首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Oligocene Ruslar Formation is a hydrocarbon source rock in the Kamchia Depression, located in the Western Black Sea area. Depositional environment and source potential of the predominantly pelitic rocks were investigated using core and cuttings samples from four offshore wells. In these wells the Ruslar Formation is up to 500 m thick. Based on lithology and well logs, the Ruslar Formation is subdivided from base to top into units I–VI. Dysoxic to anoxic conditions and mesohaline to euhaline salinities prevailed during deposition of the Ruslar Formation. Relatively high oxygen contents occurred during early Solenovian times (lower part of unit II), when brackish surface water favoured nannoplankton blooms and the deposition of bright marls (“Solenovian event”). Anoxic conditions with photic zone anoxia were established during late Oligocene times (units III and IV) and, probably, reflect a basin-wide anoxic event in the Eastern Paratethys during Kalmykian times. Organic carbon content in the Ruslar Formation is up to 3%. Autochthonous aquatic and allochthonous terrigenous biomass contribute to the organic matter. Relatively high amounts of aquatic organic matter occur in the lower part of the Ruslar Formation (units I and II) and in its upper part (unit VI). Diatoms are especially abundant in the lower part of unit VI. The kerogen is of type III and II with HI values ranging from 50 to 400 mgHC/gTOC. Units I and II (Pshekian, lower Solenovian) are characterized by a fair (to good) potential to produce gas and oil, but potential sources for gas and oil also occur in the Upper Oligocene units IV–VI.  相似文献   

2.
The Upper Jurassic marlstones (Mikulov Fm.) and marly limestones (Falkenstein Fm.) are the main source rocks for conventional hydrocarbons in the Vienna Basin in Austria. In addition, the Mikulov Formation has been considered a potential shale gas play. In this paper, organic geochemical, petrographical and mineralogical data from both formations in borehole Staatz 1 are used to determine the source potential and its vertical variability. Additional samples from other boreholes are used to evaluate lateral trends. Deltaic sediments (Lower Quarzarenite Member) and prodelta shales (Lower Shale Member) of the Middle Jurassic Gresten Formation have been discussed as secondary sources for hydrocarbons in the Vienna Basin area and are therefore included in the present study.The Falkenstein and Mikulov formations in Staatz 1 contain up to 2.5 wt%TOC. The organic matter is dominated by algal material. Nevertheless, HI values are relative low (<400 mgHC/gTOC), a result of organic matter degradation in a dysoxic environment. Both formations hold a fair to good petroleum potential. Because of its great thickness (∼1500 m), the source potential index of the Upper Jurrasic interval is high (7.5 tHC/m2). Within the oil window, the Falkenstein and Mikulov formations will produce paraffinic-naphtenic-aromatic low wax oil with low sulfur content. Whereas vertical variations are minor, limited data from the deep overmature samples suggest that original TOC contents may have increased basinwards. Based on TOC contents (typically <2.0 wt%) and the very deep position of the maturity cut-off values for shale oil/gas production (∼4000 and 5000 m, respectively), the potential for economic recovery of unconventional petroleum is limited. The Lower Quarzarenite Member of the Middle Jurassic Gresten Formation hosts a moderate oil potential, while the Lower Shale Member is are poor source rock.  相似文献   

3.
The Shoushan Basin is an important hydrocarbon province in the Western Desert, Egypt, but the origin of the hydrocarbons is not fully understood. In this study, organic matter content, type and maturity of the Jurassic source rocks exposed in the Shoushan Basin have been evaluated and integrated with the results of basin modeling to improve our understanding of burial history and timing of hydrocarbon generation. The Jurassic source rock succession comprises the Ras Qattara and Khatatba Formations, which are composed mainly of shales and sandstones with coal seams. The TOC contents are high and reached a maximum up to 50%. The TOC values of the Ras Qattara Formation range from 2 to 54 wt.%, while Khatatba Formation has TOC values in the range 1-47 wt.%. The Ras Qattara and Khatatba Formations have HI values ranging from 90 to 261 mgHC/gTOC, suggesting Types II-III and III kerogen. Vitrinite reflectance values range between 0.79 and 1.12 VRr %. Rock−Eval Tmax values in the range 438-458 °C indicate a thermal maturity level sufficient for hydrocarbon generation. Thermal and burial history models indicate that the Jurassic source rocks entered the mature to late mature stage for hydrocarbon generation in the Late Cretaceous to Tertiary. Hydrocarbon generation began in the Late Cretaceous and maximum rates of oil with significant gas have been generated during the early Tertiary (Paleogene). The peak gas generation occurred during the late Tertiary (Neogene).  相似文献   

