首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the line profiles of the high dispersion spectra of He?I, He?II, N?III, [N?II], [O?III], [Ar?III], [Ar?IV], [S?II], [S?III ], and [Cl?IV], secured at the center of the planetary nebula NGC 7009 with the fiber-fed Bohyunsan Echelle Spectrograph (BOES). The expansion velocities for the main shell and the faint outer thin shell were derived based on stronger double Gaussian profiles and the fast blue wing component, respectively. With the Keck 2D spectral images, we set the main shell boundaries as R~4″ and 6″ and the faint outer thin shell boundaries as R~11″ and 13″. The radial variation of expansion velocities of both shells does not follow a linear acceleration. The acceleration of the main shell gas seems to be in a retarded mode, while that of the outer faint shell gas seems to be affected by an additional force. The fast wing component appears also in the He?I, He?II, and N?III line profiles which are likely to have been formed in a compact region, located inside the main shell. The additional deceleration factor, such as the rotation of the central star or the dust gas in the gas shell might cause the non-linear acceleration. Based on the line profiles responsible for the three zones, we conclude that there were at least three major changes occurred in the central star temperature since the first outflow from the central star.  相似文献   

2.
We present the results of spectroscopic and photometric observations for the young compact planetary nebula Hen 3–1357 and its central star SAO 244567. High-resolution spectroscopy has allowed the expansion velocity of the nebula, V exp = 8.4 ± 1.5 km s?1, and the heliocentric velocity of the object, V r = +12.6 ± 1.7 km s?1, to be determined. The gas shell parameters (N e , T e ), the extinction in the Hβ line, and the O, N, Ne, Ar, S, Cl, He, and C abundances have been determined from low-resolution spectra taken in 1992 and 2011. We have found significant changes in the relative intensities of forbidden lines in the spectrum of Hen 3–1357 within the last 20 years: the low-excitation [O I], [O II], and [N II] lines became stronger relative to Hβ by a factor of ~2, while the [O III] lines weakened by a factor of ~ 2, suggesting a decrease in the excitation class of the nebula. The V-band photometry performed under the ASAS-3 program revealed a decline in the yearly mean brightness of SAO 244 567 from 2001 to 2009 by $0_.^m 5$ and rapid variability with an amplitude of a few tenths of a magnitude. Published observational data in a wide spectral range, from the near ultraviolet to the radio band, suggest an appreciable weakening of the flux from the star and the nebula.  相似文献   

3.
We present our long-term photometric and spectroscopic observations of a high-latitude B supergiant with an infrared excess—the protoplanetary nebula IRAS 18062+2410. OurU BV observations in 2000–2006 have confirmed the rapid irregular photometric variability of the star with a maximum amplitude as high as 0 . m 4 in V that we found previously. The BV and UB color indices vary with amplitudes as high as 0 . m 10 and 0 . m 25, respectively, and show no clear correlation with the brightness. Our V-band CCD observations on 11 nights in 2006 have revealed brightness trends during the night. The variability of IRAS18062+2410 is similar in pattern to the light variations in other hot post-AGB objects and some of the nuclei of young planetary nebulae. We assume that pulsations and a variable stellar wind can be responsible for the variability of these stars. In addition to the rapid variability, our 12-year-long observations have revealed a systematic decline in the mean brightness of IRAS 18062+2410. This may be related to a rise in the temperature of the star at constant luminosity as a result of its evolution. Low-resolution spectroscopic observations have shown a systematic increase in the equivalent widths of the Hα, Hβ, [NII]λ6584 Å, OI λ8446 Å, and [OII] λ7320–7330 Å emission lines. The changes in the star’s emission line spectrum are probably caused by an increase in the degree of ionization of the gas shell due to a rise in the temperature of the ionizing star. Our photometric and spectroscopic observations of IRAS 18062+2410 confirm the previously made assumptions that the star evolves very rapidly to the region of planetary nebulae.  相似文献   

