首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two deep-sea cores from the northeastern slope of the Ontong Java Plateau, Ocean Drilling Program Site 806 (2520 mbsl) and Site 804 (3861 mbsl), has been studied with the purpose of investigating Pliocene (Site 806, 2.4–3.8 Ma; Site 804, 1.8–4.4 Ma) sub- and supralysoclinal changes in calcium carbonate accumulation, based on CaCO3, coarse-fraction and faunal data. At the shallower site, Site 806, there is a slight decrease in carbonate content and a distinct long-term trend in decreasing accumulation rate throughout the studied interval. Small-scale changes in density, hence accumulation rate, are related to grain-size changes due to winnowing at this site, but the overall pattern of decreasing carbonate accumulation seems to be the result of both winnowing and a decrease in productivity. The deeper site, Site 804, exhibits a general increase in carbonate content after about 3.15 Ma as well as a long-term increase in mass accumulation rate throughout the Pliocene interval studied. Detailed comparison of the records of density and carbonate content emphasizes the strong relationship between carbonate content and accumulation rate at this site. The observed pattern of decreasing accumulation rate at shallow depth parallel to enhanced preservation at greater depths may be explained by a decrease in the production of North Atlantic Deep Water (NADW). A reduction of the volume of NADW pumped into the Pacific would reduce the supply of nutrients and deep-water CO2. This could account for both the decrease in accumulation rate at the shallower site, due to decreased productivity, and the enhanced preservation at the deeper site, due to a decrease in the corrosiveness of deep waters.  相似文献   

2.
《Marine Geology》2005,216(4):221-238
A late Miocene to early Pliocene sequence drilled on the continental slope of southwest Africa off the Orange river mouth (ODP Site 1085) has been investigated. Clay mineral assemblages, coarse siliciclastics and benthic foraminifer accumulation rates (BFAR) unravel a step by step evolution of marine and continental environments closely related to sea level variations, ocean circulation and global climate: (1) smectite is a typical tracer of the Orange river load, whereas illite is mostly transported by the Benguela current (like chlorite) and winds, and kaolinite is derived from low latitudes by the poleward undercurrent and the North Atlantic Deep Water (NADW); (2) increased erosion and influence of the Orange river after 9.6 Ma is linked to a sea level drop at a time of Antarctic ice-growth. This has been followed by an increased seasonality of precipitation and high productivity, but low oxygen content and associated dissolution of carbonates; (3) increased productivity and dissolution of carbonates, and coeval increase of continental aridity after 8.9 Ma express a further development of the Benguela current and upwelling; (4) better preservation of carbonates and increased contribution of terrigenous material from northern sources at 6.9 Ma are related to increased circulation of NADW after an early stage of northern hemisphere glaciation; (5) increased erosion and contribution from the Orange river and westward shift of the area of higher productivity from 5.9–5.8 Ma to 5.3–5.2 Ma are related to a significant fall of sea level, and encompass the time of the entire Mediterranean salinity crisis; (6) short-term variations of the smectite/illite ratio (S/I) and BFAR suggest a major control of productivity by wind and current activities (and related upwelling), but may express brief variations of sea level in specific intervals before 8.9 Ma and during the late Messinian especially.  相似文献   

3.
The Earth's climate is controlled by various factors, with large scale ocean currents playing a significant role. In particular, the global thermohaline circulation of water masses like the Antarctic Bottom Water (AABW), or the North Atlantic Deep Water (NADW), is a global motor for maintaining the exchange of water masses. The AABW and NADW have met and interacted off South Africa since Oligocene times. Here, the narrow deep Agulhas Passage gateway, located between South Africa and the submarine Agulhas Plateau, constrains bottom water exchange between the southeast Atlantic and the southwest Indian Ocean. A seismostratigraphic analysis of sedimentary structures in the Transkei Basin, which opens up at the eastern end of the Agulhas Passage, was carried out, to reconstruct the palaeocurrents off South Africa. The analysis of newly collected high resolution seismic reflection data showed the effect of large scale current deposition. There are at least 5 major sedimentary phases to observe, some of which seem to be influenced by NADW and AABW. The first stage represents ongoing deep sea sedimentation from middle Cretaceous to middle Tertiary times. Later stages are separated by discordances, which represent the onset of AABW and NADW, among others, triggered by the opening of the Drake Passage gateway ( 35 Ma) and the closure of the Isthmus of Panama ( 3 Ma). We found two large drift bodies located one above the other. Corresponding to their shape and position, the older drift is inferred to have been deposited by currents flowing in a north–southerly direction, whereas the younger drift lies perpendicular to it and seems to be built up by west–east flowing currents.  相似文献   