4.
The Es3L (lower sub-member of the third member of the Eocene Shahejie Formation) shale in the Jiyang Depression is a set of relatively thick and widely deposited lacustrine sediments with elevated organic carbon, and is considered to be one of the most important source rocks in East China. We can determine the mineralogy, organic and inorganic geochemistry of the Es3L shale and calculate paleoclimate indexes by using multiple geochemical proxies based on organic chemistry (total organic carbon [TOC] and Rock-Eval pyrolysis), major and trace elements, X-Ray diffraction, and carbon and oxygen isotope data from key wells alongside ECS (Elemental Capture Spectroscopy) well log data. These indicators can be used to analyze the evolution of the paleoenvironment and provide a mechanism of organic matter (OM) accumulation. The Es3L oil shale has high TOC abundance (most samples >3.0%) and is dominated by Type I kerogens. Additionally, the organic-rich shale is rich in CaO and enrichment in some trace metals is present, such as Sr, Ba and U. The positive δ13C and negative δ18O values, high Sr/Ba, B/Ga and Ca/Ca + Fe ratios and low C/S ratios indicate that the Es3L shales were mainly deposited in a semi-closed freshwater-brackish water lacustrine environment. The consistently low Ti/Al and Si/Al ratios reflect a restricted but rather homogeneous nature for the detrital supply. Many redox indicators, including the Th/U, V/(V + Ni), and δU ratios, pyrite morphology and TOC-TS-Fe diagrams suggest deposition under dysoxic to suboxic conditions. Subsequently, the brackish saline bottom water evolved into an anoxic water body under a relatively arid environment, during which organic-lean marls were deposited in the early stage. Later, an enhanced warm-humid climate provided an abundant mineral nutrient supply and promoted the accumulation of algal material. OM input from algal blooms reached a maximum during the deposition of the organic-rich calcareous shale with seasonal laminations. High P/Ti ratios and a strongly positive relationship between the P and TOC contents indicate that OM accumulation in the oil shale was mainly controlled by the high primary productivity of surface waters with help from a less stratified water column. Factors such as the physical protection of clay minerals and the dilution of detrital influx show less influence on OM enrichment.  相似文献   

5.
The potential oil shales of the Palaeogene Muwaqqar Chalk Marl and Umm Rijam Chert Limestone formations are investigated from a subsurface location in the west of Jordan. Detailed organic geochemistry data is placed in the context of a sequence stratigraphic framework derived from vertical foraminiferal biofacies and lithological changes and biostratigraphically calibrated using planktonic foraminiferal biozonation. This shows that the transgressive systems tract of a Selandian (P4, probably P4a) sequence has the best potential in the studied section to generate oil if subjected to induced pyrolysis. A Ypresian (no older than E2) transgressive sequence has some potential, whilst highstand systems tracts offer the least potential. Both the sequence model and oil shale potential compares well with equivalent age sediments in Egypt and highlights that whilst the Maastrichtian portion of the Muwaqqar Chalk Marl Formation is often regarded as the key interval for oil shale prospectivity, parts of the Paleocene succession also have some potential.  相似文献   

