首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Numerical models have not yet systematically been used to predict properties of fluvial terrace records in order to guide fieldwork and sampling. This paper explores the potential of the longitudinal profile model FLUVER2 to predict testable field properties of the relatively well‐studied, Late Quaternary Allier system in France. For the Allier terraces an overlapping 14C and U‐series chronology as well as a record of 10Be erosion rates exist. The FLUVER2 modelling exercise is focused on the last 50 ka of the upper Allier reach because for this location and period the constraints of the available dating techniques are tightest. A systematic calibration based on terrace occurrence and thicknesses was done using three internal parameters related to (1) the sediment erodibility; (2) the sediment transport distance; and (3) the sediment supply derived from the surrounding landscape. As external model inputs, the best available, reconstructed, tectonic, climatic and base‐level data were used. Calibrated model outputs demonstrate a plausible match with the existing fluvial record. Validation of model output was done by comparing the modelled and measured timing of aggradation and incision phases for the three locations. The modelled range of landscape erosion rates showed a reasonably good match with existing erosion rate estimates derived from 10Be measurements of fluvial sands. The quasi‐validated model simulation was subsequently used to make new testable predictions about the timing and location of aggradation and erosion phases for three locations along the Allier river. The validated simulations predict that along the Allier, reach‐specific dynamics of incision and aggradation, related to the variations in sediment supply by major tributaries, cause relevant differences in the local fluvial terrace stratigraphy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
There is limited knowledge about the preservation of aggradation phases in Quaternary fluvial records. Previous numerical modelling of erosion and deposition in Late Quaternary Allier River (France) generated the prediction that this river has reach-specific fluvial dynamics related to climate-driven tributary sediment-flux dynamics. To test this prediction, new optically stimulated luminescence (OSL) samples were collected of the Late Quaternary Fx terrace at five locations along a stretch of 60 km. OSL dates of both quartz and feldspar sand grains indicate that all relatively basalt-poor sediments display significantly different ages for each reach (ranging from 36.3 ± 2.0 to 21.1 ± 2.3 ka). The more basalt-rich terrace body consistently yields ages in the range 21.1 ± 1.7 to 16.1 ± 1.5 ka, suggesting contemporaneous aggradation along the whole studied Allier reach during this interval. Our own new OSL date of a Tartaret eruption around 16.8 ± 2.5 ka also fits this time window, suggesting a direct link with volcanic activity. However, there are many more dated volcanic events that coincide with the older basalt-poor units, making it less likely that a direct link between terrace-sediment basalt content and volcanic activity exists. The timings of the dated depositional events in MIS 3 and 2 all match with simulated climate drivers and published landscape erosion rates. Counterintuitively, the volcanic Chaîne des Puys area supplied more sediment during the cold and dry Last Glacial Maximum. Basalt content in the Allier terrace sediments reflects climate-related sediment-flux dynamics upstream. The scarcity of older basalt-poor sediment bodies from MIS 4 and 3 in the Fx terrace suggests that less sediment was supplied and/or the intermittent erosional phases in the Allier were very effective at removing them. We hypothesize that this observation of predominant preservation of the last aggradation phase could be a common phenomenon in most climate-driven terraces. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

3.
Marine terrace flights resulting from the interaction of Quaternary glacio-eustatic fluctuations and tectonic uplift are a typical feature of the Tyrrhenian coast of Calabria in Southern Italy; in particular a térrace flight with four orders of terraces is evident in the Diamante area. The lowest terrace levels (fourth order: Diamante-Cirella terrace) are typified by a calcarenitic deposit with Cladocora caespitosa which give a Th/U age > 300,000 years. The third order terrace has a sedimentary cover formed of a basal discontinuous level of well rounded pebbles which underlies a deeply weathered coarse-grained sand horizon. The deposit ends with a paleosol locally cut by erosional scours filled by yellowish tuff deposits. The formation of this terrace dates from the Middle Pleistocene. The second order terrace presents a sedimentary cover composed of two generations of soils and is attributed to Middle Pleistocene age. The first order terrace (M. Carpinoso terrace) presents a wave-cut platform covered by a clastic deposit of marine and continental origin; this deposit consists of superimposed depositional events separated by unconformities, bounded by two diachronous surfaces. The formation of the wave-cut platform could be related to several sea-level stands during a long-lasting slow subsidence phase of the coastal area during the Lower Pleistocene. The uplift following terrace formation displaced the first order terrace most markedly; tectonic lineations controlled the hydrographic pattern and erosion of the surfaces.  相似文献   

