首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
F. Viola  D. Pumo  L. V. Noto 《水文研究》2014,28(9):3361-3372
  相似文献   

2.
3.
The partitioning of rainfall into surface runoff and infiltration influences many other aspects of the hydrologic cycle including evapotranspiration, deep drainage and soil moisture. This partitioning is an instantaneous non-linear process that is strongly dependent on rainfall rate, soil moisture and soil hydraulic properties. Though all rainfall datasets involve some degree of spatial or temporal averaging, it is not understood how this averaging affects simulated partitioning and the land surface water balance across a wide range of soil and climate types. We used a one-dimensional physics-based model of the near-surface unsaturated zone to compare the effects of different rainfall discretization (5-min point-scale; hourly point-scale; hourly 0.125° gridded) on the simulated partitioning of rainfall for many locations across the United States. Coarser temporal resolution rainfall data underpredicted seasonal surface runoff for all soil types except those with very high infiltration capacities (i.e., sand, loamy sand). Soils with intermediate infiltration capacities (i.e., loam, sandy loam) were the most affected, with less than half of the expected surface runoff produced in most soil types when the gridded rainfall dataset was used as input. The impact of averaging on the water balance was less extreme but non-negligible, with the hourly point-scale predictions exhibiting median evapotranspiration, drainage and soil moisture values within 10% of those predicted using the higher resolution 5-min rainfall. Water balance impacts were greater using the gridded hourly dataset, with average underpredictions of ET up to 27% in fine-grained soils. The results suggest that “hyperresolution” modelling at continental to global scales may produce inaccurate predictions if there is not parallel effort to produce higher resolution precipitation inputs or sub-grid precipitation parameterizations.  相似文献   

4.
《水文科学杂志》2013,58(5):1051-1067
Abstract

Groundwater recharge is estimated using an improved daily soil moisture balance based on a single soil water store for a climate classified as tropical with distinct dry seasons; an upland area in northwest Sri Lanka is used as an example. When the water availability is limited and the soil is under stress, the actual evapotranspiration is less than the potential value; the stress factor is estimated in terms of the readily and total available water, soil properties and effective root depth. Runoff is estimated using coefficients which depend on rainfall intensity and soil moisture deficits. A new component, near surface storage, is used to represent continuing evapotranspiration on days following heavy rainfall even though the soil moisture deficit is high. Recharge is estimated for permanent grass and a commonly cultivated vegetable crop. The plausibility of the model outputs is examined using independent information and data, including well water level fluctuations. Uncertainties and variations in parameter values are explored using sensitivity analyses.  相似文献   

5.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall–runoff relationship of the 202 km2 Teba river catchment, located in semi‐arid south‐eastern Spain. The period of available data (1976–1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years. The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes. The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum. Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
《水文科学杂志》2013,58(3):556-570
Abstract

Forest growth unfavourably reduces low flows and annual runoff in a basin in Japan. Annual precipitation and runoff of the watershed are summarized from observed daily rainfall and discharge, and annual evapotranspiration is estimated from the annual water balance. The water balance analysis shows obvious trends: reduced annual runoff and increased evapotranspiration over a 36-year period when forest growth increased the leaf area index. Between two periods, 1960–1969 and 1983–1992, mean annual runoff decreased 11%, from 1258 to 1118 mm, due to a 37% increase in evapotranspiration (precipitation minus runoff) from 464 to 637 mm. This increase in evapotranspiration cannot be attributed to changed evaporative demand, based on climatic variability over the 36-year period of record. Flow duration curves show reduced flows in response to forest growth. In particular, they suggest stronger absolute changes for higher flows but stronger proportional changes for medium and lower flows. A distributed model is applied to simulate the influences of five scenarios based on a 30% change in leaf area index and 5% change in soil storage capacity. From the simulation results, canopy growth appears to contribute much more to flow reduction than changes in soil storage capacity.  相似文献   

