首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
横跨天山的宽频带流动地震台阵观测   总被引:11,自引:2,他引:9       下载免费PDF全文
中国地震局地质研究所台阵地震学实验室于2003年4月—2004年9月,横跨天山布设了由60台仪器组成,总长度超过500 km,宽频带流动地震观测剖面.野外观测记录地震事件1434个.横跨天山的接收函数剖面表明,沿测线地壳结构复杂,介质存在明显的横向非均匀.同时,我们的初步结果还揭示了天山与两侧盆地的耦合关系,天山下方的壳幔界面较为模糊.  相似文献   

2.
天山造山带是新生代以来复活隆升的陆内造山带,强烈的地震活动性使得理解和认识天山造山带深部结构及盆山耦合关系尤为重要。文章中使用天山造山带及邻区(40°~49°N,79°~93°E)85个台站2017—2019年的背景噪声资料,结合背景噪声互相关方法获得了6~52 s瑞利波相速度频散曲线,利用基于射线追踪的面波直接反演法对天山中段地壳三维S波速度结构及盆山耦合关系进行研究。结果显示:地壳浅层S波速度分布与构造单元中沉积层厚度相关,塔里木盆地北缘、准噶尔盆地南缘表现为低速,天山造山带表现为高速;到了中下地壳,天山造山带下方存在被高速异常包裹的低速体;莫霍面附近,天山造山带表现出相对低速;准噶尔盆地南缘和天山造山带的地壳厚度分别在45~50 km、50~62 km之间,沿南北向,天山造山带莫霍面呈现较为宽缓的形态;在82°~86.5°E之间,塔里木盆地和准噶尔盆地向天山下方双向俯冲,86.5°~88°E之间,准噶尔盆地向天山南向俯冲,由西向东,不同盆山耦合关系揭示了新生代以来天山中段不同区域构造运动差异,为进一步探讨造山动力过程提供参考。  相似文献   

3.
库尔勒—吉木萨尔剖面横跨塔里木盆地北缘、天山造山带和准噶尔盆地南缘.沿剖面完成了重磁联合反演,获得了岩石圈二维密度结构与二维磁性结构.结果发现,塔里木盆地与准噶尔盆地向天山造山带对冲.在地壳范围内,塔里木盆地北缘与准噶尔盆地南缘的平均密度较高,天山造山带的地壳平均密度较低.天山造山带具有较高的磁化强度,尤其表现在准噶尔盆地南缘至天山造山带中部的整个地壳范围内,预示着天山南北可能具有不同的构造演化历史、构造运动方式以及构造运动强度.在塔里木盆地与天山造山带以及准噶尔盆地与天山造山带的接触部位的上地幔顶部分别发现了低密度体,推测在塔里木盆地由南而北向天山造山带“层间插入与俯冲消减”,以及准噶尔盆地由北而南向天山造山带俯冲的过程中塔里木盆地北缘和准噶尔盆地南缘下地壳物质被带进天山造山带上地幔顶部.库尔勒—吉木萨尔剖面岩石圈二维密度结构与磁性结构为天山造山带的构造分段提供了岩石圈尺度的依据.  相似文献   

4.
Based on deep geophysical detections, we have reconstructed the crustal structure from the eastern margin of the Tibetan Plateau to the Jiangnan-Xuefeng orogenic belt. The results suggest that the Yangtze Block was overthrusted by crustal materials in its NW direction from the eastern Tibetan Plateau but in its SE direction from the Jiangnan orogen. These overthrusting effects control the crustal structure from the western Sichuan to the western area of the Jiangnan orogen-Xuefeng orogenic belt. The eastward extruded materials from the eastern Tibetan Plateau were blocked by the rigid basement in the Sichuan Basin, where upper-middle crust was overthrusted whereas the lower crust was underthrusted beneath the Sichuan Basin. The underthrusted unit was absorbed by crustal folding, shortening and thickening in the Yangtze Block, forming the Xiongpo and Longquan Mountains tectonic belts and resulting in the NW-directed thrusting of the Pujiang-Chengdu-Deyang fault, and the western hillsiden fault in the Longquan Mountain. These results provide resolution to the controversy where the eastward extrusion material from the Qinghai-Tibet Plateau had gone. Overall, that Yangtze Block was subjected to thrusting of the crustal materials from the orogenic belts over its both sides. This finding has implications for the study of the intracontinental orogenic mechanism in South China, the reconstruction of tectonic evolutionary history and the kinematics processes during the lateral extrusion of the Tibet Plateau.  相似文献   

