首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 Numerous small (50- to 300-m-diameter) strong-backscatter objects were imaged on the 1200- to 1350-m deep crest of Vestnesa Ridge (Fram Strait) and along the 900- to 1000-m deep northeast margin of the Storegga slide valley. Ground-truthing identified most of these objects as 2- to 10-m-deep pockmarks, developed within soft, acoustically stratified silty clays (typical wet bulk density: 1400–1600 kg m-3; sound speed: 1480– 1505 m s-1; porosity, 65–75%; shear strength: 5–10 kPa; water content: 80–120%; and thermal conductivity: 0.8–0.9 W m-1 deg C-1 in the top 3 m). Gas wipeouts, enhanced reflectors, and reflector discontinuities indicate recent or ongoing activity, but the absence of local heat flow anomalies suggests that any upward fluid flows are modest and/or local.  相似文献   

2.
 Recent sediment accumulation rates are 18–230 mg cm-2 yr-1 (0.02–0.2 cm yr-1) based on excess 210Pb activity profiles in the southwestern part of the East Sea (Sea of Japan). Assuming no mixing beneath surface mixed layers, 210Pb-derived sediment accumulation rates are 18–32 mg cm-2 yr-1 in the northern part of the Yamato Ridge and the Ulleung Basin, 29–136 mg cm-2 yr-1 in the Korea Plateau, and 230 mg cm-2 yr-1 in the southern shelf. These values generally agree with long-term sedimentation rates estimated from dated ash layers. Received: 6 October 1995 / Revision received: 31 May 1996  相似文献   

3.
 Much of the modern upper (proximal) Monterey fan is a channel–levee complex, the Upper Turbidite Sequence (UTS), that was deeply eroded after the channel breached a volcanic ridge to reach a deeper base level. Ages of sediment samples collected with the ALVIN submersible from the deepest outcrop within the channel–levee system, 390 m below the adjacent western levee crest, indicate that the UTS deposits accumulated at ≥1 m ka-1 during the last 500 ka. Neogene and Early Pleistocene sediment accumulation on the fan prior to the UTS was much slower (<0.03 m ka-1), and underlying turbidite systems(?) had substantially different morphologic expression(s). Received: 10 February 1998 / Revision received: 6 July 1998  相似文献   

4.
 Measurements of physical and acoustic properties within the top 40 cm of sediment indicate that there are three classes of parameter variability relevant to acoustic bottom scattering at the Marquesas Keys and Dry Tortugas sites. The three classes of variability, spatially and temporally different in terms of scale, are generated by biological and physical processes acting on sediments. Interplay of bioturbation, trawling and storm events create fine laminations of sand–silt–clay and high gravel-size mollusk shell content at the Marquesas Keys site; the predominance of biological processes creates strong surficial gradients and lateral variability in sediment properties at the Dry Tortugas site.  相似文献   

5.
 Spatial variability of shallow-water carbonate sediments near Dry Tortugas, Florida, is scale-dependent. Wet bulk density, grain density, porosity, compressional wave velocity, and grain size variability generally increase down to 2.4 m vertically and 850 m laterally. Grain size is most variable, followed by porosity, wet bulk density, compressional wave velocity, and grain density bothvertically and laterally, consistent with Walther’s Law. Variability was empirically modeled by linear regression analysis to predict variability based on scale, characterize sediment property variability, and quantify sedimentisotropy.  相似文献   

6.
A simple estimation of light penetration in tidal flat sediments was developed using various sediment size fractions and their attenuation rate of irradiance. The attenuation coefficients of the sediment size fractions of 63–125, 125–250, 250–500, 500–1000 μm and 1000–2000 μm were 8.10, 4.08, 2.92, 2.12 and 1.44 mm−1, respectively. Using the average attenuation coefficient of the particle size fractions in the sediment, the calculated attenuation coefficient agreed well with the actual attenuation coefficient. The method presented gives a photo-parameter to predict productivity in intertidal sediments, given only the particle size fraction.  相似文献   

7.
 Acoustic reflection signatures of four hydro-carbon seeps were classified using near-bottom 25-kHz echosounder profiles. Echo patterns were compared with ground-truth data obtained by submersible observations and shallow coring. Six echo types were distinguished: strong reflections from (1) exposed or (2) buried hard substrates, such as authigenic carbonate or gas hydrate; acoustic scattering in (3) unlayered or (4) layered sediments owing to gas, shells, or disseminated carbonates; (5) attenuation caused by gas; and (6) undisturbed sediments. Echo type distributions suggest that high spatial variability indicates a younger, vigorous seep, whereas extensive hard substrate implies an older, encrusted seep. Received: 29 May 1998 / Revision received: 7 October 1998  相似文献   