4.
Cryoplanation terraces are elevated bedrock features resembling giant staircases, with alternating steep scarps and shallow sloping treads. These landscape-scale features have long been associated with periglacial environments, but the processes involved in their formation remain vaguely specified and contentious. The two leading hypotheses for the formation of cryoplanation terraces are centered on: (1) geologic structure; and (2) nivation-driven scarp retreat. The nivation-formation hypothesis invokes scarp retreat under erosion processes associated with late-lying snowbanks. To test whether cryoplanation terraces develop through scarp retreat, six relative weathering indices (fracture counts, Cailleux roundness, Cailleux flatness, Krumbein sphericity, rebound, and weathering rind thickness) were measured across well-developed terraces in unglaciated eastern Beringia (central and western Alaska) at Mt Fairplay, Eagle Summit, and Skookum Pass. Statistically significant differences in relative weathering indices detected through chi-square and multiple-comparison procedures indicate that material is less weathered closer to scarps, i.e. that these areas were more recently exposed than those distant from the scarp. Based on these findings, a refined model of time-transgressive cryoplanation terrace development through nivation-driven scarp retreat is proposed. This new qualitative model addresses the removal of weathered material from terrace treads down side slopes through piping and gravity-driven mass-wasting processes. © 2019 John Wiley & Sons, Ltd.  相似文献   

5.
We investigate the cause of terrace zone asymmetry in the Chicxulub impact crater using dynamic models of crater formation. Marine seismic data acquired across the crater show that the geometry of the crater's terrace zone, a series of sedimentary megablocks that slumped into the crater from the crater rim, varies significantly around the offshore half of the crater. The seismic data also reveal that, at the time of impact, both the water depth and sediment thickness varied with azimuth around the impact site. To test whether the observed heterogeneity in the pre-impact target might have affected terrace zone geometry we constructed two end-member models of upper-target structure at Chicxulub, based on the seismic data at different azimuths. One model, representing the northwest sector, had no water layer and a 3-km thick sediment layer; the other model, representing the northeast sector, had a 2-km water layer above a 4-km sediment layer. Numerical models of vertical impacts into these two targets produced final craters that differ substantially in terrace zone geometry, suggesting that the initial water depth and sediment thickness variations affected the structure of the terrace zone at Chicxulub. Moreover, the differences in terrace zone geometry between the two numerical models are consistent with the observed differences in the geometry of the terrace zone at different azimuths around the Chicxulub crater. We conclude that asymmetry in the pre-impact target rocks at Chicxulub is likely to be the primary cause of asymmetry in the terrace zone.  相似文献   