8.
River basins in mountainous regions are characterized by strong variations in topography, vegetation, soils, climatic conditions and snow cover conditions, and all are strongly related to altitude. The high spatial variation needs to be considered when modelling hydrological processes in such catchments. A complex hydrological model, with a great potential to account for spatial variability, was developed and applied for the hourly simulation of evapotranspiration, soil moisture, water balance and the runoff components for the period 1993 and 1994 in 12 subcatchments of the alpine/pre‐alpine basin of the River Thur (area 1703 km2). The basin is located in the north‐east of the Swiss part of the Rhine Basin and has an elevation range from 350 to 2500 m a.s.l. A considerable part of the Thur Basin is high mountain area, some of it above the tree‐line and a great part of the basin is snow covered during the winter season. In the distributed hydrological model, the 12 sub‐basins of the Thur catchment were spatially subdivided into sub‐areas (hydrologically similar response units—HRUs or hydrotopes) using a GIS. Within the HRUs a hydrologically similar behaviour was assumed. Spatial interpolations of the meteorological input variables wereemployed for each altitudinal zone. The structure of the model components for snow accumulation and melt, interception, soil water storage and uptake by evapotranspiration, runoff generation and flow routing are briefly outlined. The results of the simulated potential evapotranspiration reflect the dominant role of altitudinal change in radiation and albedo of exposure, followed by the influence of slope. The actual evapotranspiration shows, in comparison with the potential evapotranspiration, a greater variability in the lower and medium altitudinal zones and a smaller variability in the upper elevation zones, which was associated with limitations of available moisture in soil and surface depression storages as well as with the evaporative demand of the local vegetation. The higher altitudinal dependency and variability of runoff results from the strong increase in precipitation and the decrease in evaporation with increased altitude. An increasing influence of snow cover on runoff as well as evapotranspiration with altitude is obvious. The computed actual evapotranspiration and runoff were evaluated against the observed values of a weighting lysimeter and against runoff hydrographs. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
The analysis of the physical processes involved in a conceptual model of soil water content balance is addressed with the objective of its application as a component of rainfall–runoff modelling. The model uses routinely measured meteorological variables (rainfall and air temperature) and incorporates a limited number of significant parameters. Its performance in estimating the soil moisture temporal pattern was tested through local measurements of volumetric water content carried out continuously on an experimental plot located in central Italy. The analysis was carried out for different periods in order to test both the representation of infiltration at the short time‐scale and drainage and evapotranspiration processes at the long time‐scale. A robust conceptual model was identified that incorporated the Green–Ampt approach for infiltration and a gravity‐driven approximation for drainage. A sensitivity analysis was performed for the selected model to assess the model robustness and to identify the more significant parameters involved in the principal processes that control the soil moisture temporal pattern. The usefulness of the selected model was tested for the estimation of the initial wetness conditions for rainfall–runoff modelling at the catchment scale. Specifically, the runoff characteristics (runoff depth and peak discharge) were found to be dependent on the pre‐event surface soil moisture. Both observed values and those estimated by the model gave good results. On the contrary, with the antecedent wetness conditions furnished by two versions of the antecedent precipitation index (API), large errors were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Hydrological models at a monthly time‐scale are important tools for hydrological analysis, such as in impact assessment of climate change and regional water resources planning. Traditionally, monthly models adopt a conceptual, lumped‐parameter approach and cannot account for spatial variations of basin characteristics and climatic inputs. A large requirement for data often severely limits the utility of physically based, distributed‐parameter models. Based on the variable‐source‐area concept, we considered basin topography and rainfall to be two major factors whose spatial variations play a dominant role in runoff generation and developed a monthly model that is able to account for their influences in the spatial and temporal dynamics of water balance. As a hybrid of the Xinanjiang model and TOPMODEL, the new model is constructed by innovatively making use of the highly acclaimed simulation techniques in the two existing models. A major contribution of this model development study is to adopt the technique of implicit representation of soil moisture characteristics in the Xinanjiang model and use the TOPMODEL concept to integrate terrain variations into runoff simulation. Specifically, the TOPMODEL topographic index ln(a/tanβ) is converted into an index of relative difficulty in runoff generation (IRDG) and then the cumulative frequency distribution of IRDG is used to substitute the parabolic curve, which represents the spatial variation of soil storage capacity in the Xinanjiang model. Digital elevation model data play a key role in the modelling procedures on a geographical information system platform, including basin segmentation, estimation of rainfall for each sub‐basin and computation of terrain characteristics. Other monthly data for model calibration and validation are rainfall, pan evaporation and runoff. The new model has only three parameters to be estimated, i.e. watershed‐average field capacity WM, pan coefficient η and runoff generation coefficient α. Sensitivity analysis demonstrates that runoff is least sensitive to WM and, therefore, it can be determined by a prior estimation based on the climate and soil properties of the study basin. The other two parameters can be determined using optimization methods. Model testing was carried out in a number of nested sub‐basins of two watersheds (Yuanjiang River and Dongjiang River) in the humid region in central and southern China. Simulation results show that the model is capable of describing spatial and temporal variations of water balance components, including soil moisture content, evapotranspiration and runoff, over the watershed. With a minimal requirement for input data and parameterization, this terrain‐based distributed model is a valuable contribution to the ever‐advancing technology of hydrological modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The Soil Conservation Service curve number (CN) method commonly uses three discrete levels of soil antecedent moisture condition (AMC), defined by the 5‐day antecedent rainfall depth, to describe soil moisture prior to a runoff event. However, this way may not adequately represent soil water conditions of fields and watersheds in the Loess Plateau of China. The objectives of this study were: (1) to determine the effective soil moisture depth to which the CN is most related; (2) to evaluate a discrete and a linear relationship between AMC and soil moisture; and (3) to develop an equation between CN and soil moisture to predict runoff better for the climatic and soil conditions of the Loess Plateau of China. The dataset consisted of 10 years of rainfall, runoff and soil moisture measurements from four experimental plots cropped with millet, pasture and potatoes. Results indicate that the standard CN method underestimated runoff depths for 85 of the 98 observed plot‐runoff events, with a model efficiency E of only 0·243. For our experimental conditions, the discrete and linear approaches improved runoff estimation, but still underestimated most runoff events, with E values of 0·428 and 0·445 respectively. Based on the measured CN values and soil moisture values in the top 15 cm of the soil, a non‐linear equation was developed that predicted runoff better with an E value of 0·779. This modified CN equation was the most appropriate for runoff prediction in the study area, but may need adjustments for local conditions in the Loess Plateau of China. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Soil moisture is a key modifier of runoff generation from rainfall excess, including during extreme precipitation events associated with Atmospheric Rivers (ARs). This paper presents a new, publicly available dataset from a soil moisture monitoring network in Northern California's Russian River Basin, designed to assess soil moisture controls on runoff generation under AR conditions. The observations consist of 2-min volumetric soil moisture at 19 sites and 6 depths (5, 10, 15, 20, 50, and 100 cm), starting in summer 2017. The goals of this monitoring network are to aid the development of research applications and situational awareness tools for Forecast-Informed Reservoir Operations at Lake Mendocino. We present short analyses of these data to demonstrate their capability to characterize soil moisture responses to precipitation across sites and depths, including time series analysis, correlation analysis, and identification of soil saturation thresholds that induce runoff. Our results show strong inter-site Pearson's correlations (>0.8) at the seasonal timescale. Correlations are strong (>0.8) during events with high antecedent soil moisture and during drydown periods, and weak (<0.5) otherwise. High event runoff ratios are observed when antecedent soil moisture thresholds are exceeded, and when antecedent runoff is high. Although local heterogeneity in soil moisture can limit the utility of point source data in some hydrologic model applications, our analyses indicate three ways in which soil moisture data are valuable for model design: (1) sensors installed at 6 depths per location enable us to identify the soil depth below which evapotranspiration and saturation dynamics change, and therefore choose model soil layer depths, (2) time series analysis indicates the role of soil moisture processes in controlling runoff ratio during precipitation, which hydrologic models should replicate, and (3) spatial correlation analysis of the soil moisture fluctuations helps identify when and where distributed hydrologic modelling may be beneficial.  相似文献   