4.
We present photoelectric and spectral observations of a hot candidate proto-planetary nebula—early B-type supergiant with emission lines in spectrum—IRAS 19336-0400. The light and color curves display fast irregular brightness variations with maximum amplitudes \(\Delta V = 0_ \cdot ^m 30\), \(\Delta B = 0_ \cdot ^m 35\), \(\Delta U = 0_ \cdot ^m 40\) and color-brightness correlations. By the variability characteristics IRAS 19336-0400 appears similar to other hot proto-planetary nebulae. Based on low-resolution spectra in the range λ4000–7500 Å we have derived absolute intensities of the emission lines Hα, Hβ, Hγ, [S II], [N II], physical conditions in gaseous nebula: n e = 104 cm?3, T e = 7000 ± 1000 K. The emission line Hα, Hβ equivalent widths are found to be considerably variable and related to light changes. By UBV-photometry and spectroscopy the color excess has been estimated: E B-V = 0.50–0.54. Joint photometric and spectral data analysis allows us to assume that the star variability is caused by stellar wind variations.  相似文献   

5.
A. A. Galal 《Solar physics》1983,85(1):123-129
On the basis of photoelectric observations, the center-to-limb variations of the brightness of restricted areas (≈0.5″ × 7.0″) of unresolved facular granules were determined at different frequencies in the lines λ5183 Å and λ5172 Å of Mgi. It was found that the chromospheric plages reach maximum intensity in the central parts of the lines at the same position on the solar disk where photospheric faculae have maximum brightness. The floccular emission is conspicuous in the cores of the lines up to a distance Δλ = 0.02 Å. In the portion of the lines corresponding to 0.02 Å < Δλ < 0.18 Å the contrast of flocculi decreases to a minimum value and then increases again in the inner wings of these lines. In the far wings the contrast of facular areas systematically decreases to the continuum values.  相似文献   

6.
We carried out the first 21-cm line observations of an extended region around the Wolf-Rayet star WR 102 and the associated nebula G2.4+1.4 with the RATAN-600 radio telescope. An irregular H I shell was identified. Its maximum expansion velocity reaches ~50 km s?1, and its outer diameter (at a distance of 3 kpc) is 56 pc. The mechanical luminosity of the stellar wind required to produce the observed shell is estimated to be ~0.8×1038 erg s?1; the age of the shell is ~3.4×105 yr. We compare the inferred parameters of the H I shell with the structure and kinematics of the ionized nebula and with the dust distribution in the region.  相似文献   

7.
We present our observations of the pair of interacting galaxies NGC 6285/86 carried out with the 6-m Special Astrophysical Observatory (SAO) telescope using 1D and 2D spectroscopy. The observations of NGC 6286 with a long-slit spectrograph (UAGS) near the Hα line revealed the rotation of the gaseous disk around an axis offset by 5″–7″ from the photometric center and a luminous gas at a distance up to 9 kpc in a direction perpendicular to the galactic plane. Using a multipupil fiber spectrograph (MPFS), we constructed the velocity fields of the stellar and gaseous components in the central region of this galaxy, which proved to be similar. The close radial velocities of the pair and the wide (5′×5′) field of view of the scanning Fabry-Perot interferometer (IFP) allowed us to simultaneously obtain images in the Hα and [N II]λ6583 lines and in the continuum, as well as to construct the radial velocity fields and to map the distribution of the [N II]λ6583/Hα ratio for both galaxies. Based on all these data, we studied the gas kinematics in the galaxies, constructed their rotation curves, and estimated their masses (2 × 1011M for NGC 6286 and 1.2 × 1010M for NGC 6285). We found no evidence of gas rotation around the major axis of NGC 6286, which argues against the assumption that this galaxy has a forming polar ring. The IFP observations revealed an emission nebula around this galaxy with a structure characteristic of superwind galaxies. The large [N II]λ6583/Hα ratio, which suggests the collisional excitation of its emission, and the high infrared luminosity are additional arguments for the hypothesis of a superwind in the galaxy NGC 6286. A close encounter between the two galaxies was probably responsible for the starburst and the bipolar outflow of hot gas from the central region of the disk.  相似文献   

