首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Upper Jurassic organic matter-rich, marine shales of the Mandal Formation have charged major petroleum accumulations in the North Sea Central Graben including the giant Ekofisk field which straddles the graben axis. Recent exploration of marginal basin positions such as the Mandal High area or the Søgne Basin has been less successful, raising the question as to whether charging is an issue, possibly related to high thermal stability of the source organic matter or delayed expulsion from source to carrier.The Mandal Formation is in part a very prolific source rock containing mainly Type II organic matter with <12 wt.-% TOC and HI < 645 mg HC/g TOC but Type III-influenced organofacies are also present. The formation is therefore to varying degrees heterogeneous. Here we show, using geochemical mass balance modelling, that the petroleum expulsion efficiency of the Mandal Formation is relatively low as compared to the Upper Jurassic Draupne Formation, the major source rock in the Viking Graben system. Using maturity series of different initial source quality from structurally distinct regions and encompassing depositional environments from proximal to distal facies, we have examined the relationship between free hydrocarbon retention and organic matter structure. The aromaticity of the original and matured petroleum precursors in the Mandal source rock plays a major role in its gas retention capacity as cross-linked monoaromatic rings act on the outer surface of kerogen as sorptive sites. However, oil retention is a function of both kerogen and involatile bitumen compositions. Slight variations in total petroleum retention capacities within the same kerogen yields suggest that texture of organic matter (e.g. organic porosity) could play a role as well.  相似文献   

2.
The geochemical and petrographic characteristics of saline lacustrine shales from the Qianjiang Formation, Jianghan Basin were investigated by organic geochemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and low pressure nitrogen adsorption analysis. The results indicate that: the saline lacustrine shales of Eq3 member with high oil content are characterized by type I and type II oil-prone kerogen, variable TOC contents (1.0–10.0 wt%) and an early-maturity stage (Ro ranges between 0.41 and 0.76%). The mineral compositions of Eq3 saline shale show strong heterogeneity: brittle intervals with high contents of quartz and carbonate are frequently alternated with ductile intervals with high glauberite and clay contents. This combination might be beneficial for oil accumulation, but may cause significant challenges for the hydraulic stimulation strategy and long-term production of shale oil. The interparticle pores and intraparticle pores dominate the pore system of Eq3 shale, and organic matter hosted pores are absent. Widely distributed fractures, especially tectonic fractures, might play a key role in hydrocarbon migration and accumulation. The pore network is contributed to by both large size inorganic pores and abundant micro-factures, leading to a relatively high porosity (2.8–30.6%) and permeability (0.045–6.27 md) within the saline shale reservoir, which could enhance the flow ability and storage capacity of oil. The oil content (S1 × 100/TOC, mg HC/g TOC and S1, mg HC/g rock) and brittleness data demonstrate that the Eq33x section has both great potential for being a producible oil resource and hydraulic fracturing. Considering the hydrocarbon generation efficiency and properties of oil, the mature shale of Eq3 in the subsidence center of the Qianjiang Depression would be the most favorable zone for shale oil exploitation.  相似文献   

3.
This study is the first attempt which provides information regarding the bulk and quantitative pyrolysis results of the Chia Gara Formation from the Kurdistan region, northern Iraq. Ten representative early-mature to mature samples from the Chia Gara Formation were investigated for TOC contents, Rock Eval pyrolysis, pyrolysis-GC and bulk kinetic parameters. These analyses were used to characterize the petroleum generated during thermal maturation of the Chia Gara source rock and to clarify the quantity of the organic matter and its effect on the timing of petroleum generation.Pyrolysis HI data identified two organic facies with different petroleum generation characteristics; Type II–III kerogen with HI values of >250 mg HC/g TOC, and Type III kerogen with HI values < 100 mg HC/g TOC. These types of kerogen can generate liquid HCs and gas. This is supported by the products of pyrolysis–gas chromatography (Py–GC) analysis of the extracted rock samples. Pyrolysis products show a dominance of a marine organic matter with variable contributions from terrestrial organic matter (Types II–III and III kerogen), and produces mainly paraffinic-naphthenic-aromatic low wax oils with condensate and gas.Bulk kinetic analysis of the Chia Gara source rock indicates a heterogeneous organic matter assemblage, typical of restricted marine environments in general. The activation energy distributions reveal relatively broad and high values, ranging from 40 to 64 kcal/mol with pre-exponential factors varying from 2.2835 E+12/sec to 4.0920 E+13/sec. The predicted petroleum formation temperature of onset (TR 10%) temperatures ranges from 110 to 135 °C, and peak generation temperatures (geological Tmax) between 137 °C and 152 °C. The peak generation temperatures reach a transformation ratio in the range of 42–50% TR, thus the Chia Gara source rock could have generated and expelled significant quantities of petroleum hydrocarbons in the Kurdistan of Iraq.  相似文献   