5.
The Tienshan orogenic belt is one of the most active intracontinental orogenic belts in the world. Studying the deep crust-mantle structure in this area is of great significance for understanding the deep dynamics of the Tienshan orogen. The distribution of fixed seismic stations in the Tianshan orogenic belt is sparse. The low resolution of the existing tomographic results in the Tienshan orogenic belt has affected the in-depth understanding of the deep dynamics of the Tienshan orogenic belt. In this paper, the observation data of 52 mobile seismic stations in the Xinjiang Seismic Network and the 11 new seismic stations in the Tienshan area for one-year observations are used. The seismic ambient noise tomography method is used to obtain the Rayleigh surface wave velocity distribution image in the range of 10~50s beneath the Chinese Tienshan and its adjacent areas (41°~48° N, 79°~91° E). The joint inversion of surface wave and receiver function reveals the S-wave velocity structure of the crust and uppermost mantle and the crustal thickness below the station beneath the Chinese Tienshan area(41°~46° N, 79°~91° E). The use of observation data from mobile stations and new fixed seismic stations has improved the resolution of surface wave phase velocity imaging and S-wave velocity structure models in the study area.
The results show that there are many obvious low-velocity layers in the crust near the basin-bearing zone in the northern Tienshan Mountains and the southern Tienshan Mountains. There are significant differences in the structural characteristics and distribution range of the low-velocity zone in the northern margin and the southern margin. Combining previous research results on artificial seismic profiles, receiver function profiles, teleseismic tomography, and continental subduction simulation experiments, it is speculated that the subduction of the Tarim Basin and the Junggar Basin to the Tienshan orogenic belt mainly occurs in the middle of the Chinese Tienshan orogenic belt, and the subduction of the southern margin of the Tienshan Mountains is larger than that of the northern margin, and the subduction of the eastern crust is not obvious or in the early subduction stage. There are many low-velocity layers in the inner crust of the Tienshan orogenic belt, and most of them correspond to the strong uplifting areas that are currently occurring. The thickness of the crust below the Tienshan orogenic belt is between 55km and 63km. The thickness of the crust(about 63km)is the largest near the BLT seismic station in the Bazhou region of Xinjiang. The average crustal thickness of the Tarim Basin is about 45km, and that of the Junggar Basin is 47km. The S-wave velocity structure obtained in this study can provide a new deep basis for the study of the segmentation of the Tienshan orogenic belt and the difference of the basin-mountain coupling type.  相似文献   

6.
Magnetotelluric data are collected along a NW-SE trending and about 900km long profile within northeastern boundary areas of the North China craton(NCC). This profile extends from the Hegenshan belt within the Central Asian orogenic belt(CAOB), across the Baolidao arc, Solonker-Linxi suture zone, Ondor Sum accretion complex, Bainaimiao arc, Inner Mongolia paleo-uplift, Yanshan belt, and ends on the Liaohe depression of the NCC. Impedance tensor decomposition methods are used to study the dimensionality and geo-electric strike of MT data of the region. Two-dimension (2D) analysis is appropriate for this profile. The 2-D subsurface electrical resistivity structure along profile is obtained using the non-linear conjugate gradient (NLCG) algorithm. The electrical resistivity structure is characterized by lateral segmentation, and divided into high resistive, low resistive, and high resistive areas; The lateral variation of electrical resistivity is significant within the CAOB, but it is smooth in the NCC; The extensive high conductive body(HRB)is observed in the mid-low crust beneath the Solonker-Linxi suture zone and Inner Mongolia paleo-uplift, respectively; The low resistivity could be due to the partial melts and crustal flows. Based on our electrical resistivity structure and other geological, geophysical observations, we speculate that (1)the final suturing of the Siberian craton to the NCC could be along the areas between Xilinhot Fault and Xar Moron Fault; (2)the relatively thick high resistive body beneath the Yanshan belt may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection system, and lower the effect of tectonic evolution of CAOB on the destruction to NCC.  相似文献   

