首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly’s Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.  相似文献   

2.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

3.
《Astroparticle Physics》2011,35(5):266-276
In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65°. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.  相似文献   

4.
《Astroparticle Physics》2004,21(6):565-581
The mass composition of high-energy cosmic rays at energies above 1015 eV can provide crucial information for the understanding of their origin. Air showers were measured simultaneously with the SPASE-2 air shower array and the AMANDA-B10 Cherenkov telescope at the South Pole. This combination has the advantage to sample almost all high-energy shower muons and is thus a new approach to the determination of the cosmic ray composition. The change in the cosmic ray mass composition was measured versus existing data from direct measurements at low energies. Our data show an increase of the mean log atomic mass lnA by about 0.8 between 500 TeV and 5 PeV. This trend of an increasing mass through the “knee” region is robust against a variety of systematic effects.  相似文献   

5.
6.
The sources of ultrahigh energy cosmic rays (UHECRs, E >1018 eV) are still unknown, mainly due to the loss of the direction to the source after the deflection of cosmic rays’ (CRs) trajectories in the galactic and extragalactic magnetic fields. With the increase in CR energy (rigidity), the influence of the magnetic field weakens; therefore, the most promising approach is to search for the sources of events with the highest energy. In our work, we expand the existing UHECR (E > 1020 eV) sample from 33 to 42 events by calibrating the AUGER events. The sample is characterized by the presence of an event triplet in a circle of radius 3°. The highest-energy event is still the shower (E = 3.2 × 1020 eV) detected with the Fly’s Eye fluorescent detector (FE-event) in 1993. The possible sources of the triplet and the FE-event are analyzed. Taking into account the deflection of CR trajectories in the extragalactic and galactic magnetic fields, it is shown that transient sources of the FE-event and the triplet may be galaxies with active star formation, where CRs are accelerated by newborn millisecond pulsars. Among the galactic sources, the potential candidates are young pulsars that might have had millisecond periods at birth and giant magnetar flares.  相似文献   

7.
《Astroparticle Physics》2004,20(6):641-652
The cosmic ray primary composition in the energy range between 1015 and 1016 eV, i.e., around the “knee” of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 105 m2 collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m2 effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (Ne) measured by EAS-TOP and the muon number (Nμ) recorded by MACRO. The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30°. The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual NμNe studies. The measurement leads to a primary composition becoming heavier at the knee of the primary spectrum, the knee itself resulting from the steepening of the spectrum of a primary light component (p, He) of Δγ=0.7±0.4 at E04×1015 eV. The result confirms the ones reported from the observation of the low energy muons at the surface (typically in the GeV energy range), showing that the conclusions do not depend on the production region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET) provides consistent composition results from data related to secondaries produced in a rapidity region exceeding the central one. Such an evolution of the composition in the knee region supports the “standard” galactic acceleration/propagation models that imply rigidity dependent breaks of the different components, and therefore breaks occurring at lower energies in the spectra of the light nuclei.  相似文献   

8.
We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37 000 m2 Tibet air shower array (Tibet AS array) already constructed at 4300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide × 6 m long × 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8640 m2 for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10–1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world. The Tibet ASγ Collaboration.  相似文献   

9.
Extensive air showers, induced by high energy cosmic rays impinging on the Earth’s atmosphere, produce radio emission that is measured with the LOFAR radio telescope. As the emission comes from a finite distance of a few kilometers, the incident wavefront is non-planar. A spherical, conical or hyperbolic shape of the wavefront has been proposed, but measurements of individual air showers have been inconclusive so far. For a selected high-quality sample of 161 measured extensive air showers, we have reconstructed the wavefront by measuring pulse arrival times to sub-nanosecond precision in 200 to 350 individual antennas. For each measured air shower, we have fitted a conical, spherical, and hyperboloid shape to the arrival times. The fit quality and a likelihood analysis show that a hyperboloid is the best parameterization. Using a non-planar wavefront shape gives an improved angular resolution, when reconstructing the shower arrival direction. Furthermore, a dependence of the wavefront shape on the shower geometry can be seen. This suggests that it will be possible to use a wavefront shape analysis to get an additional handle on the atmospheric depth of the shower maximum, which is sensitive to the mass of the primary particle.  相似文献   

