首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sulfur isotopic composition of the Herrin (No. 6) Coal from several localities in the Illinois Basin was measured. The sediments immediately overlying these coal beds range from marine shales and limestones to non-marine shales. Organic sulfur, disseminated pyrite, and massive pyrite were extracted from hand samples taken in vertical sections.The δ 34S values from low-sulfur coals (< 0.8% organic sulfur) underlying nonmarine shale were +3.4 to +7.3%0 for organic sulfur, +1.8 to +16.8%0 for massive pyrite, and +3.9 to +23.8%0 for disseminated pyrite. In contrast, the δ 34S values from high-sulfur coals (> 0.8% organic sulfur) underlying marine sediments were more variable: organic sulfur, ?7.7 to +0.5%0, pyrites, ?17.8 to +28.5%0. In both types of coal, organic sulfur is typically enriched in 34S relative to pyritic sulfur.In general, δ 34S values increased from the top to the base of the bed. Vertical and lateral variations in δ 34S are small for organic sulfur but are large for pyritic sulfur. The sulfur content is relatively constant throughout the bed, with organic sulfur content greater than disseminated pyrite content. The results indicate that most of the organic sulfur in high-sulfur coals is derived from post-depositional reactions with a 34S-depleted source. This source is probably related to bacterial reduction of dissolved sulfate in Carboniferous seawater during a marine transgression after peat deposition. The data suggest that sulfate reduction occurred in an open system initially, and then continued in a closed system as sea water penetrated the bed.Organic sulfur in the low-sulfur coals appears to reflect the original plant sulfur, although diagenetic changes in content and isotopic composition of this fraction cannot be ruled out. The wide variability of the δ 34S in pyrite fractions suggests a complex origin involving varying extents of microbial H2S production from sulfate reservoirs of different isotopic compositions. The precipitation of pyrite may have begun soon after deposition and continued throughout the coalification process.  相似文献   

2.
Sulfur is one of the havardous elements in coal The concentrations of sulfur are relatively high in coal.The major forms of sulfur in coal are pyritic,organic and sulfate.Pyritic and organic sulfur generally account for the bulk of sulfur in coal.Elemental sulfur also occurs in coal,but only in trace to minor amounts.When coals are burned,leached and washed,sulfur will be released in the form of sulfide and H2S,which then reach with O2,water and other substances to change into vitriol,and in some places it may form acid rain.And they will impact water environment,acidify the soil and do great harm to plants and human health.In this paper,on the basis of the data from the Yanzhou mining district,the distribution and concentrations of sulfur are analyzed and the existing forms of sulfur are studied.The variation of sulfur and its impact on the environments also are described when coal is used.  相似文献   

3.
Six sulfur forms were investigated in profiles of freshwater- and marine-derived peat-forming systems of the Okefenokee Swamp, Georgia and Everglades Swamp, Florida. Total sulfur levels of 0.1–10% were found, thus indicating a major incorporation of sulfur in the very early stages of coal formation. The quantities of hydrogen sulfide and elemental sulfur observed appeared to be indicative of whether marine or freshwater conditions prevailed at the site of deposition. Carbon-bonded sulfur accounted for 70% of the total sulfur in the freshwater peat and 50% of the total sulfur in the marine peat. Over 15% of the total sulfur was in pyritic combination in the marine environment, while levels of pyrite in the freshwater peats were an order of magnitude lower. An ester-sulfate fraction represented 25% of the total sulfur in both freshwater and marine peats. The levels of sulfur forms in the peat profiles are compared to those observed in living plants and to various coals; levels of pyrite and organic sulfur in the peat are similar to those found by other investigators in freshwater-derived and marine-derived coals.  相似文献   