4.
Understanding the hydrocarbon accumulation pattern in unconventional tight reservoirs is crucial for hydrocarbon evaluation and oil/gas extraction from such reservoirs. Previous studies on tight oil accumulation are mostly concerned with self-generation or from source to reservoir rock over short distances. However, the Lucaogou tight oil in Jimusar Sag of Junggar Basin shows transitional feature in between. The Lucaogou Formation comprises fine-grain sedimentary rocks characterized by thin laminations and frequently alternating beds. The Lucaogou tight silt/fine sandstones are poorly sorted. Dissolved pores are the primary pore spaces, with average porosity of 9.20%. Although the TOC of most silt/fine sandstones after Soxhlet extraction is lower than that before extraction, they show that the Lucaogou siltstones in the area of study have fair to good hydrocarbon generation potential (average TOC of 1.19%, average S2 of 4.33 mg/g), while fine sandstones are relatively weak in terms of hydrocarbon generation (average TOC of 0.4%, average S2 of 0.78 mg/g). The hydrocarbon generation amount of siltstones, which was calculated according to basin modeling transformation ratio combined with original TOC based on source rock parameters, occupies 16%–72% of oil retention amount. Although siltstones cannot produce the entire oil reserve, they certainly provide part of them. Grain size is negatively correlated with organic matter content in the Lucaogou silt/fine sandstones. Fine grain sediments are characterized by lower deposition rate, stronger adsorption capacity and oxidation resistance, which are favorable for formation of high quality source rocks. Low energy depositional environment is the primary reason for the formation of siltstones containing organic matter. Positive correlation between organic matter content and clay content in Lucaogou siltstones supports this view point. Lucaogou siltstones appear to be effective reservoir rocks due to there relatively high porosity, and also act as source rocks due to the fair to good hydrocarbon generation capability.  相似文献   

5.
Cretaceous sedimentary rocks of the Mukalla, Harshiyat and Qishn formations from three wells in the Jiza sub-basin were studied to describe source rock characteristics, providing information on organic matter type, paleoenvironment of deposition and hydrocarbon generation potential. This study is based on organic geochemical and petrographic analyses performed on cuttings samples. The results were then incorporated into basin models in order to understand the burial and thermal histories and timing of hydrocarbon generation and expulsion.The bulk geochemical results show that the Cretaceous rocks are highly variable with respect to their genetic petroleum generation potential. The total organic carbon (TOC) contents and petroleum potential yield (S1 + S2) of the Cretaceous source rocks range from 0.43 to 6.11% and 0.58–31.14 mg HC/g rock, respectively indicating non-source to very good source rock potential. Hydrogen index values for the Early to Late Cretaceous Harshiyat and Qishn formations vary between 77 and 695 mg HC/g TOC, consistent with Type I/II, II-III and III kerogens, indicating oil and gas generation potential. In contrast, the Late Cretaceous Mukalla Formation is dominated by Type III kerogen (HI < 200 mg HC/g TOC), and is thus considered to be gas-prone. The analysed Cretaceous source rock samples have vitrinite reflectance values in the range of 0.37–0.95 Ro% (immature to peak-maturity for oil generation).A variety of biomarkers including n-alkanes, regular isoprenoids, terpanes and steranes suggest that the Cretaceous source rocks were deposited in marine to deltaic environments. The biomarkers also indicate that the Cretaceous source rocks contain a mixture of aquatic organic matter (planktonic/bacterial) and terrigenous organic matter, with increasing terrigenous influence in the Late Cretaceous (Mukalla Formation).The burial and thermal history models indicate that the Mukalla and Harshiyat formations are immature to early mature. The models also indicate that the onset of oil-generation in the Qishn source rock began during the Late Cretaceous at 83 Ma and peak-oil generation was reached during the Late Cretaceous to Miocene (65–21 Ma). The modeled hydrocarbon expulsion evolution suggests that the timing of oil expulsion from the Qishn source rock began during the Miocene (>21 Ma) and persisted to present-day. Therefore, the Qishn Formation can act as an effective oil-source but only limited quantities of oil can be expected to have been generated and expelled in the Jiza sub-basin.  相似文献   