8.
To explain the variety of observed optical emission stratification in the shells around Wolf-Rayet stars, we have calculated the nonstationary cooling of a homogeneous gas layer heated to a temperature (0.4–2) × 105 K. We have assumed that the nebula is ionized by its central star and consists of a rarefied gas and a set of clouds with different densities through which adiabatic shock waves produced by the stellar wind propagate. Based on this model, we have determined the sequence in which the emission in Hα and in nebular oxygen lines appears. The Hα emission attributable to the electron-collision excitation of hydrogen atoms is produced earliest on the periphery of nebulae, the [O III] line emission follows next, and, finally, the Hα recombination emission is produced. The results obtained are in good agreement with the observational data.  相似文献   

9.
We present results from observations of H110 α recombination-line emission at 4.874 GHz and the related 4.8-GHz continuum emission towards the Carina nebula using the Australia Telescope Compact Array. These data provide information on the velocity, morphology and excitation parameters of the ionized gas associated with the two bright H  ii regions within the nebula, Car I and Car II. They are consistent with both Car I and Car II being expanding ionization fronts arising from the massive star clusters Trumpler 14 and Trumpler 16, respectively. The overall continuum emission distribution at 4.8 GHz is similar to that at lower frequencies. For Car I, two compact sources are revealed that are likely to be young H  ii regions associated with triggered star formation. These results provide the first evidence of ongoing star formation in the northern region of the nebula. A close association between Car I and the molecular gas is consistent with a scenario in which Car I is currently carving out a cavity within the northern molecular cloud. The complicated kinematics associated with Car II point to expansion from at least two different centres. All that is left of the molecular cloud in this region are clumps of dense gas and dust which are likely to be responsible for shaping the striking morphology of the Car II components.  相似文献   

10.
The results of spectroscopic observations of the star RY Tau in the ultraviolet based on IUE data and in the visual spectral range obtained at ShAO are presented. Despite significant brightness variability in 1983–1984, the Mg II λ2800 Å emission doublet showed no synchronous variation with the UBV photometric data. Periodic variability of the Mg II λ2800 Å emission intensity with a period of 23 days has been detected for the first time. The periodicity is also observed for a group of such lines as CIV λ1450 Å, He II λ1640 Å, and S II λ1756 Å. The equivalent widths and shifts of the individual components of the Hα, H + H ε , and CaII K lines also vary with the period found. The observed variability of the emission spectrum can be explained by the existence of a companion in the system in an orbit with a semimajor axis of about 0.13 AU.  相似文献   

11.
We analyze the spectra of DR Tau in the wavelength range 1200 to 3100 Å obtained with the GHRS and STIS spectrographs from the Hubble Space Telescope. The profiles for the C IV 1550 and He II 1640 emission lines and for the absorption features of some lines indicate that matter falls to the star at a velocity ~300 km s?1. At the same time, absorption features were detected in the blue wings of the N I, Mg I, Fe II, Mg II, C II, and Si II lines, suggesting mass outflow at a velocity up to 400 km s?1. The C II, Si II, and Al II intercombination lines exhibit symmetric profiles whose peaks have the same radial velocity as the star. This is also true for the emission features of the Fe II and H2 lines. We believe that stellar activity is attributable to disk accretion of circumstellar matter, with matter reaching the star mainly through the disk and the boundary layer. At the time of observations, the accretion luminosity was Lac ? 2L at an accretion rate ?10?7M yr?1. Concurrently, a small (<10%) fraction of matter falls to the star along magnetospheric magnetic field lines from a height ~R*. Within a region of size ?3.5R*, the disk atmosphere has a thickness ~0.1R* and a temperature ?1.5 × 104 K. We assume that disk rotation in this region significantly differs from Keplerian rotation. The molecular hydrogen lines are formed in the disk at a distance <1.4 AU from the star. Accretion is accompanied by mass outflow from the accretion-disk surface. In a region of size <10R*, the wind gas has a temperature ~7000 K, but at the same time, almost all iron is singly ionized by H I L α photons from inner disk regions. Where the warm-wind velocity reaches ?400 km s?1, the gas moves at an angle of no less than 30° to the disk plane. We found no evidence of regions with a temperature above 104 K in the wind and leave open the question of whether there is outflow in the H2 line formation region. According to our estimate, the star has the following set of parameters: M* ? 0.9M, R* ? 1.8R, L* ? 0.9L, and \(A_V \simeq 0\mathop .\limits^m 9\). The inclination i of the disk axis to the line of sight cannot be very small; however, i≤60°.  相似文献   

