and a H2O–CO2 fluid phase) in the pore space of shallow silicic mushes that have reached their rheological lock-up point (i.e., rigid porous medium, crystallinity ≥ 50 vol.%). Results show that the reheating rates are significantly faster than conduction for volatile fluxes > 0.1 m3/m2 yr. Considering that volatiles can be rapidly exsolved from the underplated mafic magma, these high fluxes can be promptly reached, leading to fast reheating; sill-like batches of mushes with volumes similar to the 1995–present eruption of the Soufrière Hills (Montserrat, W.I.) can be reheated by a few tens of degrees and remobilized within days to weeks. At these high fluxes, a considerable volume of volatiles is needed (similar to the volume of mush being reheated). Large silicic systems (> 100–1000 km3) require unrealistic amounts of volatiles to be reheated in a continuous, high-flux sparging event. Rejuvenation of batholithic mushes therefore requires multiple sparging episodes separated by periods dominated by near-conductive heat transfer at low-flux sparging (< 0.1 m3/m2 yr) and may take up to 100–200 ky.  相似文献   

19.
《Geofísica Internacional》2014,53(3):333-341
Escollos Alijos is a large seamount located in the NE Pacific Ocean about 300 km off the Baja California Peninsula. Geochronology and geochemical analysis of volcanic rocks capping the seamount indicate recent magmatism that resulted from extensive differentiation of a mildly alkalic basalt parent magma.Escollos Alijos is located towards the eastern edge of a long-wavelength geoid undulation minimum, of up to -47 m with respect of the WGS84 ellipsoid, which extends over the northeastern Pacific Ocean. Subtracting from the geoid undulation its long-wavelength component and the undulation due to the seamount topography itself, a negative undulation anomaly persists that indicates a mass deficit at depth. Linear inversion of the undulation anomaly yields a region characterized by a negative density contrast, localized under the seamount at a depth between 9 and 13 km.The age and chemical composition of Escollos Alijos, and the inferred mass deficit suggest magma trapped between the oceanic crust and the uppermost mantle, which explains the magmatic activity in recent times.  相似文献   

20.
Understanding the processes at the origin of explosive events is crucial for volcanic hazard mitigation, especially during long-lasting eruptions at andesitic volcanoes. This work exposes the case of Tungurahua volcano, whose unrest occurred in 1999. Since this date, the eruptive activity was characterized by low-to moderate explosiveness, including phases with stronger canon-like explosions and regional ash fallout. However, in 2006, a sudden increase of the explosiveness led to pyroclastic flow-forming eruptions on July 14th (VEI 2) and August 16–17th (VEI 3). All magmas emitted from 1999 to 2005, as well as the samples from the 2006 eruptions, have homogeneous bulk-rock andesitic compositions (58–59 wt.% SiO2), and contain the same mineral assemblage consisting of pl + cpx + opx + mag ± ol. However, during the August 16–17th event, the erupted tephra comprise two types of magmas: a dominant, brown andesitic scoria; and scarce, light-grey pumice representing a subordinate, silica-rich juvenile component. For the andesitic magma, thermobarometric data point to magmatic temperatures ranging from 950 to 1015 °C and pressures in the range of 200 to 250 MPa, which corresponds to 7.5–9.5 km below the summit. Disequilibrium textures in plagioclase and pyroxene phenocrysts, particularly thin overgrowth rims, indicate the recharge of this magma body by mafic magma. Between 1999 and 2005, repeated injections from depth fed the intermittent eruptive activity observed while silica-rich melts were produced by in-situ crystallization in the peripheral parts of the reservoir. In April 2006, the recharge of a primitive magma produced strong convection and homogenisation in the reservoir, as well as pressure increase and higher magma ascent rate after seven years of only moderately explosive activity. This work emphasizes the importance of petrological studies in constraining the pre-eruptive magmatic conditions and processes, as a tool for understanding the fundamental causes of the changes in the eruptive dynamism, particularly the occurrence of paroxysmal phases in andesitic systems with open-vent behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号