首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The earthquake source, reaching the surface in the form of an extended system of faults, encompassed the N-S and NW-SE planes of two large faults near their juncture zone. A revised seismotectonic study of the system of coseismic ruptures performed after many years revealed a complex structure of primary coseismic ruptures in the juncture area of fault branches of different directions. In addition to the two major faults, the juncture zone consists of intersecting or parallel branches of both structural directions. The trench study and detailed mapping of the shallow structure of the seismic rupture characterizes it as a right-lateral-thrust fault on the N-S branch and a strike-slip-reverse fault on the NW-SE branch. Results of our paleoseismogeological study indicate that equally strong earthquakes are likely to have occurred in the same seismic source in the past (about 8000 and 160 years ago).  相似文献   

2.
In the Kivu lake region, the faults of the rift are concentrated in three netting following three main directions NE-SW, N-S and NW-SE. Some small tectonics trenchs. aligned along these three directions are intersecting in a zone lengthening in the N-S direction and 100–200 km wide. It does not look as if there was a chronological and regular succession in the coming out of faults belonging to a netting defined by a certain direction with regard to the faults of another netting; for, on the occasion of short tectonics events (eruptions, earthquakes), it is noticeable than any of these three nettings, are reactivated.  相似文献   

3.
The gravity field of the seismogenic upper crust was derived from the Bouguer gravity map by applying the Butterworth high-pass filter in the wave-number domain. The cutoff wavelength of the filter was 110 km, to pass the gravity signals of structures within the 18 km thick seismogenic layer. The derived residual gravity map reveals potential stress concentrating structures, which may cause seismicity provided they lie within the existing zones of weakness. Furthermore we derived a shaded relief map of the horizontal gravity gradient, which highlighted the tectonic lines accompanied by density contrast. The directional analysis of this map shows three dominant strike directions. The most prominent one is “the Hercynian” NW-SE strike direction represented by the Franconian Line, the Gera-Jáchymov Fault Zone and the Elbe Zone. The second dominant strike is the Rhenisch NNE-SSW trending represented by the Upper Rhine Graben Zone, Rheinsberg-Heldburg Line and several Proterozoic volcanic belts in the Teplá-Barrandien Unit. The third pronounced trending of the ENE-WSW direction is represented by the Erzgebirge and Eger Graben gravity low. The N-S trending Rostock-Leipzig-Regensburg Zone (Pritzwalk-Naab Lineament) is not distinctly reflected in the derived gravity maps, although many fault segments have a meridian direction. The relative reactivation potential of some pre-existing fault systems identified in the gravity map was studied with respect to the wide range of the recent stress configuration determined in the West Bohemia/Vogtland region. The resulting diagrams show that the steep NNW-SSE to N-S faults (represented by some segments of the Mariánské Lázně Fault Zone) are oriented favourably for reactivation. On the contrary, the orientation of the ENE-WSW faults limiting the Eger Graben (Litoměřice Fault, etc.) is unfavourable for reactivation for all dip values.  相似文献   

4.
We present a new set of brittle microtectonic measurements carried out in the Pliocene and Quaternary rocks outcropping in several key sectors of the western Betic and Rif orogen, the so-called Gibraltar orogenic arc. This data set, along with available earthquake focal mechanisms and borehole breakouts, allowed us to compile the Pliocene and Quaternary stress map of this area. This map provides new constraints for tectonic models and the present-day tectonic activity of the proposed active eastward subduction of oceanic lithosphere beneath the Gibraltar Arc and roll-back. The horizontal maximum compressive stress (SHmax) is NW-SE in the Betic Orogen and N-S/NNW-SSE in the southern Rif Cordillera. There is a significant consistency between SHmax and the displacement field deduced from GPS measurements with respect to the African plate: both appear to reflect the NW-SE convergence between the African and the European plates that is perturbed in the Rif. We propose that part of the eastern Rif behaves as a quasi-rigid block welded to the stable African plate. This block is bounded by important faults that localized most of the deformation disturbing the stress and surface displacement field. Pliocene to Quaternary N-S to NW-SE Africa-Europe plate convergence seem to be associated to the reorganization of the remnant Early Miocene subduction system in a continental–continental collision framework. Three-dimensional reconstruction of available seismic tomography plotted against the intermediate seismicity shows that only part of the old subduction system, whose orientation ranges from N20°E to N100°E, remains active: the portion ranging from N30°E to N40°E, orthogonal to the regional convergence.  相似文献   