4.
The early Matuyama Diatom Maximum off SW Africa: a conceptual model   总被引:1,自引:0,他引:1  
An important discovery during Ocean Drilling Program Leg 175, when investigating the record of upwelling off Namibia, was the finding of a distinct Late Pliocene diatom maximum spanning the lower half of the Matuyama reversed polarity chron (MDM, Matuyama Diatom Maximum) and centered around 2.6–2.0 Ma. This maximum was observed at all sites off southwestern Africa between 20°S and 30°S, and is most strongly represented in sediments of Site 1084, off Lüderitz, Namibia. The MDM is characterized by high biogenic opal content, high numbers of diatom valves, and a diatom flora rich in Southern Ocean representatives (with Thalassiothrix antarctica forming diatom mats) as well as coastal upwelling components. Before MDM time, diatoms are rare until ca. 3.6 Ma. After the MDM, in the Pleistocene, the composition of the diatom flora points to increased importance of coastal upwelling toward the present, but is accompanied by a general decrease in opal and diatom deposition. Here we present a simple conceptual model as a first step in formalizing a possible forcing mechanism responsible for the record of opal deposition in the upwelling system off Namibia. The model takes into account Southern Ocean oceanography, and a link with deepwater circulation and deepwater nutrient chemistry which, in turn, are coupled to the evolution of North Atlantic Deep Water (NADW). The model proposes that between the MDM and the Mid-Pleistocene climate revolution, opal deposition off Namibia is not directly tied to glacial–interglacial fluctuations (as seen in the global δ18O record), but that, instead, a strong deepwater link exists with increased NADW production (as seen in the deepwater δ13C record) accounting for higher supply of silicate to the thermocline waters that feed the upwelling process. The opal record of Site 1084 shows affinity to eccentricity on the 400-kyr scale but not for the 100-kyr scale. This points toward long-term geologic processes for delivery of silica to the ocean.  相似文献   

5.
Several large deployments of neutrally buoyant floats took place within the Antarctic Intermediate (AAIW), North Atlantic Deep Water (NADW), and the Antarctic Bottom Water (AABW) of the South Atlantic in the 1990s and a number of hydrographic sections were occupied as well. Here we use the spatially and temporally averaged velocities measured by these floats, combined with the hydrographic section data and various estimates of regional current transports from moored current meter arrays, to determine the circulation of the three major subthermocline water masses in a zonal strip across the South Atlantic between the latitudes of 19°S and 30°S. We concentrate on this region because the historical literature suggests that it is where the Deep Western Boundary Current containing NADW bifurcates. In support of this notion, we find that a net of about 5 Sv. of the 15–20 Sv that crosses 19°S does continue zonally eastward at least as far as the Mid-Atlantic Ridge. Once across the ridge it takes a circuit to the north along the ridge flanks before returning to the south in the eastern half of the Angola Basin. The data suggest that the NADW then continues on into the Indian Ocean. This scheme is discussed in the context of distributions of dissolved oxygen, silicate and salinity. In spite of the many float-years of data that were collected in the region a surprising result is that their impact on the computed solutions is quite modest. Although the focus is on the NADW we also discuss the circulation for the AAIW and AABW layers.  相似文献   