13.
A theoretical, dimensionless rainfall–runoff model was used to simulate the discharge of Wulongdong spring in western Hubei province, South China. The single parameter (time constant τ) in the model is easy to obtain by fitting the recession rate of the observed hydrographs. The model was scaled by simply matching the total annual flow volume of the model to the observed value. Annual distribution of actual evapotranspiration was embedded in the model input to calculate the accumulated deficit of soil moisture before each rain event. Hourly precipitation input data performed better than daily data, defining τ of 0.85 days and returning a Nash–Sutcliffe efficiency of 0.89 and the root mean square error of 0.07. This model offers an effective way to simulate the discharge of karst springs that respond sensitively to rainfall events. The model parameters of a successful simulation can be used to estimate the recharge area and indicate the intrinsic response time of the basin. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
To analyse the long‐term water balance of the Yellow River basin, a new hydrological model was developed and applied to the source area of the basin. The analysis involved 41 years (1960–2000) of daily observation data from 16 meteorological stations. The model is composed of the following three sub‐models: a heat balance model, a runoff formation model and a river‐routing network model. To understand the heat and water balances more precisely, the original model was modified as follows. First, the land surface was classified into five types (bare, grassland, forest, irrigation area and water surface) using a high‐resolution land‐use map. Potential evaporation was then calculated using land‐surface temperatures estimated by the heat balance model. The maximum evapotranspiration of each land surface was calculated from potential evaporation using functions of the leaf area index (LAI). Finally, actual evapotranspiration was estimated by regulating the maximum evapotranspiration using functions of soil moisture content. The river discharge estimated by the model agreed well with the observed data in most years. However, relatively large errors, which may have been caused by the overestimation of surface flow, appeared in some summer periods. The rapid decrease of river discharge in recent years in the source area of the Yellow River basin depended primarily on the decrease in precipitation. Furthermore, the results suggested that the long‐term water balance in the source area of the Yellow River basin is influenced by land‐use changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