4.
Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur (< 1%) Danville Coal Member of the Dugger Formation and the other is the high-sulfur (> 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in δ34S for sulfur species within and between the low-sulfur and high-sulfur coal. The δ34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the δ34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the δ34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of δ34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in δ34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition.The δ34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7‰) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2‰). This indicates a fractionation of sulfur isotopes during high-sulfur coal combustion. By contrast, the δ34S values for fly-ash samples from the low-sulfur Danville coal average 10.2‰, only slightly enriched in 34S relative to those from the parent coal (average 7.5‰). The δ34S values for bulk S determined directly from the fly-ash samples show close correspondence with the δ34S values for SO4− 2 leached from the fly ash in the low-sulfur coal, suggesting that the transition from pyrite to sulfate occurred via high-temperature oxidation during coal combustion.  相似文献   

5.
There is a positive correlation between sulphur concentration and the vitrinite maceral group content in Permian Vryheid Formation coals in South Africa; the reverse is true for the inertinite maceral family. This relationship is evident at intraseam, interseam and intercoalfied levels. Vitrinite precursors formed where the water table in peat-forming environments was high and Eh low. These conditions favoured bacterial sulphate reduction and resulting H2S reacted with Fe2+ and organic peat compounds to form pyrite and organic sulphur components. Inertinite precursors formed when the water table was low and Eh high; aerobic respiration prevailed and little H2S was produced. Organic sulphur derived from peat-forming plant tissue is dominant in intertinite-rich low-sulphur coal; pyritic sulphur exceeds organic sulphur in high-sulphur coals dur to preferential reaction of H2S with Fe2+.  相似文献   

6.
Jurassic high-sulfur coals from the Maghara area in Egypt were analyzed for the abundance and isotopic composition of different forms of sulfur. Analyses indicated that the sulfur occurs in the form of organic, pyrite, and sulfate forms. Pyrite sulfur represents the major fraction, while sulfate sulfur is minor and could be formed during sample preparation for the analyses.The δ34S CDT values of the organic sulfur are positive ranging between 1.0‰ and 13.5‰ with an average of 9.1‰. Pyrite δ34S values are also positive ranging between 1.5‰ and 15.4‰ with an average of 6.6‰. The high δ34S values of the organic sulfur in the Maghara coals suggest a freshwater origin of the organic components of these coals. The lack of correlation between pyrite and organic sulfur isotopes implies different incorporation mechanisms of sulfur. The high-sulfur contents along with the positive and high δ34S values suggest a marine origin of pyrite sulfur and support the geological interpretation of marine invasion after the peat formation that was responsible for the incorporation of the pyrite sulfur.The occurrence of pyrite as euhedral crystals as well as the high and positive δ34S values of the pyrite sulfur indicates the formation of pyrite during diagenesis as a result of marine water invasion of the preexisting peat in a brackish coastal plain environment.  相似文献   

7.
The distribution and quantity of organic sulfur and iron sulfur species were determined in the Holocene sediments from Mud Lake, Florida. The sediments of this shallow, sinkhole lake are characterized by high sulfur and organic carbon contents as well as active sulfate reduction. They record a shift from a basal peat (below 2 m) comprised of water lily-dominated organic matter to the present cyanobacterial/algal-dominated lake deposit (upper 1 m). This shift in depositional environment and subsequent organic matter source was accompanied by variation in the amount of reactive iron delivered to the sediments, which in turn influenced the type and extent of organic matter sulfurization. Extractable intramolecular organic sulfur is principally found as C25 highly branched isoprenoid (HBI) thiolanes. Extractable polysulfide-linked lipids, determined by selective chemical cleavage with MeLi/MeI and analyzed as methylthioethers (MTE), are dominated by n-alkanes with sulfur attachments at position 1 and 2, as well as lower amounts of C25 HBI-MTE. The δ13C values and carbon-chain length distribution of both series of n-alkylMTE indicate that they are derived from distinct biological precursors. Among the n-alkylMTE with sulfur attachment at position 1 there are three homologous series: one saturated and two with both cis and trans enethiol isomers. The identification of the enethiol in the sulfur-linked macromolecules indicates that n-alkylaldehydes are precursors lipids. The intervals of high concentration of bulk organic sulfur and sulfurized lipids coincide with the intervals of high mineral sulfur content (acid volatile sulfide and chromium reducible sulfur). We suggest that the main control on the enhanced addition of sulfur to the organic matter in Mud Lake was the increased formation of polysulfides during the reduction of iron hydroxides and the subsequent reaction of those polysulfides with mildly oxidized sedimentary organic matter.  相似文献   