6.
Barremian–Aptian organic-rich shales from Abu Gabra Formation in the Muglad Basin were analysed using geochemical and petrographic analyses. These analyses were used to define the origin, type of organic matters and the influencing factors of diagenesis, including organic matter input and preservation, and their relation to paleoenvironmental and paleoclimate conditions. The bulk geochemical characteristics indicated that the organic-rich shales were deposited in a lacustrine environment with seawater influence under suboxic conditions. Their pyrolysis hydrogen index (HI) data provide evidence for a major contribution by Type I/II kerogen with HI values of >400 mg HC/g TOC and a minor Type II/III contribution with HI values <400 mg HC/g TOC. This is confirmed by kerogen microscopy, whereby the kerogen is characterized by large amounts of structured algae (Botryococcus) and structureless (amorphous) with a minor terrigenous organic matter input. An enhanced biological productivity within the photic zone of the water columns is also detected. The increased biological productivity in the organic-rich shales may be related to enhanced semi-arid/humid to humid-warm climate conditions. Therefore, a high bio-productivity in combination with good organic matter preservation favoured by enhanced algae sizes are suggested as the OM enrichment mechanisms within the studied basin.  相似文献   

7.
The objectives of our study were to assess the thickness, lateral extent, organic richness and maturity of the potential source rocks in Hungary and to estimate the volumes of hydrocarbons generated, in order that potential shale gas and shale oil plays could be identified and characterised.The Upper Triassic Kössen Marl in south-west Hungary could represent the best potential shale gas/shale oil play, due to its high organic richness, high maturity and the presence of fracture barriers. The area of gas- and oil-generative maturity is around 720 km2 with the unexpelled petroleum estimated to be up to 9 billion barrel oil-equivalent.The Lower Jurassic sediments of the Mecsek Mountains and under the Great Plain contain fair quality gas-prone source rocks, with low shale gas potential, except for a thin Toarcian shale unit which is richer in organic matter. The latter could form a potential shale gas play under the Great Hungarian Plain, if it is thicker locally.The Lower Oligocene Tard Clay in north-east Hungary could represent the second best potential shale oil play, due to its organic richness, favourable maturity and large areal extent (4500 km2) with around 7 billion barrel oil-equivalent estimated in-place volume of petroleum.Middle Miocene marine formations could represent locally-developed shale gas plays; they have fair amounts of organic matter and a mixture of type II/III kerogen, but their vertical and lateral variability is high.The Upper Miocene lacustrine Endrőd Marl contains less organic matter and the kerogen is mainly type III, which is not favourable for shale gas generation. The high carbonate and clay content, plus the lack of upper and lower fracture barriers would represent additional production challenges.  相似文献   

8.
The Songliao Basin is a large-scale petroliferous basin in China. With a gradual decline in conventional oil production, the exploration and development of replacement resources in the basin is becoming increasingly important. Previous studies have shown that the Cretaceous Qingshankou Formation (K2qn) has favorable geological conditions for the formation of shale oil. Thus, shale oil in the Qingshankou Formation represents a promising and practical replacement resource for conventional oil. In this study, geological field surveys, core observation, sample tests, and the analysis of well logs were applied to study the geochemical and reservoir characteristics of shales, identify shale oil beds, build shale oil enrichment models, and classify favorable exploration areas of shale oil from the Cretaceous Qingshankou Formation. The organic matter content is high in shales from the first member of the Cretaceous Qingshankou Formation (K2qn1), with average total organic carbon (TOC) content exceeding 2%. The organic matter is mainly derived from lower aquatic organisms in a reducing brackish to fresh water environment, resulting in mostly type I kerogen. The vitrinite reflectance (Ro) and the temperature at which the maximum is release of hydrocarbons from cracking of kerogen occurred during pyrolysis (Tmax) respectively range from 0.5% to 1.1% and from 430 °C to 450 °C, indicating that the K2qn1 shales are in the low-mature to mature stage (Ro ranges from 0.5% to 1.2%) and currently generating a large amount of oil. The favorable depth for oil generation and expulsion is 1800–2200 m and 1900–2500 m, respectively as determined by basin modeling. The reserving space of the K2qn1 shale oil includes micropores and mircofractures. The micropore reservoirs are developed in shales interbedded with siltstones exhibiting high gamma ray (GR), high resistivity (Rt), low density (DEN), and slightly abnormal spontaneous potential (SP) in the well-logging curves. The microfracture reservoirs are mainly thick shales with high Rt, high AC (acoustic transit time), high GR, low DEN, and abnormal SP. Based on the shale distribution, geochemical characteristics, reservoir types, fracture development, and the process of shale oil generation and enrichment, the southern Taikang and northern Da'an are classified as two favorable shale oil exploration areas in the Songliao Basin.  相似文献   