6.
Agricultural land abandonment is currently widely spread in Mediterranean countries and a further increase is expected. Previous research has shown that abandoned fields in semi‐arid areas are more vulnerable to gully erosion. The absence of ploughing and slow vegetation recovery cause the formation of soil crusts with low infiltration rates, resulting in increased runoff and gully erosion risk. The objective of our study was to assess the extent and causes of erosion and terrace failure on abandoned fields and to discuss options for mitigation. The study was carried out in the Carcavo basin, a semi‐arid catchment in southeast Spain. At catchment scale all abandoned fields were surveyed and characteristics of each field were described. Additionally we surveyed abandoned and cultivated terraces and used statistical analyses to determine the factors that induce terrace failure. At field scale we constructed a detailed digital elevation model (DEM) for an abandoned terrace field in order to calculate sediment losses since time of abandonment. The results revealed that more than half the abandoned fields had moderate to severe erosion and the statistical analysis showed that these fields had significantly steeper slopes, were terraced and had cereals as previous land use. Factors that increase the risk of terrace failure were land abandonment, steeper terrace slope, loam texture, valley‐bottom position and shrubs on the terrace wall. The reconstructed erosion rate (87 ton ha?1 year?1) confirmed the importance of gully erosion on these abandoned terrace fields. Potential soil and water conservation practices to mitigate soil erosion after abandonment are: (1) maintenance of terrace walls, as a result more water is retained, which increases vegetation cover and consequently decreases erosion. (2) Revegetation with indigenous grass species on spots with concentrated flow, especially near terrace walls. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Upstream knickpoint propagation is an essential mechanism for channel erosion, carrying changes in base level, tectonics and climate across the landscape. Generally, the terraces on cross-sections at steady-state conditions have been widely reported. However, many landscapes in the field appear to be in a transient state. Here, we explore the mechanism of knickpoint initiation and fluvial evolution in a transient setting in the northeastern Tibetan Plateau. Analysis of channel profiles and terrace correlation indicates that the Yellow River is adjusted to match the increase in differentiated fault activity and climate change in a regional setting of continuous uplift. Consequently, a series of terraces were formed, and the number of terrace steps increased downstream, in the headwaters of the Yellow River. All terraces were dated using the optically stimulated luminescence method. The top terrace, distributed continuously in the whole basin with a gradient, was deposited during a cold period and abandoned at the climatic transition from cold to warm state, at approximately 14.6–9.5 ka. After that, one terrace formed at around 4.2 ka in the upper reach. In correlation with the continuous topographic gradient surface of this terrace, three terrace steps were formed in the down reach during the period from 9.5 ka to 4.2 ka. This phenomenon might indicate multiple phases of continuous headward migration of fluvial knickpoint waves and terrace formation during the downcutting. It was caused by fault activity and tectonic uplift of the gorge at the outlet of the basin, under influence of the gradual integration of the Yellow River from downstream. This phenomenon shows that the fluvial incision in a transient state along the high relief margin of the orogenic plateau can be caused by fault activity, in addition to widespread surface uplift, climatically driven lake spillover and the establishment of external drainage.  相似文献   

8.
How rock resistance or erodibility affects fluvial landforms and processes is an outstanding question in geomorphology that has recently garnered attention owing to the recognition that the erosion rates of bedrock channels largely set the pace of landscape evolution. In this work, we evaluate valley width, terrace distribution, and bedload provenance in terms of reach scale variation in lithology in the study reach and discuss the implications for landscape evolution in a catchment with relatively flat‐lying stratigraphy and very little uplift. A reach of the Buffalo National River in Arkansas was partitioned into lithologic reaches and the mechanical and chemical resistance of the main lithologies making up the catchment was measured. Valley width and the spatial distribution of terraces were compared among the different lithologic reaches. The surface grain size and provenance of coarse (2–90 mm) sediment of both modern gravel bars and older terrace deposits that make up the former bedload were measured and defined. The results demonstrate a strong impact of lithology upon valley width, terrace distribution, and bedload provenance and therefore, upon landscape evolution processes. Channel down‐cutting through different lithologies creates variable patterns of resistance across catchments and continents. Particularly in post‐tectonic and non‐tectonic landscapes, the variation in resistance that arises from the exhumation of different rocks in channel longitudinal profiles can impact local base levels, initiating responses that can be propagated through channel networks. The rate at which that response is transmitted through channels is potentially amplified and/or mitigated by differences between the resistance of channel beds and bedload sediment loads. In the study reach, variation in lithologic resistance influences the prevalence of lateral and vertical processes, thus producing a spatial pattern of terraces that reflects rock type rather than climate, regional base level change, or hydrologic variability. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
To understand how large submarine lava terraces form and why they are not commonly observed on land, we developed an isoviscous gravity flow model on an inclined surface to simulate the evolution and emplacement of lava flows under submarine conditions. By solving this preliminary model using a finite difference method, we are able to quantify how lava viscosity, pre-existing topographic slope, effusion rate, and lava volume affect meso-scale lava morphology. Our simulations show that, in general, high lava viscosity, gentle regional slope, and low effusion rate favor the formation of large terraces, but environmental conditions also play an important role. A gravity flow spreads more slowly underwater than subaerially. We also conclude that for low viscosity basaltic lava, the cooling of the lava body is one of the most critical factors that affect its shape. This study shows that the isoviscous model, though oversimplified, provides a quantitative tool to relate lava morphology to eruption characteristics. To gain a better understanding of the controls on submarine lava terrace formation, future models must take into account the temporal and spatial variation of lava viscosity, especially the effects of a brittle outer shell.  相似文献   