8.
This paper presents a statistical relationship between the pyrite particle size distribution and the potential amount of pyritic sulfur reduction achieved by specific-gravity-based separation. This relationship is obtained from data on 26 Ohio coal samples crushed to 14 × 28 mesh. In this paper a prediction equation is developed that considers the complete statistical distribution of all the pyrite particle sizes in the coal sample.Assuming that pyrite particles occurring in coal have a lognormal distribution, the information about the particle size distribution can be encapsulated in terms of two parameters only, the mean and the standard deviation of the logarithms of the grain diameters. When the pyritic sulfur reductions of the 26 coal samples are related to these two parameters, a very satisfactory regression equation (R2 = 0.91) results. This equation shows that information on both these parameters is needed for an accurate prediction of potential sulfur reduction, and that the mean and the standard deviation interact negatively insofar as their influence on pyritic sulfur reduction is concerned.  相似文献   

9.
10.
The peat-forming systems of the Okefenokee Swamp are viewed as modern progenitors of coal. Taxodium and Nymphaea-derived peat-forming systems were characterized in terms of (1) organic fractions and (2) the distribution of organic/inorganic sulfur in each organic fraction (water soluble, benzene/methanol soluble, humin, humic acid, fulvic acid). The humin fraction is the largest organic fraction in both environments, approaching 70% of the total organic matter in the Nymphaea-derived environment. Humin origins are discussed in terms of a humic acid precursor, and undecomposed plant material. It is suggested that each depth of peat represents a diagenetic history of events which the authors believe occurred primarily when the currently buried peat was at the surface. The sulfur content of both peat-forming areas is low (0.23–0.27%); organic sulfur is the dominant sulfur form. Humin contains 50–80% of the total sulfur and of this, 80% is organic sulfur. Ester-sulfate appears to be especially prevalent in the fulvic acid fraction. The sulfur content of freshwater-derived peats is similar in quantity and distribution to that found in low sulfur coals.  相似文献   

11.
Cores and surface samples of peats from the Everglades—Mangrove region of Southern Florida were analyzed for total sulfur and pyritic sulfur. These values were compared with the petrographic-botanical components of the peats as determined from point-counts of oriented microtome sections. Pyrite occurs as individual euhedral crystals, loosely packed framboids, and lenses or crusts of minute crystals. Framboids and minute crystals are often associated with organic matter and sometimes with bacteria and fungi. Pyrite tends to selectively occur in void spaces in or between peat tissues. In samples containing very small amounts of pyrite, framboidal pyrite is the prevalent form.Marine to brackish peats contain the highest pyrite and total sulfur contents, with brackish peats generally containing more pyrite than marine peats. Pyrite tends to be lower in all peats within 30 cm of the surface, whether marine or brackish.Burial of freshwater peats beneath marine or brackish peats tends to increase the total sulfur and pyritic sulfur in the underlying peats. Burial beneath brackish-water, clay-rich deposits (such as splays) tends to increase total sulfur and pyritic sulfur in the underlying deposits more than burial beneath less clay-rich deposits.  相似文献   

12.
The formation environment of the main coal seam in Shengli coal mine is analyzed, and the effect of coal ash parameters on the coal-forming environment is mainly discussed according to gray component parameters combined with other coal quality test analysis data. Results show that the hydrodynamic conditions of the main coal during coal accumulation have a general pattern of strong northeast and weak southwest, and lakeside swamp is generally in the retrograde process from south to north. The No.5 coal seam is a water entry cycle, and the No.5lower coal is a water withdrawal cycle. The No.6 thick coal seam is formed in the peat swamp environment where the water is shallow and the groundwater activity is weak. The input of terrestrial debris material was most abundant in the formation period of No.5lower coal, followed by No.5 coal, and that in No.6 coal is the least. Vertically, the peat swamp environment changed from weak reduction to weak oxidation to strong reducing environment. The ash yield was low to high to low from bottom to top. The organic sulfur is the main type of sulfur in the main coal seam. The weaker the hydrodynamic condition, the higher the organic sulfur content in the reduction environment, while lower organic sulfur content in the oxidation environment. The peat swamp water of No.5lower coal is medium alkaline, and the peat swamp water of No.5 and No. 6 coals is weakly alkaline or acidic.  相似文献   