9.
The Upper Triassic — Lower Jurassic Kap Stewart Formation (Jameson Land, East Greenland) has been studied by a combination of sedimentological and organic geochemical methods (LECO/Rock Eval, sulphur, gas chromatography) in order to assess the hydrocarbon source potential of the abundant and extensive lacustrine shale intervals present in the formation.The organic matter in the shales is a mixture of algal and higher plant remains (type I and III kerogen). An organic assemblage dominated by algal material, having a rich oil potential, occurs in an interval approximately 10–15 m thick in the uppermost part of the formation. This interval has an organic carbon content up to 10% and Hydrogen Index values up to 700. The interval is consistently traceable along the exposed margins and the central part of the basin. The deposition of the uppermost shale interval coincided with the largest expansion of the lake, during a period with a stratified water column and anoxic bottom-water conditions.Locally the rocks exposed are thermally postmature due to the thermal influence of dolerite sills which intruded the Kap Stewart Formation in Tertiary time. However, the organic-rich shale interval is beyond the influence of the sills and indicates a maturity prior to or in the early stages of oil generation.Calculations of the generative potential of the lacustrine source rocks suggest that significant amounts of petroleum may have been generated in those sediments which have undergone sufficient burial in the southern and central part of the basin. Here, the contemporaneously deposited delta front and barrier island sandstones can thus be considered as potential targets for future hydrocarbon exploration. This type of play may also be of importance in other North Atlantic basins with a similar basin history.  相似文献   

10.
Thermal history, petroleum system, structural, and tectonic constraints are reviewed and integrated in order to derive a new conceptual model for the Norman Wells oil field, and a new play type for tectonically active foreland regions. The thermal history recorded by Devonian rocks suggests that source rocks experienced peak thermal conditions in the Triassic–Jurassic, during which time oil was likely generated. After initial oil generation and expulsion, the Canol Formation oil shale retained a certain fraction of hydrocarbons. The shallow reservoir (650–350 m) is a Devonian carbonate bank overlain by the Canol Formation and resides within a hanging wall block of the Norman Range thrust fault. Both reservoir and source rocks are naturally fractured and have produced high API non-biodegraded oil. Thrust faults in the region formed after the Paleocene, and a structural cross-section of the field shows that the source and reservoir rocks at Norman Wells have been exhumed by over 1 km since then.The key proposition of the exhumation model is that as Canol Formation rocks underwent thrust-driven exhumation, they crossed a ductile–brittle transition zone and dip-oriented fractures formed sympathetic to the thrust fault. The combination of pore overpressure and new dip-directed subvertical fractures liberated oil from the Canol Formation and allowed for up-dip oil migration. Reservoir rocks were similarly fractured and improved permeability enhanced charging and pooling of oil. GPS and seismicity data indicate that strain transfer across the northern Cordillera is a response to accretion of the Yakutat terrane along the northern Pacific margin of North America, which is also the probable driving force for foreland shortening and rock exhumation at Norman Wells.  相似文献   

11.
Tectonically controlled lakes developed during Miocene lateral extrusion of the Eastern Alps. Mineralogy, and the inorganic and organic geochemistry of rocks from three boreholes were investigated to reconstruct the evolution of Lake Ingering and Lake Groisenbach and to study the distribution of source rocks in pull-apart basins. Gas-prone coal and oil-prone sapropelic shale accumulated during the initial, shallow stages of Lake Ingering. Thereafter, the lake deepened rapidly. 125-m-thick prodelta shale containing a type II kerogen was deposited in the brackish, several hundred meter deep, hydrologically closed lake. Afterwards, decreasing subsidence allowed the filling of the lake by prograding deltas. During the advance of the deltaic systems, the lake became shallower, hydrologically open, and the brackish influence terminated. Source rock quality decreased significantly during the filling stage of the lake, a consequence of dilution of autochthonous organic matter and of enhanced input of land plants. Despite its considerable dimensions, formation and filling of Lake Ingering lasted only two million years. Lake Groisenbach was considerably smaller and more susceptible to high-frequency changes in lake chemistry. Although the water body was temporarily oligosaline, brackish conditions did not occur. High sulphur contents were due to anoxic events and the inflow of Ca-rich waters. Abundant dissolved silica favoured diatoms blooms.  相似文献   