10.
The extragalactic flux of protons is predicted to be suppressed above the famous Greisen–Zatsepin–Kuzmin cut-off at about EGZK  50 EeV due to the resonant photo-pion production with the cosmic microwave background. Current cosmic ray data do not give a conclusive confirmation of the GZK cut-off and the quest about the origin and the chemical composition of the highest energy cosmic rays is still open. Amongst other particles neutrinos are expected to add to the composition of the cosmic radiation at highest energies. We present an approach to simulate neutrino induced air showers by a full Monte Carlo simulation chain. Starting with neutrinos at the top of the atmosphere, the performed simulations take into account the details of the neutrino propagation inside the Earth and atmosphere as well as inside the surrounding mountains. The products of the interactions are input for air shower simulations. The mountains are modelled by means of a digital elevation map. To exemplify the potential and features of the developed tools we study the possibility to detect neutrino induced extensive air showers with the fluorescence detector set-up of the Pierre Auger Observatory. Both, down-going neutrinos and up-going neutrinos are simulated and their rates are determined. To evaluate the sensitivity, as a function of the incoming direction, the aperture, the acceptance and the total observable event rates are calculated for the Waxman–Bahcall (WB) bound.  相似文献   

11.
A new family of parameters intended for composition studies in cosmic ray surface array detectors is proposed. The application of this technique to different array layout designs has been analyzed. The parameters make exclusive use of surface data combining the information from the total signal at each triggered detector and the array geometry. They are sensitive to the combined effects of the different muon and electromagnetic components on the lateral distribution function of proton and iron initiated showers at any given primary energy. Analytical and numerical studies have been performed in order to assess the reliability, stability and optimization of these parameters. Experimental uncertainties, the underestimation of the muon component in the shower simulation codes, intrinsic fluctuations and reconstruction errors are considered and discussed in a quantitative way. The potential discrimination power of these parameters, under realistic experimental conditions, is compared on a simplified, albeit quantitative way, with that expected from other surface and fluorescence estimators.  相似文献   

12.
In this paper, we used CORSIKA code to understand the characteristics of cosmic ray induced showers at extremely high energy as a function of energy, detector distance to shower axis, number, and density of secondary charged particles and the nature particle producing the shower. Based on the standard properties of the atmosphere, lateral and longitudinal development of the shower for photons and electrons has been investigated. Fluorescent light has been collected by the detector for protons, helium, oxygen, silicon, calcium and iron primary cosmic rays in different energies. So we have obtained a number of electrons per unit area, distance to the shower axis, shape function of particles density, percentage of fluorescent light, lateral distribution of energy dissipated in the atmosphere and visual field angle of detector as well as size of the shower image. We have also shown that location of highest percentage of fluorescence light is directly proportional to atomic number of elements. Also we have shown when the distance from shower axis increases and the shape function of particles density decreases severely. At the first stages of development, shower axis distance from detector is high and visual field angle is small; then with shower moving toward the Earth, angle increases. Overall, in higher energies, the fluorescent light method has more efficiency. The paper provides standard calibration lines for high energy showers which can be used to determine the nature of the particles.  相似文献   

13.
A method of reconstructing the declination of galactic cosmic ray anisotropy is described, and its results are presented. The method is based on analysis of delay distributions in symmetrically arranged detectors of an air shower array, and it represents a modification of the crossed telescopes method. It is shown that the declination of the true anisotropy vector is close to 60° (i.e., this vector lies approximately within the galactic plane). Because of this, the true degree of anisotropy of galactic cosmic rays is severalfold higher than the first harmonic of intensity in the sidereal time (the quantity measured directly), and it equals about 0.2%.  相似文献   

14.
The GU miniarray is a ultra high energy cosmic ray (UHECR) detector consisting of eight plastic scintillators of carpet area 2 m2, each viewed by fast PMTs. It is used to detect Giant EAS by the method of time spread measurement of secondary particles produced in the atmosphere. The energies of the air showers have been reestimated using CORSIKA program. As in the original analysis the Cosmic Ray energy was determined via its relation to the ground level parameter Ns, the shower size. This relation was obtained previously through a best fit relation in agreement with QGS model and Yakutsk data. In this work we use CORSIKA code with QGSJET model of high energy hadronic interactions to simulate miniarray data leading to a modified relation between primary energy and shower size. A revised energy spectrum is reported for 1017–1019 eV primary energy.  相似文献   