7.
本文利用中国地震科学探测台阵2013-2015年在南北地震带北段及其周缘架设的673个台站所记录到的远震波形所提取到的接收函数并应用H-κ扫描方法获取了南北地震带北段及其周缘的地壳厚度和泊松比,结果显示研究区地壳厚度从青藏高原东北缘向鄂尔多斯块体逐渐减小,从65 km逐渐减薄至40 km,不同块体之间地壳厚度存在明显差异.祁连造山带西部地壳厚度超过60 km,而东部地壳厚度仅为约50 km左右,表明祁连造山带东、西部地壳增厚变形存在着明显差异.西秦岭造山带地壳厚度从60 km减薄到40 km,其东部具有较薄的地壳厚度可能经历了拆沉.阿拉善块体作为华北克拉通西部块体的一部分,西部地壳厚度约50 km,而东部约45 km,表明阿拉善块体西部由于印度一欧亚板块碰撞也受到了活化改造,其克拉通性质只在其中东部残留.研究区泊松比变化范围为0.20~0.31,平均泊松比约0.25,表明地壳主要由长英质矿物组成,较高的泊松比主要分布在六盘山断裂带和银川一河套地堑.研究结果显示地壳厚度与高程之间具有较好的相关性,表明地壳整体上处于相对均衡的状态,而西秦岭造山带和祁连造山带东部的部分区域地壳可能处于不均衡状态.  相似文献   

8.
The traveling time of the reflection waves of each shot point from the crust-mantle transitional zone has been obtained by data processing using wavelet transform to the waves reflected from the crust-mantle transitional zone. The crust-mantle transitional zone of the Xayar-Burjing geoscience transect can be divided into three sections: the northern margin of the Tarim Basin, the Tianshan orogenic belt and Junggar Basin. The crust-mantle transitional zone is composed mainly of first-order discontinuity in the Tarim Basin and the Junggar Basin, but in the Tianshan orogenic belt, it is composed of 7–8 thin layers which are 2-3 km in thickness and high and low alternatively in velocity, with a total thickness of about 20km. The discovery of the crust-mantle transitional zone of the Tianshan orogenic belt and Junggar Basin and their differences in tectonic features provide evidence for the creation of the geodynamic model “lithospheric subduction with intrusion layers in crust” for the Tianshan orogenic belt.  相似文献   

9.
中国境内天山地壳上地幔结构的地震层析成像   总被引:23,自引:5,他引:18  
根据横跨中国境内天山的库车—奎屯宽频带流动地震台阵和区域地震台网记录的近震和远震P波走时数据,利用地震层析成像方法重建了沿该地震台阵剖面下方400 km深度范围内地壳上地幔的P波速度结构.结果表明:沿新疆库车—奎屯剖面,天山地壳具有明显的横向分块结构,且南、北天山地壳显示了较为强烈的横向变形特征,表明塔里木地块对天山地壳具有强烈的侧向挤压作用;在塔里木和准噶尔地块上地幔顶部有厚度约60~90 km的高速异常体,塔里木—南天山下方的高速异常体产生了较为明显的弯曲变形,而准噶尔—北天山下方的高速异常体向南一直俯冲到中天山南侧边界下方300 km的深度,两者形成了不对称对冲构造;在塔里木和准噶尔地块下方150~400 km深度存在上地幔低速体,其中塔里木地块一侧的上地幔低速物质上涌到南天山地块的下方;在塔里木—南天山200~300 km深度范围的上地幔存在高速异常体,它可能是地幔热物质向上迁移过程融断的塔里木岩石圈的拆离体. 上述结果表明,塔里木地块的俯冲可能涉及整个岩石圈深度,但其前缘仅限于南天山的北缘;青藏高原隆升的远程效应可能不但驱动塔里木岩石圈向北俯冲,同时还造成天山造山带南侧上地幔物质的涌入;天山造山带上地幔广泛存在的低速异常有助于其上地幔的变形,而上地幔物质的强烈非均匀性应有助于推动天山造山带上地幔小尺度地幔对流的形成;根据研究区地壳上地幔速度结构特征推断,新近纪以来天山快速隆升的主要力源来自青藏高原快速隆升的远程效应,相对软弱的上地幔为加速天山造山带的变形和隆升创造了必要条件.  相似文献   