8.
南黄海海底沉积物声学特性及其影响因素试验研究   总被引:5,自引:2,他引:3  
利用自南黄海中西部海底取回的沉积物样品,对其声学特性及其影响因素进行了试验研究,结果显示,研究区海底沉积物的压缩波速为1.359 ~1.695 km/s,剪切波速为12.5 ~70.9 m/s;颗粒较细的沉积物与较低的压缩波速、剪切波速对应,主要集中在研究区东侧水深较深处;沉积物的物理力学性质对其压缩波速、剪切波速的影响较显著,沉积物的温度和换能器的频率对上述声学两参数也具有一定的影响,而沉积物的包含物及薄夹层等影响声波传播的理论计算结果。给出了研究区海底沉积物物理力学各参数与压缩波速、剪切波速之间的回归方程,以期为国防、工程提供基础资料。  相似文献   

9.
Box cores were collected close to river mouths along the eastern Brazilian shelf at water depths of 10–30 m. One core was taken from more than 1000 m depth at the shelf slope. 210Pb and 226Ra activities were measured to establish sediment accumulation rates. Seven of the 10 cores exhibited an exponential decrease with depth of excess 210Pb activities. The sediments from the sheltered Sudeste Channel off Caravelas revealed the highest sediment accumulation rate of 0.81 cm yr−1. The sediments at the shelf slope seaward of the Rio Doce revealed the lowest accumulation rate of 0.13 cm yr−1. Sediment accumulation rates increased towards the Caravelas Bank. Current patterns and the morphology of the seabed favor sediment deposition in this area.  相似文献   

10.
Particulate organic carbon (POC) in surface sediments of the Baltic Sea   总被引:2,自引:2,他引:0  
In this study, particulate organic carbon (POC) contents and their distribution pattern in surficial sediments of the Baltic Sea are presented for 1,471 sampling stations. POC contents range from approx. 0.1% in shallow sandy areas up to 16% in deep muddy basins (e.g. Gotland Basin). Some novel relationships were identified between sediment mass physical properties (dry bulk density (DBD), grain size) and POC levels. Notably, the highest POC concentrations (about 10–17 mg cm–3) occur in sandy mud to mud (60–100% mud content) with intermediate POC contents of about 3–7% and DBDs of 0.1–0.4 g cm–3. Areas with this range in values seem to represent the optimum conditions for POC accumulation in the Baltic Sea. The maximum POC contents (8–16%) are found in fluid mud of the central Baltic Sea characterized by extremely low DBDs (<0.1 g cm–3) and moderate POC concentrations (4–7 mg cm–3). Furthermore, sediment mass accumulation rates (MAR), based on 210Pb and 137Cs measurements and available for 303 sites of the Baltic Sea, were used for assessing the spatial distribution of POC burial rates. Overall, these vary between 14 and 35 g m–2 year–1 in the mud depositional areas and, in total, at least 3.5 (±2.9) Mt POC are buried annually. Distribution patterns of POC contents and burial rates are not identical for the central Baltic Sea because of the low MAR in this area. The presented data characterize Baltic Sea sediments as an important sink for organic carbon. Regional differences in organic carbon deposition can be explained by the origin and transport pathways of POC, as well as the environmental conditions prevailing at the seafloor (morphology, currents, redox conditions). These findings can serve to improve budget calculations and modelling of the carbon cycle in this large brackish-water marginal sea.  相似文献   

11.
High-resolution seismic survey and sediment core sampling were conducted to investigate acoustic characteristics of gas-bearing sediments in Jinhae Bay, the southeast of Korea. The sediment in Jinhae Bay is mostly homogenous mud deposited after the Holocene transgression. Along with the 410 km of chirp seismic profiling, five piston core samples were collected on the track lines.