6.
The boundary between the Atlantic and Indian sectors of the Southern Ocean is a key spot of the thermohaline circulation, where the following water masses mix up: Indian Central water (ICW), South Atlantic Central Water (SACW), Antarctic Intermediate Water (AAIW), Circumpolar Deep Water (CDW), North Atlantic Deep Water (NADW), Weddell Sea Deep Water (WSDW) and Antarctic Winter Water (WW). An optimum multiparameter analysis based on the distributions of potential temperature, salinity, NO (=O2+9.3×NO3) and silicate during the GoodHope 2004 (GH04) cruise allowed us to (i) define the realms of these water masses; (ii) obtain the water mass proportion weighted-average (archetypal) apparent oxygen utilization (AOU) and dissolved organic carbon (DOC) concentrations of each water mass; and (iii) estimate the contribution of DOC to the oxygen demand of the study area. WW represented only 5.2% of the water volume sampled during GH04, followed by WSDW with 10.8%, NADW with 12.7%, SACW with 15.3%, AAIW with 23.1% and CDW with 32.8%. The distributions of DOC and AOU were mainly explained by the mixing of archetypal concentrations of these variables, 75±5% and 65±3% respectively, which retained the variability due to the basin-scale mineralization from the formation area to the barycentre of each water mass along the GH04 line. DOC accounted for 26±2% and 12±5% of the oxygen demand of the meso- and bathypelagic ocean, respectively. Conversely, local mineralization processes, retained by the residuals of the archetypal concentrations of DOC and AOU, did not contribute to improve significantly the mixing model of DOC.  相似文献   

7.
《Ocean Modelling》2002,4(1):27-53
Offline particle trajectories are obtained for a quasi-global isopycnic-coordinate OGCM using an analytical method, adapted for use with online time-integrated isopycnal and diapycnal mass fluxes. The method is highly efficient, allowing the calculation of large ensembles of such trajectories. These ensembles can be used to establish pathways and transformations associated with the global circulation of water masses on timescales which are well in excess of any feasible model integration length. The method is here used to investigate the important, yet poorly observed, transformation of North Atlantic Deep Water (NADW) through slow spreading, upwelling and diapycnal mixing (defined when and where density decreases below a threshold value). A fundamental problem arises through unsteadiness in the thickness of NADW layers (due to various model flaws and/or intrinsic variability). Particles converge on gridboxes where layers inflate during the online time-integration period. Depending on the degree of layer inflation, only a fraction of NADW particles can be diagnosed as transformed at some point along their respective trajectories. However, the unsteadiness of layer thickness decreases during a 50-year spin-up, implying fewer converged trajectories and an increased fraction of transformed NADW. Using trajectories to trace NADW southward across the equatorial Atlantic, with mass fluxes from years 10, 30 and 50 of model spin-up, the transformed percentage (of NADW exported from the North Atlantic) increases from 17–18% (with fluxes from years 10 and 30) to 41% (using year 50 fluxes). In the latter case, about 30% of the NADW upwells south of 30°S after 500–1000 years. Most of the remaining 70% upwells in the South and North Pacific after 1000–2500 years.  相似文献   

8.
Chlorofluorocarbon (CFC) inventories provide an independent method for calculating the rate of North Atlantic Deep Water (NADW) formation. From data collected between 1986 and 1992, the CFC-11 inventories for the major components of NADW are: 4.2 million moles for Upper Labrador Sea Water (ULSW), 14.7 million moles for Classical Labrador Sea Water (CLSW), 5.0 million moles for Iceland–Scotland Overflow Water (ISOW), and 5.9 million moles for Denmark Strait Overflow Water (DSOW). The inventories directly reflect the input of newly formed water into the deep Atlantic Ocean from the Greenland, Iceland and Norwegian Seas and from the surface of the subpolar North Atlantic during the time of the CFC-11 transient. Since about 90% of CFC-11 in the ocean as of 1990 entered the ocean between 1970 and 1990, the formation rates estimated by this method represent an average over this time period. Formation rates based on best estimates of source water CFC-11 saturations are: 2.2 Sv for ULSW, 7.4 Sv for CLSW, 5.2 Sv for ISOW (2.4 Sv pure ISOW, 1.8 Sv entrained CLSW, and 1.0 Sv entrained northeast Atlantic water) and 2.4 Sv for DSOW. To our knowledge, this is the first calculation for the rate of ULSW formation. The formation rate of CLSW was calculated for an assumed variable formation rate scaled to the thickness of CLSW in the central Labrador Sea with a 10 : 1 ratio of high to low rates. The best estimate of these rates are 12.5 and 1.3 Sv, which average to 7.4 Sv for the 1970–1990 time period. The average formation rate for the sum of CLSW, ISOW and DSOW is 15.0 Sv, which is similar to (within our error) previous estimates (which do not include ULSW) using other techniques. Including ULSW, the total NADW formation rate is about 17.2 Sv. Although ULSW has not been considered as part of the North Atlantic thermohaline circulation in the past, it is clearly an important component that is exported out of the North Atlantic with other NADW components.  相似文献   