12.
A classification scheme is proposed for the central regions of Sérsic-Pastoriza galaxies based on high resolution photographs of 50 objects in the integrated light (4000 Å-8700 Å). Structures of two different linear scales are recognized: (1) nucleus(?1 kpc) and (2) perinuclear formation (~l.5 kpc). The perinuclear formation is weak in classκ while the nucleus is too faint to detect in class ι. In the intermediate classesε andσ both the components are bright. Classε has an elliptical perinuclear formation with little gas while the classσ consists of bright H II complexes and dust. Observations of a few galaxies in the infrared and the blue ends of the image tube response show that the nucleus is generally redder than its surroundings. Equal intensity contours and the luminosity profiles are presented for the central regions of 27 galaxies. A comparison of their axial ratios with those of the parent galaxies indicates that the perinuclear formations are prolate or barlike. The dependence of the peak surface brightness of the central formation on the size of the bar is investigated as also the dependence of the central surface brightness of the bar on the size of the bar. The following major conclusions are drawn:
  1. The peak central surface brightness of the perinuclear formation varies as the square of the bar length. This relation implies that the bar induces the infall of gas from the bar-disk region.
  2. The formations of classσ move towards classε as star formation ceases and the massive stars die.
  3. The classι differs from classσ in the intensity of the burst of star formation. Low luminosity of the parent galaxies in classι implies less infall of gas and higher domination of the bar potential on the perinuclear formation. Thus the classι structures are more prolate than those of classσ.
  4. The central brightness of the bars varies directly as the length of the bar.
  相似文献   

13.
Monochromatic photographs of the Orion Nebula taken through narrow bandpass interference filters (Δλ=10 Å) centred on Hα, Hβ and [NII] lines are presented. Ratio contours of Hα/[NII] and Hα/Hβ are derived. They enable a detailed study of the point-to-point variation in ionization structure and temperature throughout the nebula. Dust located within the ionized gas is studied from the Hα/Hβ ratio which varies from point to point over the nebula. Its strongest concentration, apart in the obvious ‘dark bay’, occurs in a shell surrounding the exciting stars, with about 2′ of diameter. Close to Θ1 Ori the Hα/Hβ ratio, corrected for interstellar reddening, is about 3.0 in good agreement with the predicted value (Brocklehurst, 1971). To account for these measures, the following arguments are proposed:
  1. Dust grains are completely or partially destroyed in region close to the exciting stars.
  2. Radiation pressure and stellar wind push the remaining dust up to some equilibrium distance outwards. The consequence of this action is obviously the formation of a ‘dust mantle’ which is seen as a ring in projection.
  相似文献   

14.
By using the Boller and Chivens spectrograph with a moderate dispersion (59 å mm-1) in the red spectral region, we obtained 65 spectra covering the whole surface of the planetary nebula NGC 2440. Intensities of Hα, [N II] λλ 6548–6584 and [S II] λλ 6717–6731 lines are derived using the IDS system available at the ESO in La Silva (Chile). The nebula is known to be a nitrogen-rich nebula (Peimbert 1978) surrounded by secondary structures (Minkowski 1964). The unusual high value of the [N II]/Hα in the central core (~ 30) is certainly due to the nitrogen overabundance occurring in that part of the nebula. Its variations from scale ionization structure (Capriotti, Cromwell and Williams 1971). The observations show clearly an outward increase of both [NII]/Hα andI(6717)/I(6713) ratios.  相似文献   

15.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

16.
Fifty-three spectrograms in the optical region (3700–7300 Å) with the spectral resolution ~8 Å have been obtained for the Seyfert nucleus of the galaxy NGC 3227 with the 6-m telescope on January 1977, while the nucleus was in the historically important epoch of its extreme maximum brightness. Width of the slit was 1″, length of the box during the spectra measurements was 1.5″. Data obtained by us and those compiled from literature showed that profiles of the Balmer lines Hα, Hβ and Hγ are different, evidencing that the gas emitting these lines is highly self-absorbed. It was shown that narrow components of the profiles revealed by Rubin and Ford kept their positions (radial velocities) over 25 years. The components showed intensity variations compared to the central one from minimum to maximum of the nucleus brightness. The same variations were observed by us earlier in the emission line profiles of the NGC 7469 nucleus spectrum. Narrow profile components can reflect long-lived flows or jets in the broad line region (BLR). Obtained facts evidenced that long-lived gas streams and flows causing narrow components of broad line profiles presented not only when BLR of accretion disc is strong but when BLR of accretion disc declined. Blue bump at radial velocity of ?5000 km/s in Hγ profile was revealed in spectra of high states of the nucleus, which disappeared in low state. One of the interpretations of this event can be in the framework of a model of one-sided or two-sided gas ejection during the high state of the nucleus, positive radial velocities of which being screened out by a circumnuclear disk.  相似文献   