10.
In the Bowland Fells, Lancashire, northwest England, in the headwater valleys of the Hodder river system, is a suite of Holocene fluvial landforms. Debris cones and alluvial fans at tributary junctions, and river terraces along the main valleys post-date late Pleistocene forms and pre-date the modern valley floor alluvial forms. Eight 14C dates from wood samples incorporated within the terrace and fan deposits have allowed two main phases of Holocene erosion to be identified with debris cone/fan deposition taking place after c. 5400 BP but before c. 1900 BP and again at c. 900 BP. Some of the fans and cones are complex with deposits attributable to both phases; others are simple and attributable only to the later phase. In the headwaters an upper terrace at c. 5400 BP pre-dates the cones and a lower terrace is contemporaneous with the first debris cone phase. Lower downvalley the youngest of three terraces date from c. 5000 BP or earlier indicating that the sequence is less complex downstream.  相似文献   

11.
Abstract

A finite element model to simulate runoff and soil erosion from agricultural lands has been developed. The sequential solutions of the governing differential equations were found: Richards' equation with a sink term for infiltration and soil water dynamics under cropped conditions; St Venant equation with kinematic wave approximation for overland and channel flow; and sediment continuity equation, for soil erosion. The model developed earlier has been improved to simulate erosion/deposition in impoundments and predicted and observed soil loss values were in reasonably good agreement when the model was tested for a conservation bench terrace (CBT) system. The finite element model was extensively applied to study the hydrological behaviour of a CBT system vis-à-vis the conventional system of sloping borders. The model estimates runoff and soil loss reasonably well, under varying conditions of rainfall and at different crop growth stages. The probable reasons for discrepancies between observation and simulation are reported and discussed. Sensitivity analysis was carried out to study the effect of various hydrological, soil and topographical parameters, such as ratio of contributing to receiving areas, weir length, depth of impoundment, slope of contributing area, etc. on the flow behaviour in a CBT system.  相似文献   

12.
Constraining the ages of fluvial terraces is essential to understanding fluvial responses to climate and sea-level changes and estimating uplift/incision. Luminescence dating of sand or silt grains from fluvial terrace deposits in Japan is difficult because sand layers are often absent from gravelly deposits, quartz grains are typically dominated by medium/slow components and/or contaminated by feldspars, and short transport distances and short residence times in riverbeds result in poor bleaching of luminescence signals. Luminescence dating of cobbles may overcome these difficulties, but few studies have applied this technique to fluvial terrace deposits. Here, we examine the utility of luminescence dating applied to three granodiorite cobbles from a late Pleistocene fluvial terrace deposit of the Ara River, Japan. We investigated variations of the infrared stimulated luminescence (IRSL) and post-IR IRSL signals with depth in each cobble. The IRSL and post-IR IRSL signals generally increase with depth, indicating that the cobbles were not completely bleached before deposition. Nonetheless, the IRSL ages of the cobble surfaces (19–17 ka) are consistent with the age of a tephra layer (16–15 ka) at the base of loess deposits overlying the terrace. In contrast, IRSL ages of sand-sized feldspar grains overestimate the depositional age because of incomplete bleaching, whereas silt-sized quartz grains greatly underestimate the depositional age, likely because of the thermal instability of the medium component. Our results demonstrate that luminescence dating of cobbles could provide a better understanding of fluvial systems in which luminescence dating of sand grains is difficult.  相似文献   