5.
Principal horizontal stresses in Southern Africa   总被引:1,自引:0,他引:1  
A review ofin situ stress measurements at eight regional localities in Africa south of the 15°S parallel shows that average directions of the horizontal pricipal stresses are N-S and E-W. These directions agree with principal stress orientations deduced from earthquake fault plane solutions. However, the maximum and minimum principal horizontal stresses are not consistently oriented parallel to either the N-S or E-W direction; they may vary within an individual region because of local geological structures and from region to region. At the sites within the Witwatersrand sediments (all at depths greater than 500 m) the maximum stress tends to lie NW-SE but at three of the four sites outside the Witwatersrand sediments (all at depths less than 500 m) this stress is oriented approximately N-S.The data reported here are compared with horizontal stresses predicted for Southern Africa bySolomon, Sleep andRichardson (1975) from various plate tectonic driving force models. The agreement between orientations is fair for all sites but only the deép sites in the Witwatersrand sediments have comparable stress magnitudes.  相似文献   

6.
Based on compositive analysis and interpretation of the observed and historical data, the geophysical field characters and structural properties of the Gagua "Wedge" Zone of the sea area east of Taiwan Island and the primary tectonic stress direction and its variabilities of backarc spreading in the southern Okinawa Trough are studied. It is concluded from the study results that the Gagua "Wedge" Zone is structurally consistent with the Gagua ridge and two fault basins on both sides of the Gagua ridge, and adjusts the moving direction and distance of the western Philippine Sea plate to make the northwestward motion of the plate on its east side change to the northward subduction of the plate on its west side so that the primary tectonic stress direction of the Okinawa Trough changed from NW-SE to nearly N-S, which provided the stress source for the Okinawa Trough to enter the second spreading stage.  相似文献   

7.
Intraplate seismic activity in Bolivia is mainly located in the central region (16°–19°S, 63°–67°W) which includes the East Andean Cordillera and the Sub-Andean Sierras. At this region there is a bend in the trend of the main geological structures from NW-SE in the north to N-S in the south. Focal mechanisms have been calculated for 10 earthquakes of magnitudes 4.9–5.6, using first motionP-waves from long period instruments. Their solutions correspond to reverse faulting, some with a large component of strike-slip motion. Their solutions can be grouped into two types; one with pure reverse faulting on planes with azimuth NW-SE and the other with a large strike-slip component on planes with azimuths nearly N-S or WNW-ESE. The maximum stress axis (P-axis) is practically horizontal (dipping less than 5°) oriented in a mean N56°E direction. This orientation may be related with the direction of compression resulting from the collision of the Nazca plate against the western margin of the South American continent. Wave-form analysis of long-periodP-waves for one event restricts the focal depth to 8 km in the Sub-Andean region. Seismic moments and source dimensions determined from spectra of Rayleigh waves are in the range of 1016–1017Nm and 17–24 km, respectively. The Central Bolivia region can be considered as a zone of intraplate deformation situated between the Bolivian Altiplano and the Brazil shield.  相似文献   

8.
The sea area east of Taiwan Island is a unique ac-tive arc-continental collision margin in China and even in the world with the NE-nearly EW extending Ryu-kyu trench-arc-backarc basin system on the east and the nearly N-S extending Manila trough and Luzon arc on the west. The sea area east of Taiwan Island differs from the Ryukyu trench-arc-basin system in structural property, but there is a certain genetic relation between the two (Fig. 1)[1-3]. Since the 1990s, many investigations and …  相似文献   