12.
Although extensive studies have been conducted on unconventional mudstone (shales) reservoirs in recent years, little work has been performed on unconventional tight organic matter-rich, fine-grained carbonate reservoirs. The Shulu Sag is located in the southwestern corner of the Jizhong Depression in the Bohai Bay Basin and filled with 400–1000 m of Eocene lacustrine organic matter-rich carbonates. The study of the organic matter-rich calcilutite in the Shulu Sag will provide a good opportunity to improve our knowledge of unconventional tight oil in North China. The dominant minerals of calcilutite rocks in the Shulu Sag are carbonates (including calcite and dolomite), with an average of 61.5 wt.%. The carbonate particles are predominantly in the clay to silt size range. Three lithofacies were identified: laminated calcilutite, massive calcilutite, and calcisiltite–calcilutite. The calcilutite rocks (including all the three lithofacies) in the third unit of the Shahejie Formation in the Eocene (Es3) have total organic carbon (TOC) values ranging from 0.12 to 7.97 wt.%, with an average of 1.66 wt.%. Most of the analyzed samples have good, very good or excellent hydrocarbon potential. The organic matter in the Shulu samples is predominantly of Type I to Type II kerogen, with minor amounts of Type III kerogen. The temperature of maximum yield of pyrolysate (Tmax) values range from 424 to 452 °C (with an average of 444 °C) indicating most of samples are thermally mature with respect to oil generation. The calcilutite samples have the free hydrocarbons (S1) values from 0.03 to 2.32 mg HC/g rock, with an average of 0.5 mg HC/g rock, the hydrocarbons cracked from kerogen (S2) yield values in the range of 0.08–57.08 mg HC/g rock, with an average of 9.06 mg HC/g rock, and hydrogen index (HI) values in the range of 55–749 mg HC/g TOC, with an average of 464 mg HC/g TOC. The organic-rich calcilutite of the Shulu Sag has very good source rock generative potential and have obtained thermal maturity levels equivalent to the oil window. The pores in the Shulu calcilutite are of various types and sizes and were divided into three types: (1) pores within organic matter, (2) interparticle pores between detrital or authigenic particles, and (3) intraparticle pores within detrital grains or crystals. Fractures in the Shulu calcilutite are parallel to bedding, high angle, and vertical, having a significant effect on hydrocarbon migration and production. The organic matter and dolomite contents are the main factors that control calcilutite reservoir quality in the Shulu Sag.  相似文献   

13.
Studies of the Mesozoic and Cenozoic sequence crossed by the Barreiro-4 borehole provide an improved understanding of the organic matter deposited in the Lower Tagus sub-basin (Lusitanian Basin, Portugal) and the implications for the potential source rock and depositional environment. This study focused on 43 samples (Middle Jurassic to Neogene) that were subjected to palynofacies and organic geochemistry analyses (Total Organic Carbon, Rock-Eval pyrolysis and molecular biomarker analysis). The palynofacies data indicate that the sequence contains mainly phytoclasts (non-opaque phytoclasts). However, the Middle Jurassic samples are dominated by Amorphous Organic Matter (AOM). Continental and/or marine palynomorphs are present in all the samples. The Cretaceous samples are characterized by small amounts of kerogen that have high contents of solid bitumen. The Total Organic Carbon (TOC) content is generally less than 1 wt.%. The Rock-Eval S1 and S2 parameters vary from 0.01 to 3.50 mgHC/g rock and 0.15 to 34.03 mgHC/g rock, respectively, with the highest values corresponding to the Cretaceous samples. The hydrogen index (HI) and oxygen index (OI) values range from 35 to 552 mgHC/g TOC and 4 to 180 mgHC/g TOC, respectively. The Tmax values range from 416 to 437 °C. The biomarker analysis showed that n-alkanes with 15–30 carbon atoms are present and usually have a unimodal distribution with a predominance of low to medium molecular weight compounds. The CPI values range between 0.63 and 3.65, and the pristane/phytane ratios vary between 0.48 and 1.64, indicating alternation of oxic–anoxic conditions along the sequence. The distribution of terpanes shows small amounts of tricyclic and tetracyclic terpanes in most of the samples (except for some Cretaceous samples) and a predominance of pentacyclic terpanes. The amount of 17α (H),22,29,30-trisnorhopane (Tm) usually exceeds the amount of 18α (H),22,29,30-trinorneohopane (Ts). The 20S/(20S + 20R) and αββ/(ααα + αββ) ratios of the C29 steranes generally have values below the range of equilibrium, indicating an immature stage of the OM.  相似文献   