9.
The third in a series of cruises designed to establish the present-day concentrations of trace elements and synthetic organic compounds in major water masses of the ocean, the 1996 Intergovernmental Oceanographic Commission Contaminant Baseline Survey occupied six vertical profile stations in the subtropical and tropical Atlantic. Underway surface samples also were acquired in the transects between these stations. This paper uses the temperature, salinity, oxygen, nutrient, and chlorophyll results from the cruise to set the hydrographic background for the other papers in this special volume. Major features sampled during the surface transect include the Brazil Current, the South Equatorial Current, and the offshore Amazon Plume. Utilizing the above parameters to identify water masses, we observed Antarctic Bottom Water (AABW) that ranged from a relatively undiluted form at 33°S (Station 10) to a highly attenuated form at 8°N (Station 6). Similarly, North Atlantic Deep Water (NADW) was obtained in various mixing stages along its flow path, and samples of NADW and AABW exchanging through the Romanche Fracture Zone to the eastern Atlantic basins were also taken. In addition to these deep water masses, representative samples of Antarctic Intermediate Water and Circumpolar Deep Water were acquired. Besides standard hydrography, these data also were used to verify the sampling integrity of the trace metal-clean, Go Flo bottles deployed on a Kevlar hydrographic cable.  相似文献   

10.
Sedimentological and faunal records from the transitional period marking the onset of widespread northern hemisphere glaciation have been investigated at Ocean Drilling Program Site 984. The late Pliocene interglacial sediments of the northeast Atlantic are carbonate rich and show evidence of vigorous bottom water circulation at intermediate water depths. Contrasting this, the late Pliocene glacial sediments are characterised by carbonate dissolution and slower bottom current velocities. Weak or “leaky” Norwegian Sea overflows, undersaturated with respect to carbonate, influenced this region during the late Pliocene glacials. The early Pleistocene pattern of intermediate water circulation appears to have changed radically in the northeast Atlantic. At this time, interglacial carbonate values and inferred bottom current velocities are low. This suggests slow-flowing, undersaturated Norwegian Sea water bathing the site. The overflow increased during the early Pleistocene interglacials as the exchange between the Atlantic and Norwegian-Greenland Seas improved. The most significant feature of the early Pleistocene glacials is the increase in inferred bottom current velocity. These changes reflect a switch in deep North Atlantic convection to shallower depths during glacial periods, possibly in a manner similar to the increasing contribution of glacial intermediate water to the North Atlantic during the late Pleistocene glacials. Our results suggest that the late Pleistocene climate variability of the North Atlantic is a pervasive feature of the late Pliocene–early Pleistocene record.  相似文献   