6.
In different areas of the Western Desert of Egypt, the Abu Roash “G” Member exhibits either a reservoir or source affinity. Thus, thirteen cutting samples covering the Abu Roash “G” Member were selected from the Nest-1A well at Matruh Basin to investigate its hydrocarbon source potential. Palynological age dating of the section that is calibrated with foraminifera and ostracodes enabled a proper identification of the “G” Member. Detailed analysis of the vertical distribution of particulate organic matter of this member shows two palynofacies types. PF-1 reflects an outer middle shelf depositional environment of prevailed reducing (suboxic-anoxic) conditions for the organic-rich shales of the lower “G” Member (samples 1–8). While, PF-2 reflects a minor regression that resulted in deposition of another organic-rich shales of the upper “G” Member (samples 9–13) in an inner middle shelf setting under the same prevailing reducing (suboxic-anoxic) conditions.Organic geochemical analysis reveals good to very good potential of the “G” Member as a hydrocarbon source rock (1.8–2.41, avg. 2.15 total organic content wt %). It also shows good to very good petroleum potential (PP: 4.8–11 , avg. 8 mg HC/g rock). Pyrolsis and palynofacies analyses show kerogen type II for the lower “G” Member (samples 1–8), which is characterized by high Hydrogen index (HI: 396 and 329 mg HC/g TOC at depths 1500 and 1560 m) and very high dominance of oil-prone material (amorphous organic matter “AOM”, marine palynomorphs, and sporomorphs) and very rare occurrence of gas-prone material (brown phytoclasts). The upper “G” Member (samples 9–13) shows kerogen type II-III, which is characterized by a lower HI value of 213 mg HC/g TOC at depth 1340 m and it contains fewer amounts of gas-prone material and relatively lower AOM and marine palynomorphs in comparison to the upper “G” Member. Maturation parameters Tmax (430–433 °C), production index (PI: 0.1 mg HC/g rock), and thermal alteration index (TAI: 2+) indicate the lower “G” Member has already entered the early oil-window kitchen, and it is expected to produce oil. The upper “G” Member is expected to produce only oil with no gas shows, because it is marginally mature (Tmax 426 °C, PI 0.2, TAI 2). The source potential index (SPI: 5.3 t HC/m2) of the “G” Member shows it as currently generating moderate quantities of oil in the area of Nest-1A well.Consequently, the organic-rich shales of the “G” Member are suggested here as a promising, active oil source rock in that extreme northwestern part of the Western Desert of Egypt. However, for commercial oil recovery from the Abu Roash “G” Member, it is highly recommended to explore the depocentre of Matruh Basin at about 150 km east the Nest-1A well.  相似文献   

7.
This study presents approaches for evaluating hybrid source rock/reservoirs within tight-rock petroleum systems. The emerging hybrid source rock/reservoir shale play in the Upper Cretaceous Second White Specks and Belle Fourche formations in central Alberta, Canada is used as an example to evaluate organic and inorganic compositions and their relationships to pore characteristics. Nineteen samples from a 77.5 m-long core were analyzed using organic petrography, organic geochemistry, several methods of pore characterization, and X-ray powder diffraction (XRD). The lower part of the studied section includes quartz- and clay-rich mudrocks of the Belle Fourche Formation with low carbonate content, whereas the upper portion contains calcareous mudrocks of the Second White Specks Formation. Strata are mineralogically composed of quartz plus albite (18–56 wt. %), carbonates (calcite, dolomite, ankerite; 1–65 wt. %), clays (illite, kaolinite, chlorite; 15–46 wt. %), and pyrite (2–12 wt. %). Petrographic examinations document that organic matter represents marine Type II kerogen partly biodegraded with limited terrestrial input. Vitrinite reflectance Ro (0.74–0.87%), Tmax values (438–446 °C) and biomarkers indicate mid-maturity within the oil window. The relatively poor remaining hydrocarbon potential, expressed as an S2 value between 2.1 and 6.5 mg HC/g rock, may result from an estimated 60–83% of the original kerogen having been converted to hydrocarbons, with the bulk having migrated to adjacent sandstone reservoirs. However, the present-day remaining total organic carbon TOCpd content remains relatively high (1.7–3.6 wt. %), compared with the estimated original TOCo of 2.4–5.0 wt. %. The calculated transformation ratio of 60–83% suggests that the remaining 17–40 wt. % of kerogen is able to generate more hydrocarbons. The studied section is a tight reservoir with an average Swanson permeability of 3.37·10−5 mD (measured on two samples) and total porosity between 1.7 and 5.0 vol. % (3 vol. % on average). The upper part of the sandy Belle Fourche Formation, with slightly elevated porosity values (3.5–5 vol. %), likely represents the interval with the best reservoir properties in the studied core interval. Total pore volume ranges between 0.0065 and 0.0200 cm3/g (measured by a combination of helium pycnometry and mercury immersion). Mesopores (2–50 nm ∅) are the most abundant pores and occupy 34–67% of total porosity or a volume of 0.0030–0.0081 cm3/g. In comparison, micropores (<2 nm ∅) cover a wide range from 6 to 60% (volume 0.0007–0.0053 cm3/g), and macropores (>50 nm ∅) reach up to 57% with the exception of some samples failing to indicate the presence of this pore fraction (volume 0.0000–0.0107 cm3/g). Macroporosity is mostly responsible for variations in total porosity, as suggested by macroporosity's strongest correlation with total porosity within the section. The relatively narrow ranges of TOC and minerals contents among measured samples limit our ability to further deconvolute factors that influence changes in total porosity and pore size distribution.  相似文献   