10.
The North China Craton (NCC) is one of the oldest cratons on earth. Several important tectonic transformations of Mesozoic-Cenozoic tectonic regime led to the destruction of the North China craton. The knowledge of crustal structure can provide important constraints for the formation and evolution of cratons. New maps of sediment thickness, crustal thickness (H) and vP/vS (κ) in the central and western NCC were obtained using sequential H-κ stacking. P-wave receiver functions are calculated using teleseismic waveform data recorded by 405 stations from ChinArray project. Benefiting from the densely distribution of temporary seismic stations, our results reveal details of the crustal structure in the study area. The thickness of sedimentary layer in North China ranges from 0–6.4 km, and the thickest sedimentary layer is in Ordos block and its surroundings (about 2.8–6 km); The thickness of sedimentary layer in the Mongolia fold belt and Yinshan orogenic belt is relatively thin (less than 1 km). The crustal thickness of the study area varies between 27–48 km, of which the crust of the North China Plain is about 30–33 km, the central NCC is about 33–40 km, and the Ordos block is 40–48 km thick. The average vP/vS ratios in the study area is mostly between 1.66 and 1.90, and that in the Yanshan-Taihang mountain fold belt is between 1.70 and 1.85, and that in the Ordos block is between 1.65 and 1.90, with an average value of 1.77, indicating the absence of a thick basaltic lower crust. The obvious negative correlation between crustal thickness and average vP/vS ratio within Ordos and Central Asia orogenic belt may be related to magmatic underplating during the crustal formation. There is no significant correlation between the crustal thickness and the vP/vS ratio in the Lüliang-Taihang mountain fold belt, which may be related to the multiple geological processes such as underplating and crustal extension and thinning in this area. The lack of correlation between crust thickness and topography in the central orogenic belt and the North China Basin indicates the topography of these areas are controlled not only by crustal isostatic adjustment but also by the lithospheric mantle processes.  相似文献   

11.
危自根  陈凌  杨小林 《地球物理学报》2011,54(11):2799-2808
本文研究采用接收函数H-κ方法获得了辽东台隆、燕山带和兴蒙造山带台站下方的地壳厚度和平均波速比(VP/VS).结果显示,研究区域三个构造区地壳平均厚度略有差别,分别为32、33 km和35 km,但横向变化特征各异.辽东台隆地壳中间厚两端薄,燕山带地壳厚度的变化相对平缓,而在兴蒙造山带内,以索伦缝合带为界地壳呈由东南向...  相似文献   

12.
天山造山带构造环境复杂,活动断裂带和强震分布广泛,且主要分布于阿尔泰山、天山、西昆仑—帕米尔弧形构造带上,尤以天山地区最为集中.迄今为止,天山造山带地区的主要断裂带的活动特征与孕震应力场特征之间的动力学机理尚未有清晰的认识.本文以GPS等实际观测数据为约束,建立有限元数值模型,计算了研究区域地壳形变、应力/应变积累速率、弹性应变能密度以及库仑应力变化率等关键因素.模拟计算结果显示地表速度场与研究区域实际GPS观测值基本一致,且主要断裂带上弹性应变能密度分布与实际地震活动性也基本吻合,验证了数值模型和结果的可靠性.结合最新的观测和数值模拟结果分析发现,研究区的断层和地震活动性主要受控于近南北向的主压应力,与主要观测特征相一致.同时,帕米尔高原北部边界带—塔什库尔干断裂(TKF)、天山造山带南边界的东侧—迈丹断裂(MDF)、兴地断裂(XDF)库仑应力增大明显,在未来强震发生的可能性较高,应予密切关注.  相似文献   

13.
天山作为全球新构造运动和地震活动最为强烈的板内造山带,一直是中外地震学家密切关注的区域之一。本文从天山地区应力场及构造运动特征入手,对天山不同构造分区地震的破裂和地震序列类型分布特征进行研究,结果显示对于天山全区而言,地震破裂类型主要为逆断-走滑型,地震序列类型以主-余型为主,同时试图通过强震发震构造力学性质和地震学参数等方面的对比,揭示构造带内部差异性运动对强震孕育发生的影响,以期为天山地区地震活动性研究与地震预测提供基础性研究支持。  相似文献   