14.
This paper discusses origin and charging directions of oil fields on the Shaleitian Uplift, Bohai Bay basin. The Shaleitian Uplift is a footwall uplift surrounded by three sags containing mature source rocks. The origins of the four oil fields on the Shaleitian Uplift, both in terms of source rock intervals and in terms of generative kitchens, were studied using biomarker distributions for 61 source rock samples and 27 oil samples. Hierarchical cluster analysis using 12 parameters known to be effective indicators of organic matter input and/or depositional conditions allowed the identification of six oil types or classes. These six oil classes could then be linked to three distinct source rock intervals ranging in age from 43.0 Ma to 30.3 Ma. The third member (43.0–38.0 Ma in age) and first member (35.8–32.8 Ma) of the Eocene Shahejie Formation, and the third member of the Oligocene Dongying Formation (32.8–30.3 Ma) each sourced one class of oil. The other three classes represent mixtures of oil generated from multiple source rock intervals. Traps on the Shaleitian Uplift were charged in the east by oil generated from the Eocene Shahejie Formation in the Bozhong Sag, in the southeast by oil generated from the Eocene Shahejie and then Oligocene Dongying formations in the southwestern part of the Bozhong Sag and/or in the eastern part of the Shanan Sag, and in the southwest by oil generated from the Eocene Shahejie Formation in the western part of the Shanan Sag. The estimated migration distances range from less than 5 km to about 20 km. The compositional heterogeneity within fields and multiple-parameter comparisons between oils from nearby wells in different fields have proven to be a powerful tool to determine the in-filling histories of oil fields in cases where multiple source rock intervals and multiple generative kitchens exist.  相似文献   

15.
Palynological and biomarker characteristics of organic facies recovered from Cretaceous–Miocene well samples in the Ras El Bahar Oilfield, southwest Gulf of Suez, and their correlation with lithologies, environments of deposition and thermal maturity have provided a sound basis for determining their source potential for hydrocarbons. In addition to palynofacies analysis, TOC/Rock-Eval pyrolysis, kerogen concentrates, bitumen extraction, carbon isotopes and saturated and aromatic biomarkers enable qualitative and quantitative assessments of sedimentary organic matter to be made. The results obtained from Rock-Eval pyrolysis and molecular biomarker data indicate that most of the samples come from horizons that have fair to good hydrocarbon generation potential in the study area. The Upper Cretaceous–Paleocene-Lower Eocene samples contain mostly Type-II to Type-III organic matter with the capability of generating oil and gas. The sediments concerned accumulated in dysoxic–anoxic marine environments. By contrast, the Miocene rocks yielded mainly Type-III and Type-II/III organic matter with mainly gas-generating potential. These rocks reflect deposition in a marine environment into which there was significant terrigenous input. Three palynofacies types have been recognized. The first (A) consists of Type-III gas-prone kerogen and is typical of the Early–Middle Miocene Belayim, Kareem and upper Rudeis formations. The second (B) has mixed oil and gas features and characterizes the remainder of the Rudeis Formation. The third association (C) is dominated by amorphous organic matter, classified as borderline Type-II oil-prone kerogen, and is typical of the Matulla (Turonian–Santonian) and Wata (Turonian) formations. Rock-Eval Tmax, PI, hopane and sterane biomarkers consistently indicate an immature to early mature stage of thermal maturity for the whole of the studied succession.  相似文献   