8.
The Upper Cretaceous Mukalla coals and other organic-rich sediments which are widely exposed in the Jiza-Qamar Basin and believed to be a major source rocks, were analysed using organic geochemistry and petrology. The total organic carbon (TOC) contents of the Mukalla source rocks range from 0.72 to 79.90% with an average TOC value of 21.50%. The coals and coaly shale sediments are relatively higher in organic richness, consistent with source rocks generative potential. The samples analysed have vitrinite reflectance in the range of 0.84–1.10 %Ro and pyrolysis Tmax in the range of 432–454 °C indicate that the Mukalla source rocks contain mature to late mature organic matter. Good oil-generating potential is anticipated from the coals and coaly shale sediments with high hydrogen indices (250–449 mg HC/g TOC). This is supported by their significant amounts of oil-liptinite macerals are present in these coals and coaly shale sediments and Py-GC (S2) pyrograms with n-alkane/alkene doublets extending beyond nC30. The shales are dominated by Type III kerogen (HI < 200 mg HC/g TOC), and are thus considered to be gas-prone.One-dimensional basin modelling was performed to analysis the hydrocarbon generation and expulsion history of the Mukalla source rocks in the Jiza-Qamar Basin based on the reconstruction of the burial/thermal maturity histories in order to improve our understanding of the of hydrocarbon generation potential of the Mukalla source rocks. Calibration of the model with measured vitrinite reflectance (Ro) and borehole temperature data indicates that the present-day heat flow in the Jiza-Qamar Basin varies from 45.0 mW/m2 to 70.0 mW/m2 and the paleo-heat flow increased from 80 Ma to 25 Ma, reached a peak heat-flow values of approximately 70.0 mW/m2 at 25 Ma and then decreased exponentially from 25 Ma to present-day. The peak paleo-heat flow is explained by the Gulf of Aden and Red Sea Tertiary rifting during Oligocene-Middle Miocene, which has a considerable influence on the thermal maturity of the Mukalla source rocks. The source rocks of the Mukalla Formation are presently in a stage of oil and condensate generation with maturity from 0.50% to 1.10% Ro. Oil generation (0.5% Ro) in the Mukalla source rocks began from about 61 Ma to 54 Ma and the peak hydrocarbon generation (1.0% Ro) occurred approximately from 25 Ma to 20 Ma. The modelled hydrocarbon expulsion evolution suggested that the timing of hydrocarbon expulsion from the Mukalla source rocks began from 15 Ma to present-day.  相似文献   

9.
Late Turonian, Coniacian and Santonian source rock samples from a recently drilled well (Tafaya Sondage No. 2; 2010) in the Tarfaya Basin were analyzed for quantity, quality, maturity and depositional environment of the organic matter (OM). To our knowledge such a thick sequence of organic matter-rich Turonian to Santonian source rocks was investigated in that great detail for the first time. Organic geochemical and organic petrological investigations were carried out on a large sample set from the 200 m thick sequence. In total 195 core samples were analyzed for total organic carbon (Corg), total inorganic carbon contents and total sulfur (TS) contents. Rock-Eval pyrolysis and vitrinite reflectance measurements were performed on 28 samples chosen on the basis of their Corg content. Non-aromatic hydrocarbons were analyzed on selected samples by way of gas chromatography–flame ionization detection (GC–FID) and GC–mass spectrometry (GC–MS). The organic matter-rich carbonates revealed a high source rock potential, representing type I kerogen and a good preservation of the organic matter, which is mainly of marine (phytoplankton) origin. HI values are high (400–900 mg/g Corg) and in a similar range as those described for more recent upwelling sediments along the continental slope of North Africa. TS/Corg ratios as well as pristane over phytane ratios indicate variable oxygen content during sediment deposition. All samples are clearly immature with respect to petroleum generation which is supported by maturity parameters such as vitrinite reflectance (0.3–0.4%), Tmax values (401–423 °C), production indices (S1/(S1 + S2) > 0.1) as well as maturity parameters based on ratios of specific steranes and hopanes.  相似文献   