The actual evapotranspiration and runoff trends of five major basins in China from 1956 to 2000 are investigated by combining the Budyko hypothesis and a stochastic soil moisture model. Based on the equations of Choudhury and Porporato, the actual evapotranspiration trends and the runoff trends are attributed to changes in precipitation, potential evapotranspiration, rainfall depth and water storage capacity which depends on the soil water holding capacity and the root depth. It was found that the rainfall depth increased significantly in China during the past 50 years, especially in southern basins. Contributions from changes in the water storage capacity were significant in basins where land surface characteristics have changed substantially due to human activities. It was also observed that the actual evapotranspiration trends are more sensitive to precipitation trends in water-limited basins, but more sensitive to potential evapotranspiration trends in energy-limited basins.
Editor D. Koutsoyiannis; Associate editor A. Porporato  相似文献   

16.
A conceptual water‐balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Field experiments were conducted to investigate the effects of leaf area index and soil moisture content on evapotranspiration and its components within an apple orchard in northwest China for 2 years. Evapotranspiration in the non‐rainfall period was estimated using two approaches: the soil water balance method based on tube‐type time‐domain reflection measurements, and sap flow plus micro‐lysimeter methods. The two methods were in good agreement, with differences usually less than 10%. The components of evapotranspiration varied with canopy development. During spring and autumn, soil evaporation was dominating as result of low leaf area index. In summer, plant transpiration became significant, with an average transpiration to evapotranspiration ratio of 0·87. The crop coefficient Kc showed a strong linear dependence on leaf area index. The water stress coefficient Ks was around 1·0 when soil moisture was above 23% and started to decrease linearly after that. This study demonstrates that prediction of evapotranspiration in apple orchards can be made using the Food and Agriculture Organization's crop coefficient method from commonly available meteorological data in the area. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The Arctic hydrologic cycle is intensifying, as evidenced by increased rates of precipitation, evapotranspiration, and riverine discharge. However, the controls on water fluxes from terrestrial to aquatic systems in upland Arctic landscapes are poorly understood. Upland landscapes account for one third of the Arctic land surface and are often drained by zero‐order geomorphic flowpath features called water tracks. Previous work in the region attributed rapid runoff response at larger stream orders to water tracks, but models suggest water tracks are hydrologically disconnected from the surrounding hillslope. To better understand the role of water tracks in upland landscapes, we investigated the surface and subsurface hydrologic responses of 6 water tracks and their hillslope watersheds to natural patterns of rainfall, soil thaw, and drainage. Between storms, both water track discharge and the water table in the hillslope watersheds exhibited diel fluctuations that, when lagged by 5 hr, were temporally correlated with peak evapotranspiration rate. Water track soils remained saturated for more of the summer season than soils in their surrounding hillslope watersheds. When rainfall occurred, the subsurface response was nearly instantaneous, but the water tracks took significantly longer than the hillslopes to respond to rainfall, and longer than the responses previously observed in nearby larger order Arctic streams. There was also evidence for antecedent soil water storage conditions controlling the magnitude of runoff response. Based on these observations, we used a broken stick model to test the hypothesis that runoff production in response to individual storms was primarily controlled by rainfall amount and antecedent water storage conditions near the water track outlet. We found that the relative importance of the two factors varied by site, and that water tracks with similar watershed geometries and at similar landscape positions had similar rainfall–runoff model relationships. Thus, the response of terrestrial water fluxes in the upland Arctic to climate change depends on the non‐linear interactions between rainfall patterns and subsurface water storage capacity on hillslopes. Predicting these interactions across the landscape remains an important challenge.  相似文献   