14.
We use 15 seismic stations,crossing the Qinling orogen(QO),Weihe graben(WG)and Ordos block(OB),to study the crustal structures by receiver functions(RFs)methods.The results show quite a difference in crustal structures and materials of three tectonic units(orogenic belt,extentional basin and stable craton).The average crustal thickness in the northern QO is 37.8 km,and Poisson ratio is 0.247,which indicates the increase of felsic materials in QO.In the southern OB,the average crustal thickness is 39.2 km and Poisson ratio is 0.265.Comparatively high value of Poisson ratio is related with old crystallized base in the lower crust and shallow sediments.The artificial RFs reveal that low-velocity and thick sediments have a significant effect on phases of the Mohorovi i discontinuity(Moho).As a result,the Moho phases in WG are tangled.S-wave velocity(VS)inversion shows that there are shallow sediment layers with 4–8 km’s thickness and high velocity zones in the middle-lower crust in WG.Complex Moho structure and high velocity zone may have been induced by the activities of the Weihe faults series.  相似文献   

15.
The late Phanerozoic Alice Springs Orogen in central Australia is an archetypal intraplate orogen characterised by a dense, granulitic core exhumed from beneath a carapace comprising a highly radiogenic granitic mid-upper crust and sediments deposited in a shallow intracratonic basin. Exhumation occurred in large part along a crustal penetrative fault system, the Redbank Shear Zone, producing one of the largest gravity anomalies (∼150 mgal) known from the continental interiors. The lithospheric strength implied by the preservation of this anomaly for more than 300 Myr raises the intriguing conundrum of what localised the intraplate deformation in the first place. Available biostratigraphic and thermochronologic data imply bulk convergence rates of less than 1 mm/yr for the orogen as a whole, several orders of magnitude lower than typical of plate margin orogens. The thermal and mechanical evolution of intraplate orogens deformed at such low thermal Peclet numbers differs in fundamental ways from plate margin orogens. In particular, at such low thermal Peclet numbers the conductive response to exhumation of heat sources cools the mid to deep crust during progressive orogenic activity. This is consistent with the hypothesis that the density structure and associated gravity anomalies may have been locked-in by virtue of the strength acquired during the orogenic process provided that the lithospheric strength changes associated with a reduction in average crustal temperature of 20-30°C are of the same order as the forces that drive intraplate deformation.  相似文献   

16.
为了研究天山造山带的地球动力学,自1970年代以来,国内外在天山造山带开展了大量的深部探测工作,并取得了丰富的成果,本文对这些工作和成果进行了梳理和综述.已有研究结果表明:天山造山带的地壳厚度较大,但并无明显山根;地壳结构具有垂向分层和横向分块特征;壳幔界面不清晰,莫霍面在盆山接合部下方发生错断;壳内普遍发育低速异常体,地壳泊松比较高,暗示了地壳力学上的弱化作用;上地幔也存在波速异常体,低速异常可能与地幔热物质上涌有关,高速体可能是古老板块的岩石圈拆离碎片;莫霍面错断、Q值结构和波速异常特征可以用天山南北侧稳定地质块体往天山造山带之下俯冲来解释,这也得到高分辨率层析成像结果的支持;剪切波分裂结果暗示有相当厚的上地幔卷入了造山过程.上述资料表明天山造山带的变形和隆升是其南北侧稳定地质块体的构造挤压与壳—幔复杂耦合作用的共同结果.  相似文献   

17.
This paper introduces the scale-depth law of multi-scale wavelet analysis for regional gravity data processing, and presents the results of its application to Central Asia for computation of the 3D crustal density structures. The wavelet analysis method is applied for characterizing 3D crustal density structure, producing five maps of density disturbance corresponding to different depths of equivalent layers in the crust. The results provide important evidence for the study of crustal structures and mass movement in Central Asia: (i) the small-scale and intensive linear density disturbances in the upper crust indicate Phanerozoic orogenic belts; (ii) there exists a horseshoe-shaped low-density belt in the middle crust coinciding with the Kazakhstan orocline; (iii) there is a very low density zone in the lower crust, extending from western Kunlun to Tianshan, probably indicating a lower-crust flow; (iv) there are a few lowdensity spots in the middle crust, which might be caused by low-density mass squeezing upward from the lower crust flows.  相似文献   