9.
Nine submersible dives were made in three trenches off central Japan, between 2990 and 5900 m of water depth. Our observations confirm the interpretation that Daiichi-Kashima Seamount is a Cretaceous guyot formed on the Pacific plate that has traveled into the Japan Trench. We also confirmed the previous interpretation of a large normal fault that splits the seamount in two halves, the lower one being now subducting beneath the Japan margin. Compressional deformation was identified within the lower part of the inner slope in front of the seamount. The pattern of deformation that affects Quaternary sediments is in agreement with the present kinematics of the convergence between the Pacific plate and Japan. Deep-water (5700 m) clam colonies are associated with advection of fluids, driven by the subduction-related overpressures. In the northern slope of the Boso Canyon, along the Sagami Trough system (Philippine Sea plate-Japan boundary), the deformation affecting a thick upper Miocene to lower Pliocene sequence indicates two directions of shortening: a N175°E direction which is consistent with the present relative motion along the Sagami Trough (N285–N300°E) and a N30°E direction which could be related to a more northerly direction of convergence that occured during the early Quaternary and earlier.  相似文献   

10.
The Al Hoceima Mw 6.4 earthquake of 24 February 2004 that occurred in the eastern Rif region of Morocco already hit by a large event in May 1994 (Mw 5.9) has been followed by numerous aftershocks in the months following the event. The aftershock sequence has been monitored by a temporary network of 17 autonomous seismic stations during 15 days (28 March–10 April) in addition to 5 permanent stations of the Moroccan seismic network (CNRST, SPG, Rabat). This network allowed locating accurately about 650 aftershocks that are aligned in two directions, about N10-20E and N110-120E, in rough agreement with the two nodal planes of the focal mechanism (Harvard). The aftershock alignments are long enough, about 20 km or more, to correspond both to the main rupture plane. To further constrain the source of the earthquake main shock and aftershocks (mb > 3.5) have been relocated thanks to regional seismic data from Morocco and Spain. While the main shock is located at the intersection of the aftershock clouds, most of the aftershocks are aligned along the N10-20E direction. This direction together with normal sinistral slip implied by the focal mechanism is similar with the direction and mechanisms of active faults in the region, particularly the N10E Trougout oblique normal fault. Indeed, the Al Hoceima region is dominated by an approximate ENE-SSW direction of extension, with oblique normal faults. Three major 10–30 km-long faults, oriented NNE-SSW to NW-SE are particularly clear in the morphology, the Ajdir and Trougout faults, west and east of the Al Hoceima basin, respectively, and the NS Rouadi fault 20 km to the west. These faults show clear evidence of recent vertical displacements during the late Quaternary such as uplifted alluvial terraces along Oued Rihs, offset fan surfaces by the Rouadi fault and also uplifted and tilted abandoned marine terraces on both sides of the Al Hoceima bay.However, the N20E direction is in contrast with seismic sources identified from geodetic inversions, which favour but not exclusively the N110-120E rupture directions, suggesting that the 1994 and 2004 events occurred on conjugate faults. In any event, the recent seismicity is thus concentrated on sinistral N10-20E or N110-120E dextral strike-slip faults, which surface expressions remain hidden below the 3–5 km-thick Rif nappes, as shown by the tomographic images build from the aftershock sequence and the concentration of the seismicity below 3 km. These observations may suggest that strain decoupling between the thrusted cover and the underlying bedrock and highlights the difficulty to determine the source properties of moderate events with blind faults even in the case of good quality recorded data.  相似文献   

11.
A broad zone of linear, mappable basement structures is observed north and northeast of the Rio Grande Rise in the South Atlantic Ocean. These structures lie along the same flow line as the Sa?o Paulo Ridge, the Florianopolis High, and onshore lineaments, suggesting that they all comprise the same tectonic trend: the Rio Grande fracture zone. The morphology developed along this fracture zone during the early opening of the South Atlantic Ocean formed a barrier to open ocean circulation during the Aptian and allowed the formation of extensive evaporite deposits to the north of it.  相似文献   