13.
In this paper the main results from the implementation and interpretation of a geophysical survey carried out in Chalkidiki (Northern Greece) are presented. The objective of the geophysical survey was to study the general geological conditions of the area (stratigraphy and tectonism) and to focus on the hydrogeological behaviour of the geological formations in the area. The ultimate target was to point out the most promising locations for the successful construction of hydro wells. Since direct hydrogeological information was not available, three different geophysical techniques were applied in order to follow a step by step approach to the exploration of the study area. Firstly, the Very Low Frequency (VLF) electromagnetic method was applied since the majority of the area was dominated by the formation of ophiolites and water flow was possibly expected only in fractured zones at a relatively small depth. Secondly, at the locations of the conductive zones detected by the VLF survey additional Electrical Resistivity Tomography (ERT) sections at different scales were measured to provide more detailed information about the geometrical characteristics of them. Finally, Self-Potential (SP) measurements along the same profiles were conducted in order to provide supplementary information concerning the nature of the conductive zones such as the possible relation with electrokinetic sources. The combined interpretation of the geophysical data proved very efficient for deciding the most promising locations for the construction of hydro wells.  相似文献   

14.
A sand layer, interpreted as a hyperconcentrated flow deposit, was found interbedded between loess on a Yellow River terrace in Hukou, Shaanxi, China. The site is known as the Longwangchan Palaeolithic site. The deposits from the terrace were dated using optically stimulated luminescence (OSL). Two samples from the sand layer were dated to 30 ± 2 and 33 ± 3 ka using coarse-grained (CG) quartz, and to 82 ± 7 and 94 ± 5 ka using fine-grained (FG) quartz, respectively. The CG quartz OSL ages are believed to be reliable on the basis of the OSL ages of the bracketing loess samples. The overestimation of the FG quartz OSL ages of the sand samples is explained in terms of hyperconcentrated flow processes during sediment transport and deposition. The large difference between the CG and FG quartz OSL ages of the sand samples helps to better understand the formation of the hyperconcentrated flow deposit. The hyperconcentrated flow deposit in this study indicates an extreme river flood occurring at ~30 ka in this area. In addition, the stone artifacts found in the lower loess layer overlying the bedrock of the terrace were dated to ~47 ka.  相似文献   

15.
Facies analysis of Severn Main terrace sediments at Eardington, Shropshire is instructive in determining aspects of the sedimentary environment at a ‘proximal’ location in the terrace. Evaluation of the structural and directional properties of the gravels indicates that the terrace is a composite feature comprising two units. The lower unit is notable for the widespread occurrence of large sandy facies, a near absence of massive gravel facies, and the presence of large, locally derived, lithoclasts in excess of 1 m in diameter. Facies associations observed indicate the existence of in-channel bars and large channels with bedforms at the dune-plane bed transition. The directional properties of the unit indicate flows parallel to the main valley axis and although the unit is unlike previously reported examples it is interpreted as being the product of a proximal low sinuosity environment. The upper unit is composed mainly of multistorey, coarse, massive gravel units with limited interbedded sand facies. Fabric analysis indicates progradation of the unit from the west. The facies sequence is similar to those encompassed by facies models proposed for proximal alluvial fan deposits and therefore, on structural and directional grounds, the upper unit is interpreted as an alluvial fan deposit which prograded into the main Severn valley from the adjacent Mor Brook tributary. The implications of the composite nature of the terrace at this point are considered both in terms of terrace correlation and palaeohyrological estimation.  相似文献   