11.
We examine the effect of a northward shift in the position of the southern hemisphere subpolar westerly winds (SWWs) on the vertical and horizontal distribution of temperature and salinity in the world ocean. A northward shift of the SWWs causes a latitudinal contraction of the subpolar gyres in the southern hemisphere (SH). In the Indian and Pacific, this leads to subsurface warming in the subtropical thermocline. As the southern margins of the gyres move into latitudes characterised by warmer surface air temperature (SAT), the layers at mid-depth below 400 m depth become ventilated by warmer water. We characterize the approximation of the ventilated thermocline in our coarse resolution model using a set of passive tracer experiments, and illustrate how the northward shift in the SWWs causes an equatorward shift in the latitude of origin of water ventilating layers deeper than 400 m in the Indian and Pacific, leaving the total surface ventilation of the upper 1200 m unchanged. In contrast, the latitudinal constraint on the Antarctic Circumpolar Current posed by the Drake Passage causes a cooling and freshening throughout the Atlantic thermocline; here, subsurface thermocline water originates from higher latitudes under the wind shift. On longer timescales Atlantic cooling and freshening is reinforced by a reduction in North Atlantic Deep Water (NADW) formation and surface salinification of the Indian and Pacific Oceans. In effect, the latitude of zero wind stress curl in the SWWs regulates the relative importance of the “cold water route” via the Drake Passage and the “warm water route” associated with thermocline water exchange via the Indian Ocean. Thus, a more northward location of the SWWs corresponds with a reduced salinity contrast between the Indian/ Pacific Oceans and the Atlantic. This results in reduced NADW formation. Also, a more northward location of the SWWs facilitates the injection of cool fresh Antarctic Intermediate Water into the South Atlantic subtropical gyre. Beyond these changes, on a millennial timescale, the deep ocean warms throughout the water column in response to the wind shift. Global salinity stratification also becomes less stable, as more saline water remains at the surface and accumulates in the Indian and Pacific thermocline. The freshening of the deep ocean reflects a reduced stirring of the global ocean due to reduced net circulation arising from a misalignment between the westerlies and the topographically constrained ACC. Our results lend support to the idea that a more equatorward location of the SWW maximum during glacial climates contributed to cooler and fresher conditions in the Atlantic, inhibiting NADW.  相似文献   

12.
Recently obtained World Ocean Circulation Experiment (WOCE) sections combined with a specially prepared pre-WOCE South Atlantic data set are used to study the dianeutral (across neutral surface) mixing and transport achieving Antarctic Intermediate Water (AAIW) being transformed to be part of the North Atlantic Deep Water (NADW) return cell. Five neutral surfaces are mapped, encompassing the AAIW from 700 to 1100 db at the subtropical latitudes.Coherent and significant dianeutral upwelling is found in the western boundary near the Brazil coast north of the separation point (about 25°S) between the anticyclonic subtropical and cyclonic south equatorial gyres. The magnitude of dianeutral upwelling transport is 10-3 Sv (1 Sv=106 m3 s-1) for 1°×1° square area. It is found that the AAIW sources from the southwestern South Atlantic and southwestern Indian Ocean do not rise significantly into the Benguela Current. Instead, they contribute to the NADW return formation by dianeutral upwelling into the South Equatorial Current. In other words, the AAIW sources cannot obtain enough heat/buoyancy to rise until they return to the western boundary region but north of the separation point. The basin-wide integration of dianeutral transport shows net upward transports, ranging from 0.25 to 0.6 Sv, across the lower and upper boundary of AAIW north of 40°S. This suggests that the equatorward AAIW is a slow rising water on a basin average. Given one order of uncertainty in evaluating the along-neutral-surface and dianeutral diffusivities from the assumed values, K=103 m2 s-1 and D=10-5 m2 s-1, the integrated dianeutral transport has an error band of about 10–20%. The relatively weak integrated dianeutral upwelling transport compared with AAIW in other oceans implies much stronger lateral advection of AAIW in the South Atlantic.Mapped Turner Angle in diagnosing the double-diffusion processes shows that the salty Central Water can flux salt down to the upper half of AAIW layer through salt-fingering. Therefore, the northward transition of AAIW can gain salt either through along-neutral-surface advection and diffusion or through salt fingering from the Central Water and heat through either along-neutral-surface advection and diffusion or dianeutral upwelling. Cabbeling and thermobaricity are found significant in the Antarctic frontal zone and contribute to dianeutral downwelling with velocity as high as −1.5×10-7 m s-1. A schematic AAIW circulation in the South Atlantic suggests that dianeutral mixing plays an essential role in transforming AAIW into NADW return formation.  相似文献   