13.
The study was carried out on the Sulejów dam reservoir (Central Poland). Water and sediment samples were collected between February and October 2006. Sulfur compounds in the sediment were chemically extracted and subjected to isotopic analysis.Large variability of SO42− concentration in the water column (from 10.3 to 36.2 mg/dm3) and the isotopic composition of sulfur (δ34S from 2.1 to 5.4‰) was observed. The main identified sources of SO42− were watercourses, surface runoff, and phosphorus fertilizers.Both oxidized sulfur species (SO42−) and its reduced forms were found in sediments. Particular sulfur forms were characterized by large variations in both, concentrations and the isotopic composition of sulfur. SO42− in the sediment and in the water column had different genesis. Bacterial oxidation of organic sulfur and its binding in SO42− were observed in the sediment. Under reducing conditions, oxidized and organic sulfur is converted to H2S which reacted with Fe or other metallic ions leading to metal sulfide precipitation. Monosulfides were shown to have a very low concentration, ranging up to 0.07 mg/g of sediment. The transformation of elemental sulfur from sulfides through their chemical oxidation occurred in the sediment.  相似文献   

14.
In 65 samples, we got values (unusually replicable and consistent for this type of work) of concentration, 14C/13C (AMS) age, and δ13C for: peat, dissolved organic carbon (DOC), peat fractions, and dissolved CO2 and CH4 at 50-cm intervals down to 700 cm in Ellergower Moss, a rainwater-dependent raised (domed) bog in southwest Scotland. (1) We attribute the consistency of the results to Ellergower Moss being unusually homogeneous, with unusually low hydraulic conductivity, and containing only a few gas spaces; and to the sampling methods including 18-month equilibration of in situ samplers. (2) The dissolved gas concentration depth profiles are convex and very similar to each other, though CO2 is 5-10 times more concentrated than CH4, while the profile of DOC is concave. (3) The age profile of peat is near linearly proportional to depth; that for DOC is about 500-1000 yr younger than the peat at the same depth; the dissolved gases are 500-4300 years younger than the peat. The age of the operational peat fractions humic acid and humin is similar to that of whole peat. (4) The δ13C profile for deep peat is almost constant; δ13C-CO2 is more enriched than the peat (δ13C-CO2 35‰ more); δ13C-CH4 is the same amount more depleted. Nearer the surface both dissolved gases become steadily more depleted, δ13C is about 20‰ less at the surface. (5) A simulation shows that mass flow can account for the concentration and age profiles of DOC, but for the gases diffusion and an additional source near the surface are needed as well, and diffusion accounts for over 99% of the dissolved gas movements. (6) The same processes must operate in other peatlands but the results for Ellergower should not be extrapolated uncritically to them.  相似文献   

15.
Two new methods for analysis of sedimentary sulfur employing sensitive flame photometric detection have been developed and applied to a study of marine, estuarine and freshwater sediments. Volatile organosulfur compounds generated from freeze-dried sediments upon heating in a H2 atmosphere reflect the distribution and extent of degradation of detrital organic matter. Regions of biogeochemical sulfur transformations, as characterized by the presence of SO2 progenitors, sulfite and thiosulfate, are also depicted. Scrubbing of sediment slurries treated with the reducing agent, acidic Cr(II) solution, releases H2S and CH2SH from their metal-complexed forms. CH3SH is a common constituent of marine and estuarine sediments at sub-ppm concentrations.  相似文献   