10.
Source rock potential of 108 representative samples from 3 m intervals over a 324 m thick shale section of middle Eocene age from the north Cambay Basin, India have been studied. Variation in total organic carbon (TOC) and its relationship with loss on ignition (LOI) have been used for initial screening. Screened samples were subjected to Rock-Eval pyrolysis and organic petrography. A TOC log indicated wide variation with streaks of elevated TOC. A 30 m thick organic-rich interval starting at 1954 m depth, displayed properties consistent with a possible shale oil or gas reservoir. TOC (wt%) values of the selected samples were found to vary from 0.68% to 3.62%, with an average value of 2.2. The modified van Krevelen diagram as well as HI vs. Tmax plot indicate prevalence of Type II to Type III kerogen. Tmax measurements ranged from 425 °C to 439 °C, indicating immature to early mature stage, which was confirmed by the mean vitrinite reflectance values (%Ro of 0.63, 0.65 and 0.67 at 1988 m, 1954 m, and 1963 m, respectively). Quantification of hydrocarbon generation, migration and retention characteristics of the 30 m source rock interval suggests 85% expulsion of hydrocarbon. Oil in place (OIP) resource of the 30 m source rock was estimated to be 3.23 MMbbls per 640 acres. The Oil saturation index (OSI) crossover log showed, from a geochemical perspective, moderate risk for producing the estimated reserve along with well location for tapping the identified resource.  相似文献   

11.
Barremian–Aptian organic-rich shales from Abu Gabra Formation in the Muglad Basin were analysed using geochemical and petrographic analyses. These analyses were used to define the origin, type of organic matters and the influencing factors of diagenesis, including organic matter input and preservation, and their relation to paleoenvironmental and paleoclimate conditions. The bulk geochemical characteristics indicated that the organic-rich shales were deposited in a lacustrine environment with seawater influence under suboxic conditions. Their pyrolysis hydrogen index (HI) data provide evidence for a major contribution by Type I/II kerogen with HI values of >400 mg HC/g TOC and a minor Type II/III contribution with HI values <400 mg HC/g TOC. This is confirmed by kerogen microscopy, whereby the kerogen is characterized by large amounts of structured algae (Botryococcus) and structureless (amorphous) with a minor terrigenous organic matter input. An enhanced biological productivity within the photic zone of the water columns is also detected. The increased biological productivity in the organic-rich shales may be related to enhanced semi-arid/humid to humid-warm climate conditions. Therefore, a high bio-productivity in combination with good organic matter preservation favoured by enhanced algae sizes are suggested as the OM enrichment mechanisms within the studied basin.  相似文献   

12.
Studies of the Mesozoic and Cenozoic sequence crossed by the Barreiro-4 borehole provide an improved understanding of the organic matter deposited in the Lower Tagus sub-basin (Lusitanian Basin, Portugal) and the implications for the potential source rock and depositional environment. This study focused on 43 samples (Middle Jurassic to Neogene) that were subjected to palynofacies and organic geochemistry analyses (Total Organic Carbon, Rock-Eval pyrolysis and molecular biomarker analysis). The palynofacies data indicate that the sequence contains mainly phytoclasts (non-opaque phytoclasts). However, the Middle Jurassic samples are dominated by Amorphous Organic Matter (AOM). Continental and/or marine palynomorphs are present in all the samples. The Cretaceous samples are characterized by small amounts of kerogen that have high contents of solid bitumen. The Total Organic Carbon (TOC) content is generally less than 1 wt.%. The Rock-Eval S1 and S2 parameters vary from 0.01 to 3.50 mgHC/g rock and 0.15 to 34.03 mgHC/g rock, respectively, with the highest values corresponding to the Cretaceous samples. The hydrogen index (HI) and oxygen index (OI) values range from 35 to 552 mgHC/g TOC and 4 to 180 mgHC/g TOC, respectively. The Tmax values range from 416 to 437 °C. The biomarker analysis showed that n-alkanes with 15–30 carbon atoms are present and usually have a unimodal distribution with a predominance of low to medium molecular weight compounds. The CPI values range between 0.63 and 3.65, and the pristane/phytane ratios vary between 0.48 and 1.64, indicating alternation of oxic–anoxic conditions along the sequence. The distribution of terpanes shows small amounts of tricyclic and tetracyclic terpanes in most of the samples (except for some Cretaceous samples) and a predominance of pentacyclic terpanes. The amount of 17α (H),22,29,30-trisnorhopane (Tm) usually exceeds the amount of 18α (H),22,29,30-trinorneohopane (Ts). The 20S/(20S + 20R) and αββ/(ααα + αββ) ratios of the C29 steranes generally have values below the range of equilibrium, indicating an immature stage of the OM.  相似文献   