13.
A method allowing the calculation of both concentration and age of an individual water component is used to examine the penetration and fate of North Atlantic Deep Water (NADW) in a global ocean model. The method is consistent with the recent theory of water component age by Delhez et al. Its application in ocean models is straightforward and involves specification of two ideal tracers, and its efficacy is verified here via comparison with water component ages obtained by a second method, involving the time history of a single ideal tracer, and whose application is rather more restricted. Age estimates by the two methods are compared in the case of an interior ocean source region (suitable for marking the model's NADW, and forming the main focus of the study) and in the case of a ocean surface source region (featuring high density surface water in the far Northern Atlantic). The concentration and age of NADW are determined for two versions of the model, differing only in the inclusion or exclusion of isoneutral diffusion. The age and, especially, the concentration of NADW in the deep Southern, Indian and Pacific Oceans are significantly lower in the version with isoneutral diffusion. Both versions indicate that most of the NADW ultimately reaches the surface in the model Southern Ocean.  相似文献   

14.
In support of the Deep Basin Experiment, part of the World Ocean Circulation Experiment, a large number of neutrally buoyant floats were released within the Brazil Basin during the 1990s in an attempt to measure directly the circulation in the deep ocean interior. Three levels corresponding to the three major subthermocline water masses were selected, and results from the deeper two (North Atlantic Deep Water, NADW, and Antarctic Bottom Water, AABW) are described. At this writing processing of acquired tracking data is incomplete. Hence, this paper reports on the progress of the observational program and gives our initial conclusions.It appears that the flow in the deep Brazil Basin is unlike previous conjectures in which the circulation patterns can be characterized as being primarily meridional, both along the western boundary and in the interior. The existence of a deep western boundary current (DWBC) is quite clear in the float data at the NADW level, but less prominent in the AABW, and the interior flow is dominantly zonal with unexpectedly small meridional space scales. Integral time scales are long, of order 20–30 days, and eddy kinetic energy levels are low, of order 1 cm2/s2. In spite of the low energy levels a surprising number of our floats became caught up in vortices.A line of seamounts extending offshore near 20°S, known as the Vitória–Trindade Seamounts, interrupts the DWBCs and is the location for eddy formation and apparent flow away from the boundary into the interior. Although it has been speculated that this could feed a narrow zonal current of NADW (the “Namib Col Current”) our float trajectories suggest a return to the western boundary, rather than a continuation to the east.  相似文献   

15.
The 853 m thick sediment sequence recovered at ODP Site 1148 provides an unprecedented record of tectonic and paleoceanographic evolution in the South China Sea over the past 33 Ma. Litho-, bio-, and chemo-stratigraphic studies helped identify six periods of changes marking the major steps of the South China Sea geohistory. Rapid deposition with sedimentation rates of 60 m/Ma or more characterized the early Oligocene rifting. Several unconformities from the slumped unit between 457 and 495 mcd together erased about 3 Ma late Oligocene record, providing solid evidence of tectonic transition from rifting/slow spreading to rapid spreading in the South China Sea. Slow sedimentation of 20–30 m/Ma signifies stable seafloor spreading in the early Miocene. Dissolution may have affected the completeness of Miocene–Pleistocene succession with short-term hiatuses beyond current biostratigraphical resolution. Five major dissolution events, D-1 to D-5, characterize the stepwise development of deep water masses in close association to post-Oligocene South China Sea basin transformation. The concurrence of local and global dissolution events in the Miocene and Pliocene suggests climatic forcing as the main mechanism causing deep water circulation changes concomitantly in world oceans and in marginal seas. A return of high sedimentation rate of 60 m/Ma to the late Pliocene and Pleistocene South China Sea was caused by intensified down-slope transport due to frequent sea level fluctuations and exposure of a large shelf area during sea level low-stands. The six paleoceanographic stages, respectively corresponding to rifting (33–28.5 Ma), changing spreading southward (28.5–23 Ma), stable spreading to end of spreading (23–15 Ma), post-spreading balance (15–9 Ma), further modification and monsoon influence (9–5 Ma), and glacial prevalence (5–0 Ma), had transformed the South China Sea from a series of deep grabens to a rapidly expanding open gulf and finally to a semi-enclosed marginal sea in the past 33 Ma.  相似文献   