16.
Hydrous pyrolysis experiments at 200 to 365°C were carried out on a thermally immature organic-rich limestone containing Type-IIS kerogen from the Ghareb Limestone in North Negev, Israel. This work focuses on the thermal behavior of both organic and inorganic sulfur species and the partitioning of their stable sulfur isotopes among organic and inorganic phases generated during hydrous pyrolyses. Most of the sulfur in the rock (85%) is organic sulfur. The most dominant sulfur transformation is cleavage of organic-bound sulfur to form H2S(gas). Up to 70% of this organic sulfur is released as H2S(gas) that is isotopically lighter than the sulfur in the kerogen. Organic sulfur is enriched by up to 2‰ in 34S during thermal maturation compared with the initial δ34S values. The δ34S values of the three main organic fractions (kerogen, bitumen and expelled oil) are within 1‰ of one another. No thermochemical sulfate reduction or sulfate formation was observed during the experiments. The early released sulfur reacted with available iron to form secondary pyrite and is the most 34S depleted phase, which is 21‰ lighter than the bulk organic sulfur. The large isotopic fractionation for the early formed H2S is a result of the system not being in equilibrium. As partial pressure of H2S(gas) increases, retro reactions with the organic sulfur in the closed system may cause isotope exchange and isotopic homogenization. Part of the δ34S-enriched secondary pyrite decomposes above 300°C resulting in a corresponding decrease in the δ34S of the remaining pyrite. These results are relevant to interpreting thermal maturation processes and their effect on kerogen-oil-H2S-pyrite correlations. In particular, the use of pyrite-kerogen δ34S relations in reconstructing diagenetic conditions of thermally mature rocks is questionable because formation of secondary pyrite during thermal maturation can mask the isotopic signature and quantity of the original diagenetic pyrite. The main transformations of kerogen to bitumen and bitumen to oil can be recorded by using both sulfur content and δ34S of each phase including the H2S(gas). H2S generated in association with oil should be isotopically lighter or similar to oil. It is concluded that small isotopic differentiation obtained between organic and inorganic sulfur species suggests closed-system conditions. Conversely, open-system conditions may cause significant isotopic discrimination between the oil and its source kerogen. The magnitude of this discrimination is suggested to be highly dependent on the availability of iron in a source rock resulting in secondary formation of pyrite.  相似文献   

17.
The present work is an attempt to establish the stable isotope database for Mesozoic to Tertiary coals from the Pannonian Basin, Hungary. Maceral composition, proximate analysis, sulphur form, sulphur isotopes (organic and pyritic), and carbon isotopes were determined. This database supports the assessment of the environmental risks associated with energy generation, the characterization of the formation and the distribution of sulphur in the coals used.The maceral composition, the sulphur composition, the C, S isotopic signatures, and some of the geological evidences published earlier show that the majority of these coals were deposited in freshwater and brackish water environments, despite the relatively high average sulphur content. However, the Upper Cretaceous, Eocene, and Lower Miocene formations also contain coal seams of marine origin, as indicated by their maceral composition and sulphur and carbon chemistry.The majority of the sulphur in these coals occurs in the organic form. All studied sulphur phases are relatively rich in 34S isotopes (δ34Sorganic = + 12.74‰, δ34Spyrite = + 10.06‰, on average). This indicates that marine bacterial sulphate reduction played a minor role in their formation, in the sense that isotopic fractionation was limited. It seems that the interstitial spaces of the peat closed rapidly during early diagenesis due to a regime of high depositional rate, leading to a relative enrichment of the heavy sulphur isotopes.  相似文献   