13.
Thirty-six Silurian core and cuttings samples and 10 crude oil samples from Ordovician reservoirs in the NC115 Concession, Murzuq Basin, southwest Libya were studied by organic geochemical methods to determine source rock organic facies, conditions of deposition, thermal maturity and genetic relationships. The Lower Silurian Hot Shale at the base of the Tanezzuft Formation is a high-quality oil/gas-prone source rock that is currently within the early oil maturity window. The overall average TOC content of the Hot Shale is 7.2 wt% with a maximum recorded value of 20.9 wt%. By contrast, the overlying deposits of the Tanezzuft Formation have an average TOC of 0.6 wt% and a maximum value of 1.1 wt%. The organic matter in the Hot Shale consists predominantly of mixed algal and terrigenous Type-II/III kerogen, whereas the rest of the formation is dominated by terrigenous Type-III organic matter with some Type II/III kerogen. Oils from the A-, B- and H-oil fields in the NC115 Concession were almost certainly derived from marine shale source rocks that contained mixed algal and terrigenous organic input reflecting deposition under suboxic to anoxic conditions. The oils are light and sweet, and despite being similar, were almost certainly derived from different facies and maturation levels within mature source rocks. The B-oils were generated from slightly less mature source rocks than the others. Based on hierarchical cluster analysis (HCA), principal component analysis (PCA), selected source-related biomarkers and stable carbon isotope ratios, the NC115 oils can be divided into two genetic families: Family-I oils from Ordovician Mamuniyat reservoirs were probably derived from older Palaeozoic source rocks, whereas Family-II oils from Ordovician Mamuniyat–Hawaz reservoirs were probably charged from a younger Palaeozoic source of relatively high maturity. A third family appears to be a mixture of the two, but is most similar to Family-II oils. These oil families were derived from one proven mature source rock, the Early Silurian, Rhuddanian Hot Shale. There is a good correlation between the Family-II and -III oils and the Hot Shale based on carbon isotope compositions. Saturated and aromatic maturity parameters indicate that these oils were generated from a source rock of considerably higher maturity than the examined rock samples. The results imply that the oils originated from more mature source rocks outside the NC115 Concession and migrated to their current positions after generation.  相似文献   

14.
This study investigates the source rock characteristics of Permian shales from the Jharia sub-basin of Damodar Valley in Eastern India. Borehole shales from the Raniganj, Barren Measure and Barakar Formations were subjected to bulk and quantitative pyrolysis, carbon isotope measurements, mineral identification and organic petrography. The results obtained were used to predict the abundance, source and maturity of kerogen, along with kinetic parameters for its thermal breakdown into simpler hydrocarbons.The shales are characterized by a high TOC (>3.4%), mature to post-mature, heterogeneous Type II–III kerogen. Raniganj and Barren Measure shales are in mature, late oil generation stage (Rr%Raniganj = 0.99–1.22; Rr%Barren Measure = 1.1–1.41). Vitrinite is the dominant maceral in these shales. Barakar shows a post-mature kerogen in gas generation stage (Rr%Barakar = 1.11–2.0) and consist mainly of inertinite and vitrinite. The δ13Corg value of kerogen concentrate from Barren Measure shale indicates a lacustrine/marine origin (−24.6–−30.84‰ vs. VPDB) and that of Raniganj and Barakar (−22.72–−25.03‰ vs. VPDB) show the organic provenance to be continental. The δ13C ratio of thermo-labile hydrocarbons (C1–C3) in Barren Measure suggests a thermogenic source.Discrete bulk kinetic parameters indicate that Raniganj has lower activation energies (ΔE = 42–62 kcal/mol) compared to Barren Measure and Barakar (ΔE = 44–68 kcal/mol). Temperature for onset (10%), middle (50%) and end (90%) of kerogen transformation is least for Raniganj, followed by Barren Measure and Barakar. Mineral content is dominated by quartz (42–63%), siderite (9–15%) and clay (14–29%). Permian shales, in particular the Barren Measure, as inferred from the results of our study, demonstrate excellent properties of a potential shale gas system.  相似文献   