12.
利用于田震中300 km范围内的1个GPS连续站和12个GPS流动站数据,解算得到了2014年新疆于田MS7.3地震地表同震位移,并反演了发震断层滑动分布,探讨此次地震对周边断裂的影响.地表同震位移结果显示,GPS观测到的同震位移范围在平行发震断裂带的北东-南西向约210 km,垂直发震断裂带的北西-南东方向约为120 km,同震位移量大于10 mm的测站位于震中距约120 km以内;同震位移特征整体表现为北东-南西方向的左旋走滑和北西-南东方向的拉张特征,其中在北东-南西方向,I069测站位移最大,约为32.1 mm,在北西-南东方向,XJYT测站位移最大,约为28.1 mm;位错反演结果表明,最大滑动位于北纬36.05°,东经82.60°,位于深部约16.6 km,最大错动量为2.75 m,反演震级为MW7.0,同震错动呈椭圆形分布,以左旋走滑为主并具有正倾滑分量,两者最大比值约为2.5:1,同震错动延伸至地表,并向北东方向延伸,总破裂长度约50 km,地表最大错动约1.0 m;同震水平位移场模拟结果显示贡嘎错断裂、康西瓦断裂和普鲁断裂等不同位置主应变特征具有差异性,这种差异特征是否影响断裂带以及周围区域的应力构造特征,值得关注.  相似文献   

13.
Based on the shear wave splitting analysis of the seismic recordings at 17 temporary stations and three permanent stations, we measured the shear wave splitting parameters (i.e., the polarization direction of fast shear wave and the time delay of slow wave) to perform a systematic analysis of the crustal seismic anisotropy around the Longmenshan fault in the 2013 MS7.0 Lushan earthquake region. We observed apparent spatio-temporal characteristics in the shear wave splitting parameters. The spatial distribution of fast polarization directions showed a clear partitioning in the characteristics from northwest to southeast in the focal region, which changed from NW-SE to NE-SW. In the northwest of the focal region, the fast polarization direction was oriented to NW-SE, which was parallel to the maximum horizontal compressive stress direction. However, the NE-SW fast polarization direction in the southeast of the focal region was parallel to the Longmenshan fault strike. For station BAX on the Central fault in the middle of the focal region, the distribution of fast polarization directions showed a bimodal pattern, with one dominant in the NE-SW direction and the other in the NW-SE direction. With regard to the temporal variation, the time delays were large in the initial stage after the mainshock but then gradually decreased over time and tended to be stable in the later period. This indicated that stress in the focal region increased to a maximum when the main shock occurred, with the stress release caused by the mainshock and aftershock activity, and the stress gradually decreased after a period of time. The scatter of fast polarization directions was large after the main shock, but over time the scatter gradually decreased, indicating that the Lushan earthquake caused a large perturbation in the local stress field. As the stress gradually decreased and was adjusted by the aftershock activity, the perturbation gradually weakened.  相似文献   

14.
From detailed fieldwork and biotite 40Ar/39Ar dating correlated with paleomagnetic analyses of lithic clasts, we present a revision of the stratigraphy, areal extent and volume estimates of ignimbrites in the Cerro Galán volcanic complex. We find evidence for nine distinct outflow ignimbrites, including two newly identified ignimbrites in the Toconquis Group (the Pitas and Vega Ignimbrites). Toconquis Group Ignimbrites (~5.60–4.51 Ma biotite ages) have been discovered to the southwest and north of the caldera, increasing their spatial extents from previous estimates. Previously thought to be contemporaneous, we distinguish the Real Grande Ignimbrite (4.68 ± 0.07 Ma biotite age) from the Cueva Negra Ignimbrite (3.77 ± 0.08 Ma biotite age). The form and collapse processes of the Cerro Galán caldera are also reassessed. Based on re-interpretation of the margins of the caldera, we find evidence for a fault-bounded trapdoor collapse hinged along a regional N-S fault on the eastern side of the caldera and accommodated on a N-S fault on the western caldera margin. The collapsed area defines a roughly isosceles trapezoid shape elongated E-W and with maximum dimensions 27 × 16 km. The Cerro Galán Ignimbrite (CGI; 2.08 ± 0.02 Ma sanidine age) outflow sheet extends to 40 km in all directions from the inferred structural margins, with a maximum runout distance of ~80 km to the north of the caldera. New deposit volume estimates confirm an increase in eruptive volume through time, wherein the Toconquis Group Ignimbrites increase in volume from the ~10 km3 Lower Merihuaca Ignimbrite to a maximum of ~390 km3 (Dense Rock Equivalent; DRE) with the Real Grande Ignimbrite. The climactic CGI has a revised volume of ~630 km3 (DRE), approximately two thirds of the commonly quoted value.  相似文献   