15.
A new hybrid detector system has been constructed by the Tibet ASγ collaboration at Tibet, China, since 2014 to measure the chemical composition of cosmic rays around the knee in the wide energy range. They consist of an air-shower-core detector-grid (YAC-II) to detect high energy electromagnetic component, the Tibet air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD). We have carried out a detailed air-shower Monte Carlo (MC) simulation to study the performance of the hybrid detectors by using CORSIKA (version 6.204), which includes QGSJET01c and SIBYLL2.1 hadronic interaction models. Assumed primary cosmic ray models are based on helium poor, helium rich and Gaisser’s fit compositions around the knee. All detector responses are calculated using Geant4 (version 9.5) according to the real detector configurations and the MC events are reconstructed by the same procedure as the experimental data analysis. The energy determination is made by lateral density fitting (LDF) method using modified NKG function and the separation of the light components (proton, helium) is made by means of the artificial neural network (ANN) method and the random forest (RF) method. The systematic errors of the spectra of proton and helium caused by each steps of the analysis procedure are investigated including the dependence of the MC data on the hadronic interaction models and the primary composition models, and the algorithms for the primary mass identification. The systematic errors of the flux to be obtained by the new experiment are summarized as less than 30% in total. Our results show that the new hybrid experiment is powerful enough to study the chemical composition of the cosmic rays, in particular, to obtain the light-component spectra of the primary cosmic rays in 50–10,000 TeV energy range overlapping to the direct observation data at low energy side and ground-based indirect observations at high energy side. It is possible in this energy range to find the break points of the power indices of proton and helium (the knee of individual component spectrum) which are basically important parameter for the study of the cosmic-ray origin.  相似文献   

16.
We have studied Extensive Air Showers (EAS) with two small arraysof 1 m2 scintillation detectors inTehran, 1200 m above sea level.The distribution of air showersin zenith and azimuth angles has been studied and a cosnΘdistribution with n = 7.2±0.2 was obtained for zenith angledistribution. An asymmetry has been observed in the azimuthaldistribution of EAS of cosmic rays because of magnetic field ofthe Earth. Amplitudes of the first and the second harmonics ofobserved distribution depend on zenith angle as A I ≈ (0.02 + 0.35 sin2Θ)±0.02, and A II ≈ (0.03 + 0.42 sin4Θ)±0.03. Meanwhile, the uncertainties arising from the instrument, transit location of shower particles in the scintillator and fluctuations in the shower front have been calculated.  相似文献   

17.
Data taken with ten Cosmic Ray Tracking (CRT) detectors and the HEGRA air-shower array on La Palma, Canary Islands, have been analysed to investigate changes of the cosmic ay mass composition at the ‘knee’ of the cosmic-ray flux spectrum near 1015 eV energy. The analysis is based on the angular distributions of particles in air showers. HEGRA data provided the shower size, direction, and core position and CRT data the particle track information. It is shown that the angular distribution of muons in air showers is sensitive to the composition over a wide range of shower sizes and, thus, primary cosmic-ray energies with little systematic uncertainties. Results can be easily expressed in terms of ln A of primary cosmic rays. In the lower part of the energy range covered, we have considerable overlap with direct composition measurements by the JACEE collaboration and find compatible results in the observed rise of ln A. Above about 1015 eV energy we find no or at most a slow further rise of ln A. Simple cosmic-ray composition models are presented which are fully consistent with our results as well as the JACEE flux and composition measurements and the flux measurements of the Tibet ASγ collaboration. Minimal three-parameter composition models defined by the same power-law slope of all elements below the knee and a common change in slope at a fixed rigidity are inconsistent with these data.  相似文献   

18.
We have used Monte Carlo simulations to investigate the capabilities of a giant air shower observatory designed to detect showers initiated by cosmic rays with energies exceeding 1019 eV. The observatory is to consist of an array of detectors that will characterise the air shower at ground level, and optical detectors to measure the fluorescence light emitted by the shower in the atmosphere. Using these detectors together in a ‘hybrid’ configuration, we find that precise geometrical reconstruction of the shower axis is possible, leading to excellent resolution in energy. The technique is also shown to provide very good reconstruction below 1019 eV, at energies where the ground array is not fully efficient.  相似文献   

19.
The lateral distribution of cascade particles in extensive air showers from cosmic rays with energy E0 ? 1017 eV has been studied at the Yakutsk array by the ground scintillation detectors over the period of continuous observations 1977–2017. The experimental data are compared with those computed with various models for the development of extensive air showers from the CORSIKA software package. The best agreement between the theory and experiment is observed for the QGSjet-01-d model. In the energy range (1?20)× 1017 eV there is a change in the cosmic-raymass composition from 〈lnA〉 ≈ 2.5 to the proton one.  相似文献   

20.
We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about −3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号