15.
Structured organic matters of the Palynomorphs of mainly dinoflagellate cysts are used in this study for dating the limestone, black shale, and marl of the Middle Jurassic (Bajocian–Bathonian) Sargelu Formation, Upper Jurassic (Upper Callovian – Lower Oxfordian) Naokelekan Formation, Upper Jurassic (Kimeridgian and Oxfordian) Gotnia and Barsarine Formations, and Upper Jurassic – Lower Cretaceous (Tithonian-Beriassian) Chia Gara source rock Formations while spore species of Cyathidites australis and Glechenidites senonicus are used for maturation assessments of this succession. Materials' used for this palynological study are 320 core and cutting samples of twelve oil wells and three outcrops in North Iraq.Terpane and sterane biomarker distributions, as well as stable isotope values, were determined for oils potential source rock extracts of Jurassic-Lower Cretaceous strata to determine valid oil-to-source rock correlations in North Iraq. Two subfamily carbonate oil types-one of Middle Jurassic age (Sargelu) carbonate rock and the other of mixed Upper Jurassic/Cretaceous age (Chia Gara) with Sargelu sources as well as a different oil family related to Triassic marls, were identified based on multivariate statistical analysis (HCA & PCA). Middle Jurassic subfamily A oils from Demir Dagh oil field correlate well with rich, marginally mature, Sargelu source rocks in well Mk-2 near the city of Baiji. In contrast, subfamily B oils have a greater proportion of C28/C29 steranes, indicating they were generated from Upper Jurassic/Lower Cretaceous carbonates such as those at Gillabat oil field north of Mansuriyah Lake. Oils from Gillabat field thus indicate a lower degree of correlation with the Sargelu source rocks than do oils from Demir Dagh field.Palynofacies assessments are performed for this studied succession by ternary kerogen plots of the phytoclast, amorphous organic matters, and palynomorphs. From the diagram of these plots and maturation analysis, it could be assessed that the formations of Chia Gara and Sargelu are both deposited in distal suboxic to anoxic basin and can be correlated with kerogens classified microscopically as Type A and Type B and chemically as Type II. The organic matter, comprised principally of brazinophyte algae, dinoflagellate cysts, spores, pollen, foraminifera test linings, and phytoclasts in all these formations and hence affected with upwelling current. These deposit contain up to 18 wt% total organic matters that are capable to generate hydrocarbons within mature stage of thermal alteration index (TAI) range in Stalplin's scale (Staplin, 1969) of 2.7–3.0 for the Chia Gara Formation and 2.9–3.1 for the Sargelu Formation. Case study examples of these oil prone strata are; one 7-m (23-ft) thick section of the Sargelu Formation averages 44.2 mg HC/g S2 and 439 °C Tmax (Rock-Eval pyrolysis analyses) and 16 wt% TOC especially in well Mk-2 whereas, one 8-m (26-ft) thick section of the Chia Gara and 1-m (3-ft) section of Naokelekan Formations average 44.5 mg HC/g S2 and 440 °C Tmax and 14 wt% TOC especially in well Aj-8. One-dimension, petroleum system models of key wells using IES PetroMod Software can confirm their oil generation capability.These hydrocarbon type accumulation sites are illustrated in structural cross sections and maps in North Iraq.  相似文献   

16.
Source rock formation influenced by river-delta system, especially in continental margin basins, is still poorly understood. This article aimed to reveal the effect of river-delta system on the formation of the source rock by taking the Baiyun Sag of the Pearl River Mouth Basin for example. Paleo-Pearl River began to develop since the Enping Formation, providing abundant organic matter beneficial for the formation of the source rocks in the Baiyun Sag. The main controlling factor of source rock formation in the Baiyun Sag is terrestrial organic matter supply rather than the paleoproductivity or redox conditions. Low Al/Ti and P/Ti ratios suggest low marine productivity, which may be associated with a large number of terrigenous detritus input, occupying about 43.04%–94.91%. There is a positive correlation between the oleanane/C30hopane ratio and the TOC value, showing that terrigenous organic matter controls the source rock formation. The size of the delta below Pearl River estuary determines the extent of terrestrial organic matter supply. Source rocks with high organic matter abundance mainly formed in delta environment, and those in neritic environment in Enping and Zhuhai Formations also have high TOC values as a result of adequate terrestrial organic matter supply.  相似文献   

17.
An evaluation of the petroleum generating potential of onshore Eocene-Miocene sequences of Western Sabah, Malaysia was performed based on organic petrological and geochemical methods. The sequences analysed are the Belait, Meligan, Temburong and West Crocker formations of western Sabah. The Belait Formation which is Stage IV equivalent in the offshore represents one of the major source rock/reservoirs of the petroleum-bearing Sabah Basin. The Eocene-Early Miocene West Crocker and Temburong formations are deepwater turbidites whilst the Miocene Meligan and Belait formations are shallow marine fluvio-deltaic deposits. The vitrinite reflectance and pyrolysis Tmax values show that the Belait samples are generally immature for hydrocarbon generation, whereas the Meligan, Temburong and West Crocker samples are in the mature to late maturity stage of hydrocarbon generation. The overall bulk source rock properties of the Belait and Meligan show fair to good petroleum source rock potential with TOC more than 1 wt %, hydrocarbon yield in the range of 400–1300 ppm and moderately high HI for many of the samples. Most of the samples representing the Temburong and West Crocker formations have TOC less than 1 wt% and have no to fair hydrocarbon generating potential. Interestingly, the samples collected in the West Crocker Formation characterized by slump deposits (MTD) have TOC>2 and possess good to excellent hydrocarbon generating potential. The organic matter present in all of the studied formations is mainly of terrigenous origin based on the abundance of woody plant materials observed under the microscope. Consequently, the analysed sequences are predominantly gas prone, dominated by Type III and Type III-IV kerogen except for minor occurrence of mixed oil-gas prone Type II-III kerogen in the Belait Formation and in the slump mass transport deposits (MTD) of the West Crocker Formation.  相似文献   