16.
Upper Jurassic organic matter-rich, marine shales of the Mandal Formation have charged major petroleum accumulations in the North Sea Central Graben including the giant Ekofisk field which straddles the graben axis. Recent exploration of marginal basin positions such as the Mandal High area or the Søgne Basin has been less successful, raising the question as to whether charging is an issue, possibly related to high thermal stability of the source organic matter or delayed expulsion from source to carrier.The Mandal Formation is in part a very prolific source rock containing mainly Type II organic matter with <12 wt.-% TOC and HI < 645 mg HC/g TOC but Type III-influenced organofacies are also present. The formation is therefore to varying degrees heterogeneous. Here we show, using geochemical mass balance modelling, that the petroleum expulsion efficiency of the Mandal Formation is relatively low as compared to the Upper Jurassic Draupne Formation, the major source rock in the Viking Graben system. Using maturity series of different initial source quality from structurally distinct regions and encompassing depositional environments from proximal to distal facies, we have examined the relationship between free hydrocarbon retention and organic matter structure. The aromaticity of the original and matured petroleum precursors in the Mandal source rock plays a major role in its gas retention capacity as cross-linked monoaromatic rings act on the outer surface of kerogen as sorptive sites. However, oil retention is a function of both kerogen and involatile bitumen compositions. Slight variations in total petroleum retention capacities within the same kerogen yields suggest that texture of organic matter (e.g. organic porosity) could play a role as well.  相似文献   

17.
A diverse and well-preserved non-marine and marine palynomorph assemblage was recovered from the Lower Cretaceous Yamama, Ratawi and Zubair formations in southern Iraq.A distinctive monospecific assemblage of the dinocyst Subtilisphaera in the Ru-19 Well, in addition to its frequent occurrence in other wells in the Zubair Formation, reflects an ecologically stressed, marginal-marine environment. This assemblage constitutes the first record of the Subtilisphaera ecozone in Iraq and Arabian realm and indeed only the second one east of Morocco.The palynofacies composition of the studied rock units has been related to previous organic geochemical analyses. Each rock unit has its own palynofacies characteristics and in general, samples dominated by amorphous kerogen have the highest total organic carbon (TOC) and hydrogen index (HI), as is the case for some samples from the studied Yamama Formation and samples belonging to palynofacies PF2 from the Zubair Formation. Samples that are mostly retrieved from the Zubair Formation, containing abundant phyoclasts, have the lowest TOC and HI values.  相似文献   

18.
Uppermost Jurassic and Lower Cretaceous strata of the Silesian Nappe of the Outer Western Carpathians contain large amounts of shale, which can, under favourable conditions, become source rocks for hydrocarbons. This study analysed 45 samples from the area of Czech Republic by the means of palynofacies analysis, thermal alteration index (TAI) of palynomorphs and total organic carbon (TOC) content to determine the kerogen type, hydrocarbon source rock potential, and to interpret the depositional environment. Uppermost Jurassic Vendryně Formation and Lower Cretaceous Formations (Těšín Limestone, Hradiště and Lhoty) reveal variable amount of mostly gas prone type III kerogen. Aptian Veřovice Formation has higher organic matter content (over 3 wt.%) and oil-prone type II kerogen. Organic matter is mature to overmature and hydrocarbon potential predisposes it as a source of gas. Aptian black claystones of the Veřovice Fm. are correlatable with oceanic anoxic event 1 (OAE1).  相似文献   