15.
云南耿马7.2级地震地表破裂带研究   总被引:2,自引:1,他引:2       下载免费PDF全文
根据野外考察的实际资料,本文介绍了耿马7.2级地震地表破裂带的展布,结构要素及组合、位移分布等情况。同时依据位错资料对破裂带的应力活动及断裂两盘的运动状态进行了初步分析。认为本次地震发震构造以右旋走滑为主兼具张性,主压应力优势方位为N5°—10°E。断层两盘相对运动的总体方向为N55°W左右,断层运动的滑移角在30°—40°之间  相似文献   

16.
鄂尔多斯地块北部及邻区Pn波速度结构与各向异性   总被引:1,自引:0,他引:1       下载免费PDF全文
利用鄂尔多斯地块北部及其邻区2008—2018年期间固定台网的地震波形记录,手动拾取出高质量的Pn波到时资料,反演获得了研究区上地幔顶部的Pn波速度结构及各向异性。结果表明:鄂尔多斯地块北部及其邻区上地幔顶部的Pn波速度存在明显的横向不均匀性,与区域地质构造和地震活动相关;研究区内平均Pn波速为8.18 km/s,鄂尔多斯地块内部表现出大范围的高速异常,阿拉善地块的高速异常体中存在低速异常现象,河套断陷带、阴山—燕山造山带、银川—吉兰泰断陷带和海原—六盘山弧形断裂带区域均表现为显著的低速异常,河套断陷带下方存在向鄂尔多斯地块内部延伸的明显低速异常条带,大同火山群下方存在强低速异常;多数历史强震均发生在低速异常区或高低速异常过渡带上;鄂尔多斯地块内部Pn波各向异性快波方向西部为近NE?SW向,而东部为近NW?SE向,河套断陷带和鄂尔多斯地块西缘、青藏高原东北缘与阿拉善地块的交界带以及阴山—燕山造山带的各向异性快波方向总体均呈现为NW?SE向,而阴山—燕山造山带东部则呈NE?SW向。   相似文献   

17.
黄海及其邻近地区的Pn波速度与各向异性   总被引:12,自引:9,他引:3       下载免费PDF全文
利用中国东部地震台网和ISC 报告1980~2004年的地震走时数据,反演了黄海及其邻近地区的Pn波速度和各向异性,根据岩石层地幔的横向非均匀性分析了区域地质构造的深部特点.Pn波速度的变化与区域地质构造有一定的对应关系,黄海地区上地幔顶部的P波平均速度较高,没有发现明显的低速异常,表明上地幔顶部不存在大范围的地幔扰动.速度异常的分布表明,南黄海东部和西部有可能分属于不同的构造块体,其间的分界大致对应于南北走向的黄海东部断裂带,具有相对较低的Pn波速度.边界东、西两侧的Pn波各向异性存在明显的差异:南黄海西部Pn波的快波方向以北东—北北东方向为主,反映了海区内部扬子块体向北运动产生的构造变形;南黄海东部Pn波的快波方向为南北方向,与黄海东部断裂带的走向基本一致,说明黄海东部和西部之间存在一个深达岩石层地幔的南北向转换边界.结合相关资料估计黄海东部断裂带在中生代时期发生了右旋走滑运动,以响应中国东部郯庐断裂带的大规模左旋剪切以及南黄海扬子块体的向北嵌入.  相似文献   