Gassy sediments are common and occur widely in the bay. Core samples were analyzed for sediment texture, physical properties (porosity, water content, bulk density, and grain density), acoustic properties (compressional wave velocity and attenuation), and electrical resistivity. X-radiograph image analysis was also performed to observe the shape of degassing cracks. There is no significant downcore variation on physical and sediment textures regardless of existence of gas bubbles. However, compressional wave velocity dramatically decreases from average 1480 to 1380~739 m/s for the cores that penetrate the gas-bearing zones. This is probably due to degassying cracks that developed by escaping gases and free gas bubbles that are still trapped in the cores. Electrical resistivity is the only geotechnical property that increases in the gas-bearing zone where compressional wave velocity abruptly decreases. This indicates the possibility of using both electrical resistivity as an index variable as well as to compressional wave velocity to identify gassy sediment microstructure because there are little changes in texture and composition of sediment.  相似文献   

12.
Substantial amounts of adsorbed methane were detected in authigenic carbonate concretions recovered from sedimentary layers from depths between 245 and 1,108 m below seafloor during Ocean Drilling Program Leg 186 to ODP sites 1150 and 1151 on the deep-sea terrace of the Japan Trench. Methane contents were almost two orders of magnitude higher in the concretions (291–4,528 nmol/g wet wt) than in the surrounding bulk sediments (5–93 nmol/g wet wt), whereas methane/ethane ratios and stable carbon isotopic compositions were very similar. Carbonate content of surrounding bulk sediments (0.02–3.2 wet wt%) and methane content of the surrounding bulk sediments correlated positively. Extrapolation of the carbonate contents of bulk sediments suggests that 100 wt% carbonate would correspond to 1,886±732 nmol methane per g bulk sediment, which is similar to the average value observed in the carbonate concretions (1,321±1,067 nmol/g wet wt, n = 13). These data support the hypothesis that, in sediments, adsorbed hydrocarbon gases are strongly associated with authigenic carbonates.  相似文献   

13.
Geoacoustic inversion requires a generic knowledge of the frequency dependence of compressional wave properties in marine sediments, the nature of which is still under debate. The use of in situ probes to measure sediment acoustic properties introduces a number of experimental difficulties that must be overcome. To this end, a series of well-constrained in situ acoustic transmission experiments were undertaken on intertidal sediments using a purpose-built in situ device, the Sediment Probing Acoustic Detection Equipment (SPADE). Compressional wave speed and attenuation coefficient were measured from 16 to 100 kHz in medium to fine sands and coarse to medium silts. Spreading losses, which were adjusted for sediment type, were incorporated into the data processing, as were a thorough error analysis and an examination of the repeatability of both the acoustic wave emitted by the source and the coupling between probes and sediment. Over the experimental frequency range and source-to-receiver (S-R) separations of 0.99-8.1 m, resulting speeds are accurate to between 1.1% and 4.5% in sands and less than 1.9% in silts, while attenuation coefficients are accurate to between 1 and 7 dBm in both sands and silts. Preliminary results indicate no speed dispersion and an attenuation coefficient that is proportional to frequency.  相似文献   

14.
Near-surface sediment geoacoustic and physical properties were measured in gas-rich, muddy sediments of Eckernförde Bay, Baltic Sea, and in hard-packed, sandy sediments of the northeastern Gulf of Mexico. Values of compressional and shear wave velocity are much lower in muddy compared to sandy sediments. The spatial and temporal variability of sediment physical and geoacoustic properties and, as a consequence, the scattering and propagation of high-frequency acoustic waves are primarily related to the presence and absence of free methane gas bubbles at the muddy site and to the abundance and distribution of shell material on sandy sediments.  相似文献   

15.
 Between 2 and 6 February, 1995, a 25 km2 area at the Dry Tortugas (Florida Keys) was surveyed with a 100 kHz side-scan sonar system and 3.5-kHz subbottom profiler. The side-scan system revealed a pattern of alternating high and low backscatter. The subbottom profiler showed areas with no acoustic penetration between sediment troughs. The combination of both methods allowed delineation of the boundaries in high-backscatter regions, and sediment samples allowed correlations between high backscatter and coarser-grained sediments.  相似文献   

16.
 Vertical profiles of instantaneous cohesive suspension concentration, obtained from an acoustic suspended sediment monitor in the Changjiang Estuary, indicate that near-bed high-concentration suspensions consist of upper and lower high-concentration suspensions, separated by a natural breakpoint at ca. 2 g l-1. Acoustic images revealed near-bed high-frequency resuspension events of a few seconds, which contribute mainly to the formation of the lower near-bed high-concentration suspension. Upper and lower lutoclines are also indicative of re-entrainment of lower and upper high concentration suspension, respectively. Near-bed high-frequency resuspension is caused by turbulence, while re-entrainment is probably attributable to internal wave activity. Received: 26 April 1996 / Revision received: 23 July 1996  相似文献   