19.
The Alpine Foreland Basin is a minor oil and moderate gas province in central Europe. In the Austrian part of the Alpine Foreland Basin, oil and minor thermal gas are thought to be predominantly sourced from Lower Oligocene horizons (Schöneck and Eggerding formations). The source rocks are immature where the oil fields are located and enter the oil window at ca. 4 km depth beneath the Alpine nappes indicating long-distance lateral migration. Most important reservoirs are Upper Cretaceous and Eocene basal sandstones.Stable carbon isotope and biomarker ratios of oils from different reservoirs indicate compositional trends in W-E direction which reflect differences in source, depositional environment (facies), and maturity of potential source rocks. Thermal maturity parameters from oils of different fields are only in the western part consistent with northward displacement of immature oils by subsequently generated oils. In the eastern part of the basin different migration pathways must be assumed. The trend in S/(S + R) isomerisation of ααα-C29 steranes versus the αββ (20R)/ααα (20R) C29 steranes ratio from oil samples can be explained by differences in thermal maturation without involving long-distance migration. The results argue for hydrocarbon migration through highly permeable carrier beds or open faults rather than relatively short migration distances from the source. The lateral distance of oil fields to the position of mature source rocks beneath the Alpine nappes in the south suggests minimum migration distances between less than 20 km and more than 50 km.Biomarker compositions of the oils suggest Oligocene shaly to marly successions (i.e. Schoeneck, Dynow, and Eggerding formations) as potential source rocks, taking into account their immature character. Best matches are obtained between the oils and units a/b (marly shale) and c (black shale) of the “normal” Schöneck Formation, as well as with the so-called “Oberhofen Facies”. Results from open system pyrolysis-gas chromatography of potential source rocks indicate slightly higher sulphur content of the resulting pyrolysate from unit b. The enhanced dibenzothiophene/phenanthrene ratios of oils from the western part of the basin would be consistent with a higher contribution of unit b to hydrocarbon expulsion in this area. Differences in the relative contribution of sedimentary units to oil generation are inherited from thickness variations of respective units in the overthrusted sediments. The observed trend towards lighter δ13C values of hydrocarbon fractions from oil fields in a W-E direction are consistent with lower δ13C values of organic matter in unit c.  相似文献   

20.
Interest in factors controlling lacustrine source rock deposition has increased over the last few decades because this type of deposits contain significant petroleum resources. Generally, tectonic subsidence and climate are the two root causes as they control the accommodation potential, water column properties and sources of organic matter. In this study, coupling organic geochemical and elemental geochemical data, two potential source rocks, i.e., the Eocene Wenchang Formation (E2w) and Oligocene Enping Formation (E3e) were investigated. Two models were finally raised to explain deposition of the two set of source rocks according to their paleoclimatic and tectonic properties. The source rock potential shows a strong heterogeneity. The second member of the Eocene Wenchang Formation (E2w2) is characterized by high organic matter content and oil-prone kerogen type. In contrast, the first member of the Eocene Wenchang Formation (E2w1) and the Oligocene Enping formation (E3e) are characterized by low organic matter content and gas-prone kerogen type. The primary productivity and depositional environment exhibit notable differences between the two potential source rocks horizons and show an obvious variation from the depocenter to the slope and can be best explained by the coevolution of tectonic subsidence and climate. During the E2w depositional stage, low sediment supply led to mudstone deposited in deep lacustrine environment and resulted in underfilled lake basin. The low water inflow provided little terrigenous organic matter (low bicadinane, perylene and floranthene contents) and oxygen. Besides, the low area/depth ratio impeded the water circulation, thus resulted in shallow thermocline and anoxic-suboxic bottom environment (abundant dibenzothiophene and high C35/C3122S hopane ratios). Therefore abundant algae, which contributed to the high amorphous organic matter (AOM) content, can be preserved. The warm and wet climate (high Mn/Mg ratios) gave birth to autochthonous organism, such as dinoflagellates and Pavlova gyrans (abundant 4-methyl sterane). During the E3e depositional stage, the sufficient sedimentary supply resulted in expanding, shallow lacustrine and swamp environment. The higher area/depth ratio and high sediment supply made environment unstable and can be strongly influenced by external environment (broader range of Mn/Mg ratios). Enough terrigenous organic matter (TOM) was transported to the slope but little to the depocenter. The slightly hot and dry climate (low Mn/Mg ratios) led to decreasing autochthonous organism and evaporation environment. The shallow water depth and relative dry climate resulted in saline, suboxic-dysoxic acid bottom environment. The co-variation of organic and inorganic indexes indicates the combination is a valid method in reconstructing source rock depositional models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号