18.
During March and April 1984, a temporary network of 29 portable stations was operated in the region of the Mygdonian graben near Thessaloniki (northern Greece), where a destructive earthquake (Ms = 6.5) had occurred in the Summer of 1978. During a period of six weeks we recorded 540 earthquakes with magnitudes ranging from −0.2 to 3.0. From this set of data, 254 events are selected which according to us have a precision in epicenter and depth better than 1.5 km. A total of 54 single-event focal mechanisms have been determined.The seismicity and focal mechanisms show a rather complex pattern. There are no clear individual faults, but the E-W and NW-SE striking zones show N-S extension. Zones striking NNE-SSW show dextral strike-slip motion but NW-SE zones with sinistral strike-slip are also observed.In the center of the graben where the 1978 earthquake was located, we observe several thrust mechanisms distributed in two groups showing either NW-SE or E-W compression; these earthquakes seem to be located 2 km above the earthquakes showing normal mechanisms.The mean direction of the T-axes, found from the focal mechanisms, trends N15° and dips sub-horizontal.We propose a model for the formation and evolution of a complex graben system comprising several stages. In the initial stage the deformation occurs along pre-existing NW-SE or NNE-SSW faults, with normal or strike-slip movements. In the second stage, a new, E-W trending group of normal faults is formed over the ancient fault network. These new faults have a direction perpendicular to the mean T-axis and accommodate better the actual state of stress. At this stage the initial faults adjust to the deformation produced by the E-W trending new faults, and may constitute geometric barriers to the evolution of the new normal faults.  相似文献   

19.
The superimposed basin must have undergone the changes of regional stress field. Study on the nature and switch of regional stress field of superimposed basin is very useful to understanding its stress state and tectonic events during its formation and evolution. As sensitive markers of small stress changes, joint and shear fracture, characterized by consistency of orientation over wide area, can be used to reconstruct paleostress state and its evolution. Detailed observations and analysis on the orientations, geometrical patterns, sequences of joints and shear fractures and their chronological relation to faults and folds show that, the NEE-SWW systematic joints and NNW-SSE systematic joints developed in the Mesozoic and Cenozoic strata are much more prominent than NW-SE systematic joints and shear fractures with different orientations. And the NWW-SEE and NW-SE systematic joints formed later than NEE-SWW systematic joints but earlier than shear fractures with different orientations. According to the relationships between joint and shear fractures and stress, the NEE-SWW systematic joints are inferred to result from lateral weak extension caused by the late Cretaceous regional uplift, while the NNW-SSE and NW-SE systematic joints are interpreted as syn-tectonic deformation relating to strong N-S compression in the Neogene. But some conjugate shear fractures occur probably due to sinistral strike-slip faulting in the Kuqa depression. At the beginning of the Neogene, the stress field changed and the maximal principal stress σ1 switched from vertical to horizontal.  相似文献   

20.
研究帕米尔高原的构造变形特征对于理解印度板块向北推挤过程中的应变分配方式以及应力转换模式具有重要的意义.本文利用区域GPS应变场、地震应变场与震源应力场分析帕米尔高原的构造形变特征.主要结论为:(1)该区域变形主要以NNW-SSE或近N-S向的挤压为主,在高原内部伴有明显的近ENE-WSW或E-W向拉张,应力方向在帕米尔高原与塔吉克盆地区域呈现逆时针旋转的趋势,而在塔里木盆地则显示几乎与帕米尔高原的一致的应力状态,这可能与两侧盆地块体的强度差异有关.(2)安德森断层参数A∅显示帕米尔高原北缘与西侧区域为逆断层应力状态,在高原内部为正断层应力状态,这与GPS应变的结果显示的应变主要集中在主帕米尔断裂与阿莱谷地附近而在高原内部应变较低是一致的,另外应力在喀喇昆仑断裂北段的方向基本平行于断层走向,以及断层北端较低的滑动速率,这说明了地壳挤压缩短可能是帕米尔高原主要的的构造变形特征,并不支持由于边界走滑断裂导致的应变分异或者块体挤出的模式.(3)综合考虑地震应变方向与SHmax从帕米尔北部NNW-SSE方向到天山北部的近N-S方向的转换,GPS应变方向在帕米尔高原两侧盆地都存在不同程度的旋转,应力场安德森参数A∅显示的应力状态以及SKS的结果显示的近ENE-WSW方向,我们认为印度板块向北推挤与天山造山带碰撞导致帕米尔高原不对称的径向逆冲是帕米尔高原现今构造变形的主要成因与构造模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号