16.
Terraces and floodplains are important indicators of near‐channel sediment dynamics, serving as potential sediment sources and sinks. Increasing availability of high resolution topography data over large areas calls for development of semi‐automated techniques for identification and measurement of these features. In this study we introduce a novel tool that accommodates user‐defined parameters including, a local‐relief threshold selected by a variable‐size moving window, minimum area threshold, and maximum distance from the channel to identify and map discrete terrace and floodplain surfaces. Each of the parameters can easily be calibrated for a given watershed or reach. Subsequently, the tool automatically measures planform area, absolute elevation, and height relative to the local river channel for each terrace polygon. We validate the tool in two locations where terrace maps were previously developed via manual digitization from lidar and extensive field mapping campaigns. The tool is also tested on six different types of rivers to provide examples of starting selection parameters, and to test effectiveness of the tool across a wide range of landscapes. Generally, the tool provides a high quality draft map of terrace and floodplain surfaces across the wide range of environmental conditions for which it has been tested. We find that the tool functions best in catchments where the terraces are spatially extensive, with distinct differences between the terrace and floodplain. The most challenging environments for semi‐automated terrace and floodplain mapping include steep catchments with dense riparian vegetation, and very small terraces (~10 m2 in areal extent). We then apply the tool to map terraces and floodplains in the Root River watershed, southeastern Minnesota and generate exceedance plots for terrace heights. These plots provide a first pass analysis to indicate the tributaries and reaches of the river where terraces constitute a significant source of sediment. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The numerical dating of megaflood sediments is a worldwide challenge, a fact that has impeded a full understanding of Late Quaternary dam-outburst flood processes that occurred along the river courses of the Tibetan Plateau. Optically stimulated luminescence (OSL) dating has been widely used on such sediments. Due to their short transportation distances prior to deposition, the OSL signals of megaflood sediments are often partially bleached, resulting in age overestimations. Here, we report on a comparison of OSL ages obtained using both quartz (4–11 μm FG; 90–125, 180–250 μm CG) and K-feldspar (180–250 μm CG) extracted from sediments taken from the Binghong-Bingnong Neolithic-Bronze Age site on the second Jinshan River terrace (T2), in Yunnan Province, southwestern China. Contrary to previous experience suggesting that CG fractions are usually better bleached than FG fractions prior to deposition, our results showed that the OSL ages for the FG quartz fraction were generally younger than those for the CG fraction. This would suggest that the two fractions may have come from different sources, and may have been subject to different geomorphological processes prior to deposition. FG quartz fractions may be suitable to define the maximum age of sediments located in alpine gorge regions. CG quartz fractions can be used by applying the minimum age model (MAM) to select relatively well-bleached grains yielded ages close to the ‘true’ burial ages of the sediments. The results showed that the post-IR IRSL225 ages of single grain K-feldspar were overestimated by > 3 ka, suggesting K-feldspar may not be suitable dating material for megaflood sediments <30 ka. The OSL dates suggest that the T2 terrace was formed ∼8.4 ka, that aeolian sediments were deposited during ∼2.6–1.5 ka, and that the megaflood event occurred after ∼1.5 ka.  相似文献   