17.
We investigate the dissociative recombination contribution to I(5577) and I(6300) of [OI] as a function of low energy cutoff for two measured solar proton spectra. The volume ionization rate profiles used in the calculation are obtained using a detailed atomic cross section approach in the continuous slowing down approximation. The ratio of the dissociative recombination contribution to the direct impact contribution for both the 5577 Å and 6300 Å [OI] emissions is found to be dependent upon the low energy cutoff. This ratio has a nominal value of ~2.0 for the 5577 Å [OI] emission and ~0.25 for the 6300 Å [OI] emission. The I(5577)/I(3914) and I(6300)/I(3914) ratios including the direct and dissociative recombination contributions are strongly dependent upon the low energy cutoff of the spectrum. We have also investigated F-layer enhancements resulting from the low energy spectrum component. For the Mizera et al. (1972) spectrum with a low energy cutoff of 12.4 keV, we find an NmF2 of ~4.5 × 103 electrons/cm3 or about 10 per cent of the ionization required to maintain the dip pole at a value of 5 × 104 electrons/cm3. Extension of the cutoff to 1 keV results in ~1 × 104 electrons/cm3, or about 20 per cent of the required maintenance ionization.  相似文献   

18.
In 2008, we observed the spectrum of the planetary nebula He 1–5, which has had no ionization source for more than 50 years. Comparison with the observations performed in 1972–1976 and 1988 shows that the line intensity ratio I(λ5007[O III])/I(Hβ) decreased by a factor of 2.5, the intensity ratio of the red [N II] doublet to Hα was almost constant, and the [S II]-to-Hα intensity ratio may have slightly increased. The observed changes in the spectrum agree, within the limits of the observational errors, with the calculations of gas recombination in a medium-excitation nebula performed by Tylenda in 1980, but the nitrogen line intensities are higher than the calculated ones by 10–15%. This is most likely related to the slightly reduced nitrogen abundance adopted in the model. The onset of nebular recombination dates from the end of the 19th century and is consistent with its estimate from the photometric history of the central star.  相似文献   

19.
The technique of Doppler tomography has been influential in the study of mass transfer in Algol‐type interacting binaries. The Algols contain a hot blue dwarf star with a magnetically‐active late‐type companion. In the close Algols, the gas stream flows directly into the photosphere of the blue mass‐gaining star because it does not have enough room to avoid impact with that star. Doppler tomograms of the Algols have been produced from over 2500 time‐resolved spectra at wavelengths corresponding to Hα, Hβ, He I (6678 Å), Si II (6371 Å) and Si IV (1394 ° A). These tomograms display images of accretion structures that include a gas stream, accretion annulus, accretion disk, stream‐star impact region, and occasionally a source of chromospheric emission associated with the cool, mass‐losing companion. Some Algol systems alternate between streamlike and disk‐like states, and provide direct evidence of active mass transfer within the Algols. This work produced the very first images of the gas stream for the entire class of interacting binaries, and demonstrated that the Algols are far more active than formerly believed, with variability on time scales of weeks to months. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
We present our synchronous spectroscopy and photometry of DI Cep, a classical T Tauri star. The equivalent widths and radial velocities of the individual components and Hα, Hβ, D1 and D2 Na I, and HeI λ5876 Å emission line profiles exhibit variability. We have found a clear positive correlation between the brightness and equivalent width for the Hα and Hβ emission lines. The photometric and spectroscopic data are satisfactorily described in phases of a 9-day period. The expected magnetic field of the star has been estimated using existing magnetospheric models to be 655–1000 G. The star is suspected to be a binary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号