18.
The uplift and exhumation process in the Tianshan orogen since the late Paleozoic were likely related to the preservation of ore deposits. This study involved reconstructing the whole tectonic thermal history of the Ouxidaban pluton in central South Tianshan Mountains based on hornblende/plagioclase Ar-Ar and zircon/apatite(U-Th)/He methods. The thermal history and uplift process of central South Tianshan Mountains since the late Paleozoic were analyzed according to the results of previous works and cooling/exhumation rate features. The hornblende yields a plateau age of 382.6±3.6 Ma, and the plagioclase yields a weighted mean age of 265.8±4.9 Ma. The Ouxidaban pluton yields weighted mean zircon(U-Th)/He age of 185.8±4.3 Ma and apatite(U-Th)/He age of 31.1±2.9 Ma, respectively. Five stages of tectonic thermal history of South Tianshan Mountains since the late Paleozoic could be discriminated by the cooling curve and modeling simulation:(1) from the latest Silurian to Late Devonian, the average cooling rate of the Ouxidaban pluton was 7.84°C/Ma;(2) from the Late Devonian to the latest Middle Permian, the average cooling rate was about 2.07°C/Ma;(3) from the latest Middle Permian to the middle Eocene, the cooling rate decreased to about 0.68°C/Ma, suggesting that the tectonic activity was gentle at this time;(4) a sudden increase of the cooling rate(5.00°C/Ma) and the exhumation rate(0.17 mm/a), and crustal exhumation of ~1.83 km indicated that the Ouxidaban pluton would suffer a rapid uplift event during the Eocene(~46?35 Ma);(5) since the middle Eocene, the rapid uplift was sustained, and the average cooling rate since then has been 1.14°C/Ma with an exhumation rate of about 0.04 mm/a and an exhumation thickness of 1.33 km. The strong uplift since the Cenozoic would be related to a far-field effect from the Indian and Eurasian plates' collision. However, it was hysteretic that the remote effect was observed in the Tianshan orogenic belt.  相似文献   

19.
The Dabie Shan is located on the eastern side of the Qinling-Dabie orogenic belt, which marks a geological boundary between the Sino-Korean and Yangtze cra- ton. Since the 1980s, the discovery of coesite and mi- crodiamond in the Dabie Shan orogen motivates an extensive interest to the ultra-high pressure (UHP)metamorphism and its exhumation[1,2]. Many results about them were published, which deal with different disciplines, including tectonics, petrology and chro- nology[3?8]. Up to now,…  相似文献   

20.
The Qinling-Dabie orogen is an important tectonic belt that trends east-west and divides continental China into northern and southern parts.Due to its strong deformation,complicated structure,multiphase structural superposition and the massive exposed high and ultrahigh metamorphic rocks,its tectonic formation and geodynamical evolution are hot research topics worldwide.Previous studies mainly focused on the regional geological or geochemical aspects,whereas the geophysical constraints are few and isolated,in particular on the orogenic scale.Here,we integrate the available P- and S-wave seismic and seismicity data,and construct the rheological structures along the Qinling-Dabie orogen.The results demonstrate that:(1)there are strong lateral variations in the crustal velocity between the western and eastern sections of the Qinling-Dabie orogen,indicating the different origin and tectonic evolution between these two parts;(2) the lateral variations are also manifested in the rheological structure.The rigid blocks,such as South China and Ordos basin(North China Craton),resist deformation and show low seismicity.The weak regions,such as the margin of Tibet and western Qinling-Dabie experience strong deformation and accumulated stress,thus show active seismicity;(3) in the lower crust of most of the HP/UHP terranes the values of P-wave velocity are higher than the global average ones;finally(4) low P- and S-wave velocities and low strength in the lower crust and lithospheric mantle beneath Dabie indicate lithospheric delamination,and/or high temperature,and partial melting condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号