19.
Effective control of nonpoint source pollution from contaminants transported by runoff requires information about the source areas of surface runoff. Variable source hydrology is widely recognized by hydrologists, yet few methods exist for identifying the saturated areas that generate most runoff in humid regions. The Soil Moisture Routing model is a daily water balance model that simulates the hydrology for watersheds with shallow sloping soils. The model combines elevation, soil, and land use data within the geographic information system GRASS, and predicts the spatial distribution of soil moisture, evapotranspiration, saturation‐excess overland flow (i.e., surface runoff), and interflow throughout a watershed. The model was applied to a 170 hectare watershed in the Catskills region of New York State and observed stream flow hydrographs and soil moisture measurements were compared to model predictions. Stream flow prediction during non‐winter periods generally agreed with measured flow resulting in an average r2 of 0·73, a standard error of 0·01 m3/s, and an average Nash‐Sutcliffe efficiency R2 of 0·62. Soil moisture predictions showed trends similar to observations with errors on the order of the standard error of measurements. The model results were most accurate for non‐winter conditions. The model is currently used for making management decisions for reducing non‐point source pollution from manure spread fields in the Catskill watersheds which supply New York City's drinking water. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Pristine tropical forests play a critical role in regional and global climate systems. For a better understanding of the eco-hydrology of tropical “evergreen” vegetation, it is essential to know the partitioning of water into transpiration and evaporation, runoff and associated water ages. For this purpose, we evaluated how topography and vegetation influence water flux and age dynamics at high temporal (hourly) and spatial (10 m) resolution using the Spatially Distributed Tracer-Aided Rainfall-Runoff model for the tropics (STARRtropics). The model was applied in a tropical rainforest catchment (3.2 km2) where data were collected biweekly to monthly and during intensive monitoring campaigns from January 2013 to July 2018. The STARRtropics model was further developed, incorporating an isotope mass balance for evapotranspiration partitioning into transpiration and evaporation. Results exhibited a rapid streamflow response to rainfall inputs (water and isotopes) with limited mixing and a largely time-invariant baseflow isotope composition. Simulated soil water storage showed a transient response to rainfall inputs with a seasonal component directly resembling the streamflow dynamics which was independently evaluated using soil water content measurements. High transpiration fluxes (max 7 mm/day) were linked to lower slope gradients, deeper soils and greater leaf area index. Overall water partitioning resulted in 65% of the actual evapotranspiration being driven by vegetation with high transpiration rates over the drier months compared to the wet season. Time scales of water age were highly variable, ranging from hours to a few years. Stream water ages were conceptualized as a mixture of younger soil water and slightly older, deeper soil water and shallow groundwater with a maximum age of roughly 2 years during drought conditions (722 days). The simulated soil water ages ranged from hours to 162 days and for shallow groundwater up to 1,200 days. Despite the model assumptions, experimental challenges and data limitation, this preliminary spatially distributed model study enhances knowledge about the water ages and overall young water dominance in a tropical rainforest with little influence of deeper and older groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号