16.
The Mozambique Channel plays a key role in the exchange of surface water masses between the Indian and Atlantic Oceans and forms a topographic barrier for meridional deep and bottom water circulation due to its northward shoaling water depths. New high-resolution bathymetry and sub-bottom profiler data show that due to these topographic constraints a peculiar seafloor morphology has evolved, which exhibits a large variety of current-controlled bedforms. The most spectacular bedforms are giant erosional scours in the southwest, where northward spreading Antarctic Bottom Water is topographically blocked to the north and deflected to the east forming furrows, channels and steep sediment waves along its flow path. Farther north, in the water depth range of North Atlantic Deep Water, the seafloor is strongly shaped by deep-reaching eddies. Steep, upslope migrating sediment waves in the west have formed beneath the southward flow of anticyclonic Mozambique Channel eddies (MCEs). Arcuate bedforms in the middle evolved through an interaction of the northward flow of MCEs with crevasse splays from a breach in the western Zambezi Channel levee. Hummocky bedforms in the east result from an interplay of East Madagascar Current eddies with overspill deposits of the crevasse and Zambezi Channel. All bedforms are draped with sediments indicating that the present-day current velocities are not strong enough to erode sediments. Hence, it can be concluded that the seafloor morphology developed during earlier times, when bottom-current velocities were stronger. Assuming a sedimentation rate of 20 m/Ma and a drape of at least 50 m thickness the bedforms may have developed during the Pliocene Epoch or earlier.  相似文献   

17.
A detailed study of a nodule from the Somali Basin dated by 230Thexcess was correlated with the paleoceanographic events recorded in Site 236 (Leg 24) Deep Sea Drilling Project (DSDP) cores. Tentative indications are that the phase of nodule accretion starting with the development of pillar structure at a depth of 20 mm in the nodule around 13 Ma coincides with increased Antarctic Bottom Water (AABW) flow and an elevated calciumcarbonate compensation depth (CCD).

The Late Miocene lowering of the CCD is represented by the mottled zones between 8 and 18 mm in the nodule is characterised by an abundant silicate component (>20%) of aeolian origin. The Miocene/Pliocene boundary (5 Ma) occurs at a depth of about 8 mm and is represented by the development of pillar structure and a minimum of aeolian dust (10.3%).

The increased biological productivity of the Somali surface water since the Middle Miocene is demonstrated by the increasing Corg content of the nodule (from 0.11 to 0.19%) towards its surface.  相似文献   


18.
Pliocene age sediments from Ocean Drilling Program Leg 175, Site 1085-A and B in the Cape Basin were analyzed to investigate the impact of the intensification of Northern Hemisphere glaciation (INHG) on the South Atlantic Benguela Current system from 4 to 2 Ma. Proxies for productivity (concentrations and mass accumulation rates of total organic carbon, carbon to nitrogen ratios, percent calcium carbonate, and percent biogenic silica) as well as weight percent sand (a proxy for preservation or winnowing) peak at 3.2, 3.0, 2.4, and 2.25 Ma. Normative calculations of allied trace and major elemental determinations indicate synchronous increases in productivity peaks, as well as high concentrations and accumulations of terrigenous sediments. Coeval increases in hemipelagic sedimentation and productivity indicators could be the result of enhanced eolian sedimentation resulting from strengthened winds, leading to elevated rates of upwelling and enhanced productivity. However, rapid burial, as indicated by high sedimentation rates, could also enhance preservation. The very high concentrations (>30%) and accumulations (up to 60 g/cm2/kyr) limit the likelihood that eolian sedimentation was the only transport mechanism, invoking an additional fluvial source. Rapid burial by either eolian or fluvial transport links these intervals of enhanced preservation and productivity with continental climate changes resulting from (1) increased winds and/or dust availability due to higher aridity in the Namibia/northern South Africa region; (2) lowered sea-level related to increased ice volume; (3) increased sediment load due to wetter conditions in the continental interior; or (4) some combination. Peaks at 3.2, 2.4 and 2.25 Ma are coincident with maximum precession, suggesting a link between hemipelagic sedimentation and enhanced monsoonal circulation over southern Africa. The Site 1085 sedimentary record during the INHG seems to be controlled by low-latitude processes linked to precession rather than hig-latitude processes.  相似文献   