17.
Gas in sediments has become an important subject of research for various reasons. It affects large areas of the sea floor where it is mainly produced. Gas and gas migration have a strong impact on the environmental situation as well as on sea floor stability. Furthermore, large research programs on gas hydrates have been initiated during the last 10 years in order to investigate their potential for future energy production and their climatic impact. These activities require the improvement of geophysical methods for reservoir investigations especially with respect to their physical properties and internal structures. Basic relationships between the physical properties and seismic parameters can be investigated in shallow marine areas as they are more easily accessible than hydrocarbon reservoirs. High-resolution seismic profiles from the Arkona Basin (SW Baltic Sea) show distinct ‘acoustic turbidity’ zones which indicate the presence of free gas in the near surface sediments. Total gas concentrations were determined from cores taken in the study area with mean concentrations of 46.5 ml/l wet sediment in non-acoustic turbidity zones and up to 106.1 ml/l in the basin centre with acoustic turbidity. The expression of gas bubbles on reflection seismic profiles has been investigated in two distinct frequency ranges using a boomer (600–2600 Hz) and an echosounder (38 kHz). A comparison of data from both seismic sources showed strong differences in displaying reflectors. Different compressional wave velocities were observed in acoustic turbidity zones between boomer and echosounder profiles. Furthermore, acoustic turbidity zones were differently characterised with respect to scattering and attenuation of seismic waves. This leads to the conclusion that seismic parameters become strongly frequency dependent due to the dynamic properties of gas bubbles.  相似文献   

18.
 A 2D numerical thermal model for transform continental margin evolution is presented that calculates thermally driven uplift and subsidence profiles across the margin, for any margin segment assuming both regional and local isostasy. Lateral variations in the magnitude of continental uplift along the transform are predicted. For a margin with a length of 900 km, with a spreading rate of 1 cm yr-1, maximum continental uplift of 1300–1400 m is calculated, assuming local isostasy. Using a regional isostatic approximation, maximum uplift is reduced substantially to 335–470 m, and the exact magnitude, location, and timing of the maximum effect depends strongly on the assumption of a coupled or decoupled continent–ocean boundary. The length of time a margin point experiences continent–ocean shearing prior to ridge passing is also shown to be very significant. Received: 23 February 1995 / Revision received: 17 August 1995  相似文献   

19.
A calibration procedure is presented for generating bulk density profiles of intact marine sediment cores using X-ray computed tomography (CT). Developed using both artificial and natural marine sediment samples, the correlation is strong with an R 2 value of 0.98. Similar experiments with carbonate sediments were also strongly linear, but offset from the terrigenous curve, illustrating the influence of sediment chemistry on scanner response. Comparison between newly computed densities for both sediment types with those from individually calibrated cores during our previous CT studies reveals good correspondence between the data sets. Received: 22 November 1998 / Revision received: 4 March 1999  相似文献   

20.
In-situ geotechnical measurements of surface sediments were carried out along large subaqueous dunes in the Knudedyb tidal inlet channel in the Danish Wadden Sea using a small free-falling penetrometer. Vertical profiles showed a typical stratification pattern with a resolution of ∼1 cm depicting a thin surface layer of low sediment strength and a stiffer substratum below (quasi-static bearing capacity equivalent: 1–3 kPa in the top layer, 20–140 kPa in the underlying sediment; thickness of the top layer ca. 5–8 cm). Observed variations in the thickness and strength of the surface layer during a tidal cycle were compared to mean current velocities (measured using an acoustic Doppler current profiler, ADCP), high-resolution bathymetry (based on multibeam echo sounding, MBES) and qualitative estimates of suspended sediment distributions in the water column (estimated from ADCP backscatter intensity). The results revealed an ebb dominance in sediment remobilization, and a general accretion of the bed towards low water. A loose top layer occurred throughout the tidal cycle, likely influenced by bedload transport and small events of suspended sediment resettlement (thickness: 6 ± 2 cm). Furthermore, this layer showed a significant increase in thickness (e.g. from 8 cm to 16 cm) related to periods of overall deposition. These findings imply that dynamic penetrometers can conveniently serve to (1) quantify potentially mobile sediments by determining the thickness of a loose sediment surface layer, (2) unravel sediment strength development in potentially mobile sediments and (3) identify sediment accumulation. Such data are an important complement and add a new geotechnical perspective during investigations of sediment remobilization processes in highly dynamic coastal environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号