18.
The quality of source rocks plays an important role in the distribution of tight and conventional oil and gas resources. Despite voluminous studies on source rock hydrocarbon generation, expulsion and overpressure, a quality grading system based on hydrocarbon expulsion capacity is yet to be explored. Such a grading system is expected to be instrumental for tight oil and gas exploration and sweet spot prediction. This study tackles the problem by examining Late Cretaceous, lacustrine source rocks of the Qingshankou 1 Member in the southern Songliao Basin, China. By evaluating generated and residual hydrocarbon amounts of the source rock, the extent of hydrocarbon expulsion is modelled through a mass balance method. The overpressure is estimated using Petromod software. Through correlation between the hydrocarbon expulsion and source rock evaluation parameters [total organic carbon (TOC), kerogen type, vitrinite reflectance (Ro) and overpressure], three classes of high-quality, effective and ineffective source rocks are established. High-quality class contains TOC >2%, type-I kerogen, Ro >1.0%, overpressure >7Mpa, sharp increase of hydrocarbon expulsion along with increasing TOC and overpressure, and high expulsion value at Ro >1%. Source rocks with TOC and Ro <0.8%, type-II2 & III kerogen, overpressure <3Mpa, and low hydrocarbon expulsion volume are considered ineffective. Rocks with parameters between the two are considered effective. The high-quality class shows a strong empirical control on the distribution of tight oil in the Songliao Basin. This is followed by the effective source rock class. The ineffective class has no measurable contribution to the tight oil reserves. Because the hydrocarbon expulsion efficiency of source rocks is controlled by many factors, the lower limits of the evaluation parameters in different basins may vary. However, the classification method of tight source rocks proposed in this paper should be widely applicable.  相似文献   

19.
The Western Desert of Egypt is one of the world’s most prolific Jurassic and Cretaceous hydrocarbon provinces. It is one of many basins that experienced organic-rich sedimentation during the late Cenomanian/early Turonian referred to as oceanic anoxic event 2 (OAE2). The Razzak #7 oil well in the Razzak Field in the northern part of the Western Desert encountered the Upper Cretaceous Abu Roash Formation. This study analyzed 23 samples from the upper “G”, “F”, and lower “E” members of the Abu Roash Formation for palynomorphs, particulate organic matter, total organic carbon (TOC) and δ13Corg in order to identify the OAE2, determine hydrocarbon source rock potential, and interpret the depositional environment. The studied samples are generally poor in palynomorphs, but show a marked biofacies change between the lower “E” member and the rest of the studied samples. Palynofacies analysis (kerogen quality and quantity) indicates the presence of oil- and gas-prone materials (kerogen types I and II/III, respectively), and implies reducing marine paleoenvironmental conditions. Detailed carbon stable isotopic and organic carbon analyses indicate that fluctuations in the δ13Corg profile across the Abu Roash upper “G”, “F”, and lower “E” members correspond well with changes in TOC values. A positive δ13Corg excursion (∼2.01‰) believed to mark the short-term global OAE2 was identified within the organic-rich shaly limestone in the basal part of the Abu Roash “F” member. This excursion also coincides with the peak TOC measurement (24.61 wt.%) in the samples.  相似文献   

20.
Shixi Bulge of the central Junggar Basin in western China is a unique region that provides insight into the geological and geochemical characteristics of large-scale petroleum reservoirs in volcanic rocks of the western Central Asian Orogenic Belt. Carboniferous volcanic rocks in the Shixi Bulge mainly consist of striped lava and agglomerate, as well as breccia lava and tight tuff. Volcanic rocks differ in porosity and permeability. Striped lava exhibits the highest porosity (average: 14.2%) but the lowest permeability (average: 0.67 × 10−15 m) among the rock types. Primary gas pores are widely developed and mostly filled. Secondary dissolution pores and fractures are two major reservoir storage spaces. Capillary pressure curves suggest the existence of four pore structure types of reservoir rocks. Several factors, namely, lithology, pore structure, and various diagenesis, govern the physical properties of volcanic rocks. The oil is characterized by a high concentration of tricyclic terpane, a terpane distribution of C23 < C21 > C20, and sterane distributions of C27 < C28 < C29 and C27 > C28 < C29. Oil and gas geochemistry revealed that the oil is a mixture derived primarily from P2w source rock and secondarily from P1j source rock in the sag west of Pen-1 Well. The gases are likely gas mixtures of humic and sapropelic organic origins, with the sapropelic gas type dominant in the mixture. The gas mixture is most likely cracked from kerogen rather than oils. The Carboniferous volcanic reservoirs in Shixi Bulge share some unique characteristics that may provide useful insights into the various roles of different volcanic reservoir types in old volcanic provinces. The presence of these reservoirs will undoubtedly encourage future petroleum exploration in volcanic rocks up to the deep parts of sedimentary basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号