18.
Although river confluences have received geomorphic attention in recent years it is difficult to upscale these studies, so confluence‐dominated reaches are commonly presumed to be either: (1) braided; or (2) meandering and characterized by laterally migrating channels. If the geomorphology of a confluence zone is to be considered over longer timescales, changes in river style need to be taken into account. This paper uses a combination of remote sensing techniques (LiDAR, GPR, ER), borehole survey and chronometric dating to test this differentiation in the confluence‐zone of a medium‐sized, mixed‐load, temperate river system (Trent, UK), which on the basis of planform evidence appears to conform to the meandering model. However, the analysis of ‘confluence sediment body stratigraphy’ demonstrates that the confluence does not correspond with a simple meander migration model and chronostratigraphic data suggests it has undergone two major transformations. Firstly, from a high‐energy braid‐plain confluence in the Lateglacial (25–13 K yrs cal BP), to a lower‐energy braided confluence in the early to middle Holocene (early Holocene‐2.4 kyr BP), which created a compound terrace. Second, incision into this terrace, creating a single‐channel confluence (2.4–0.5 kyr cal BP) with a high sinuosity south bank tributary (the River Soar). The confluence sediment‐body stratigraphy is characterized by a basal suite of Late Pleistocene gravels bisected by younger channel fills, which grade into the intervening levee and overbank sediments. The best explanation for the confluence sediment body stratigraphy encountered is that frequent switching (soft‐avulsions sensu Edmonds et al., 2011) of the tributary are responsible for the downstream movement of the channel confluence (at an average rate of approximately 0.5 m per year) dissecting and reworking older braid‐plain sediments. The late Holocene evolution of the confluence can be seen as a variant of the incisional‐frequent channel reorganization (avulsion) model with sequential downstream migration of the reattachment point. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Selecting an appropriate hillslope transport model and calibrating model parameters are essential for morphological dating of fault and fluvial scarps. In this paper, we refine the method of profile-based morphologic dating by updating the representation of nonlinearity in sediment flux dependence on the hillslope gradient. We apply this revised method to fluvial scarps bounding fluvial terraces offset along the Kongur Normal Fault in the semi-arid high-altitude Pamir mountains, northwestern China. One of these terraces, the T3 surface, is dated to 7.0+1.9/−1.6 kyr using 10Be cosmogenic depth profile analysis. Well-preserved, dated terraces make this an ideal site to test the utility of morphological modelling in constraining ages of the young terrace risers. To do this, 35 topographic swath profiles across the terrace risers are extracted from a 0.2 m-resolution digital elevation model produced using structure from motion from photos collected by an unmanned aerial vehicle. The best estimates of morphological age are 13.9 ± 1.3 m2 for the riser T3/T4 and 11.9 ± 1.3 m2 for T2/T3 using a linear diffusion approach. These two morphological ages overlap within uncertainty and fail to distinguish between two young terrace risers. Alternatively, we employed a nonlinear diffusion model, calibrated with transport constant k = 1 m2 kyr−1, nonlinearity n = 2, and critical gradient Sc = tan(33°). This nonlinear model produces ages of 7.3 ± 0.5 kyr for T3/T4 and 4.0 ± 0.2 kyr for T2/T3; these ages are consistent with terrace surface ages deduced by using vertical offset divided by independently determining average throw rate. This comparison shows the advantage of a nonlinear model in defining ages of young scarps. Furthermore, we explored the minor effect of heterogeneous degradation along steep sections of the scarp profiles. The nonlinear scarp modelling scheme we develop in this paper is suitable for studying scarp degradation in other regions. © 2020 John Wiley & Sons, Ltd.  相似文献   

20.
The availability of high‐resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) surveys has spurred the development of several methods to identify and map fluvial terraces. The post‐glacial landscape of the Sheepscot River watershed, Maine, where land‐use change has produced fill terraces upstream of historic dam sites, was selected to implement a comparison between terrace mapping methodologies. At four study sites within the watershed, terraces were manually mapped on LiDAR‐DEM‐derived hillshade images to facilitate the comparison among fully and semi‐automated DEM‐based procedures, including: (1) spatial relationships between interpreted terraces and surrounding natural topography, (2) feature classification algorithms, and (3) the TerEx terrace mapping toolbox. Each method was evaluated based on its accuracy and ease of implementation. The four study sites have varying longitudinal slope (0.0008–0.006 m/m), channel width (< 5–30 m), surrounding landscape relief (20–80 m), type and density of surrounding land use, and mapped surficial geologic units. All methods generally overestimate terrace areas (average predicted area 210% of manually defined area) with the most accurate results achieved within confined river valleys surrounded by the steep hillslopes. Accuracy generally decreases for study sites surrounded by low‐relief landscapes (predicted areas ranged 4–953% of manual delineations). We conclude with the advantages and drawbacks of each method tested and make recommendations for the scenarios where the use of each method is most appropriate. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号