18.
Over a period of a year, Hg0-reactive, total reduced sulfur species (RSST), as well as a non-volatile fraction that cannot be gas-stripped at pH ∼2 (RSSNV), have been measured by voltammetry in a stratified, saline lake. In the hypolimnion, RSST is dominated by unusually high (up to 5 mM) dissolved divalent sulfur (S−II), present as H2S + HS and as inorganic polysulfides (HxSnx−2). Less abundant RSSNV is attributed to dissolved zero-valent sulfur (S0) in inorganic polysulfides. Assuming negligible contribution of organic S0 species in the hypolimnion, the equilibrium distribution of polysulfide ions is calculated; S52− is found to predominate. In the epilimnion, all RSST consists of RSSNV within analytical uncertainty. Through spring and summer, RSST and RSSNV display little vertical or seasonal variation, but they increase dramatically when stratification breaks down in autumn. Based on decay rate, RSS during mixing events is attributed to dissolved S8 from oxidation of sulfide and decomposition of inorganic polysulfides. This hypothesis quantitatively predicts precipitation of elemental sulfur in a year when colloidal sulfur was observed and predicts no precipitation in a year when it was not observed. Except during mixing events, the entire water column is undersaturated with respect to both rhombic sulfur and biologic sulfur, and the limited variations of RSS exclude hydrophobic and volatile aqueous S8 as a major species. During such periods, RSS (typically 8 nM) may be associated with organic carbon, perhaps as adsorbed S8 or as covalently bound polysulfanes or polysulfides. The hypolimnion is viewed as a zero-valent sulfur reactor that creates S0-containing, dissolved organic macromolecules during stable stratification periods. Some are sufficiently degradation-resistant and hydrophilic to be dispersed throughout the lake during mixing events, subsequently giving rise to ∼10−8 M RSS in the oxic water column. Voltammetrically determined RSS in oxic natural waters has often been described as “sulfide” or “metal complexed sulfide”, implying an oxidation state of S−II; we argue that RSS in oxic Rogoznica Lake waters is mainly S0.  相似文献   

19.
《Applied Geochemistry》1988,3(6):631-643
Uraniferous peat was sampled from surface layers of a Holocene U deposit in northeastern Washington State. Dried, sized, and homogenized peat that contained5980 ±307 ppm U was subjected to a variety of leaching conditions to determine the nature and strength of U-organic bonding in recently accumulated organic matter. The results complement previous experimental studies of U uptake on peat and suggest some natural or anthropogenic disturbances that are favorable for remobilizing U. The fraction of U leached in 24 h experiments at 25°C ranged from 0 to 95%. The most effective leach solutions contained anions capable of forming stable dissolved complexes with uranyl (UO2+2) cation. These included H2SO4 (pH= 1.5) and concentrated (0.01M) solutions of sodium bicarbonate-carbonate (pH= 7.0–10.0), or sodium pyrophosphate (pH= 10). Effective leaching by carbonate and pyrophosphate in the absence of added oxidant, and the insignificant effect of added oxidant (as pressurized O2) strongly suggest that U is initially fixed on organic matter as an oxidized U(VI) species. Uranium is more strongly bound than some other polyvalent cations, based on its resistance to exchange in the presence of large excesses of dissolved Ca2+ and Cu2+. Measurements of the rate of U leaching indicate faster rates in acid solution compared to carbonate solution, and are consisten with simultaneous attack of sites with different affinities for U. Sulfuric acid appears a good choice for commercial extraction of U from mined peat.In situ disturbances such as overliming of peat soils, addition of fertilizers containing pyrophosphate, or incursions of natural carbonate-rich waters could produce significant remobilization of U, and possibly compromise the quality of local domestic water supplies.  相似文献   

20.
Due to the poor preservation of old peat formations and the limited research developed on them, the contribution of peat oxidation to the global C cycle at geological scales is poorly understood. Iron duricrusts containing abundant well-preserved plant structures have been reported above Humic Gleysols in the Uberaba Plateau (Brazil). We show that the iron accumulation results from an in-situ impregnation of peat, fast enough to preserve the plant structures. The formation of iron oxides results from two processes: precipitation in the pores and C/Fe replacement. The iron duricrusts were probably triggered by oxidation of the peatland following dry climatic events during the last 50 kyr. The large amount of iron dissolved in peatland waters was immobilized contemporaneously with the destruction of organic matter. The oxidation of organic matter from the lower peat, dated at ca 24–27 kyr BP, may have released between 0.08 and 2.26 kg CO2 m−2 yr−1 in the atmosphere. These rates are in a good agreement with present-day measurements of CO2 release from drained peatlands. Although peatland formation has been identified as a significant contributor to the global CO2 uptake, our findings suggest that natural peatland oxidation should also be considered as a source of atmospheric CO2 during past climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号