19.
Multivariate statistical analysis on the kaolinite/chlorite ratios from 20 South Atlantic sediment cores allowed for the extraction of two processes controlling the fluctuations of the kaolinite/chlorite ratio during the last 130,000 yrs, (1) the relative strength of North Atlantic Deep Water (NADW) inflow into the South Atlantic Ocean and (2) the influx of aeolian sediments from the south African continent. The NADW fluctuation can be traced in the entire deep South Atlantic while the dust signal is restricted to the vicinity of South Africa. Our data indicate that NADW formation underwent significant changes in response to glacial/interglacial climate changes with enhanced export to the Southern Hemisphere during interglacials. The most pronounced phases with Enhanced South African Dust Export (ESADE) occurred during cold Marine Isotope Stage (MIS) 5d and across the Late Glacial/Holocene transition from 16 ka to 4 ka (MIS 2 to 1). This particular pattern is attributed to the interaction of Antarctic Sea Ice extent, the position of the westerlies and the South African monsoon system.  相似文献   

20.
The realization of North Atlantic Deep Water (NADW) replacement in the deep northern Indian Ocean is crucial to the “conveyor belt” scheme. This was investigated with the updated 1994 Levitus climatological atlas. The study was performed on four selected neutral surfaces, encompassing the Indian deep water from 2000 to 3500 m. The Indian deep water comprises three major water masses: NADW, Circumpolar Deep Water (CDW) and North Indian Deep Water (NIDW). Since NADW flowing into the southwest Indian Ocean is largely blocked by the ridges (the Madagascar Ridge in the east and Davie Ridge in the north in the Mozambique Channel) and NIDW is the only source in the northern Indian Ocean that cannot provide a large amount of volume transport, CDW has to be a major source for the Indian deep circulation and ventilation in the north. Thus the question of NADW replacement becomes that of how the advective flows of CDW from the south are changed to be upwelled flows in the north—a water-mass transformation scenario. This study considered various processes causing motion across neutral surfaces. It is found that dianeutral mixing is vital to achieve CDW transformation. Basin-wide uniform dianeutral upwelling is detected in the entire Indian deep water north of 32°S, somewhat concentrated in the eastern Indian Ocean on the lowest surface. However, the integrated dianeutral transport is quite low, about a net of 0.2 Sv (1 Sv=106 m3 s-1) across the lowermost neutral surface upward and 0.4 Sv across the uppermost surface upward north of 32°S with an error band of about 10–20% when an uncertainty of half-order change in diffusivities is assumed. Given about 10–15% of rough ridge area where dianeutral diffusivity could be about one order of magnitude higher (10-4 m2 s-1) due to internal-wave breaking, the additional amount of increased net dianeutral transport across the lowest neutral surface is still within that error band. The averaged net upward transport in the north is matched with a net downward transport of 0.3 Sv integrated in the Southern Ocean south of 45°S across the lowermost surface. With the previous works of You (1996. Deep Sea Research 43, 291–320) in the thermocline and You (Journal of Geophysical Research) in the intermediate water combined, a schematic dianeutral circulation of the Indian Ocean emerges. The integrated net dianeutral upwelling transport shows a steady increase from the deep water to the upper thermocline (from 0.2 to 4.6) north of 32°S. The dianeutral upwelling transport is accumulated upward as the northward advective transport provided from the Southern Ocean increases. As a result, the dianeutral upwelling transport north of 32°S can provide at least 4.6 Sv to south of 32°S from the upper main thermocline, most likely to the Agulhas Current system. This amount of dianeutral upwelling transport does not include the top 150–200 m, which may contribute much more volume transport to the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号