首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this study, the coherent structure in near bed bursting events over the ripples and mechanism of sediment bed load transport were investigated experimentally. The experiments in this study were carried out in the laboratory flume, in two parts; fixed bed ripple and mobile bed ripple. Tow artificial ripples, were built and used for making both fixed and mobile bed. For the fixed bed part, velocity fluctuations were measured using an Acoustic Doppler Velocimeter. In order to apply bursting analysis for obtained data, a computer program was written in visual basic language. Then, variation of turbulence shear stress associated with different bed form geometries was determined and mechanism of sediment transport by ripple shape at the bed of open channel was investigated. For the mobile bed part, artificial ripples were used as mould to make ripples. An image processing technique was used to record amount of sediment particles which are entrained and deposited over the same selected points at the fixed bed part. Results of mobile bed part, confirmed the results of shear stress analysis of fixed bed part.  相似文献   

2.
Mountain streams with their tributary torrents build the upper part of the fluvial network. They are important regarding the transfer of sediment from headwaters to lower basins. Channels are typically steep with wide grain size distributions, ranging from fine sand up to large boulders, and a stabilized bed surface. Mountain streams often are supply-limited with respect to mobile bed load, which needs to be addressed when bed load transport equations are applied to such streams. To better understand supply limitation, laboratory experiments highlighting the effect of bed load supply on incipient motion and bed load transport rate are discussed. Experimental tests were done in which fine bed load was supplied to a previously armored channel bed, with flow conditions ranging from one-third to twice the critical dis-charge for the bed surface. At flows not exceeding the critical discharge, the time series of the bed load transport rate at the downstream model boundary featured consistent patterns which are attributed to distinct phases: (i) a temporal lag, (ii) an equilibrium state, and (iii) a post-supply phase. Bed load transport occurred even at flows distinctly below that for incipient motion of the bed surface. But, with the mass of total bed load outflow approaching the supply amount, the mass did not exclusively consist of supplied grains. The coarser the supplied bed load, the more sediment was mobilized from the bed surface. At higher flows, processes differed. Total bed load outflow exceeded the supply amount and the break-up of the armor layer caused a refining of the bed surface.  相似文献   

3.
Step-pool systems and cobble clusters are structures composed of boulders and cobbles on mountain streambeds rearranged by flood flow to reach high resistance and high bed stability.Both bed structures and bed load motion can protect the riverbed from incision.At each step-pool,the flow energy is transformed into turbulence,and finally into heat.Bed load motion also consumes flow energy and plays a role to protect the bed from erosion.The collision of bed load particles with the bed results in a force,known as dispersive force,which balances the lift force and controls the erosion of bed sediment.Field investigations and field experiments were conducted in the Xiaojiang River basin on the Yunnan-Guizhou plateau of China,where there were incised streams and stable streams with bed load motion or with step-pool systems.This study reveals that for a given stream power, strong bed structures are associated with low or zero bed load transportation;and weak or no bed structures are associated with intensive bed load motion.Experiments showed that for incised streams, the final bed profiles were the same if there was bed load motion or there were bed structures.When key stones that made up the bed structures,for instance the large boulders in steps,were removed,the flow immediately scoured the sediment bed.The bed load transportation sharply increased by 100 times and the median diameter of bed load increased by 2-20 times.Bed structures and bed load motion are mutually replaceable for their effects on flow energy consumption and streambed incision control.This is the principle of equivalency of bed load motion and bed structures.It is due to the principle that there was no bed load motion in the Yalutsangpo Grand Canyon,where a very strong step-pool system had developed,although the bed gradient and shear stress of flow were extremely high.A possible application of this principle for incision control of the downstream reaches of the Three Gorges Dam is also discussed in this paper.  相似文献   

4.
An experimental investigation on the initiation and development of bed forms on a bed of fine silica sand was conducted under alluvial flow conditions in a laboratory flume with a diverging channel. The main aims of the study were to assess: i) the steepness of bed forms in the transition stage of development; and ii) the threshold height of wavelets (ηt) that triggered the start of ripple development. Detailed bed profile measurements were carried out using an acoustic Doppler probe, traversed longitudinally over the sediment bed at various experimentation times. The bed form dimensions were extracted from such bed profile records and analysed for the wavelet, transition and equilibrium stages. It was found that the steepness of ripples in the transition and equilibrium stages were similar, confirming predictions of previous mathematical model simulations. A lognormal distribution fitted the wavelet length data. The wavelet threshold height was estimated as ηt ≈ 7 mm, or ηt≈ 80 in wall units. Such a height magnitude suggested that ripple development could be triggered by the wavelets reaching the outer flow zone of a turbulent boundary layer. The ηt value obtained corresponded generally to the intersection point between two predictive equations for bed form dimensions. A formulation was developed to predict ηt as a function of the sediment grain size, which was confirmed for the fine sand used in this study.  相似文献   

5.
Bedload transport is a complex phenomenon that is not well understood, especially for poorly sorted sediment and low transport rates, which is what is typically found in alpine gravel-bed rivers. In this paper, the interaction between bedload rate, bed stability and flow is investigated using flume experiments. Significant differences in bedload rates were observed for experiments conducted on beds formed with the same gravel material but presenting diverse arrangements and bedforms. Tests were performed under regimes of low transport rate, which are mainly controlled by gravel-bed roughness. Different scales of roughness were identified using the statistical characteristics of detailed bed elevation measurements: grain, structure and large bedform scales. The role played by these different roughness scales in bedload dynamics was examined. For quasi-flat beds, bed stability was quantified using a combination of bed surface criteria describing grain and structure scales. It was found that bed stability affects the bedload rate directly and not only through its influence on the flow or on the incipient motion. For beds with large bedforms, the analysis of bedload dynamics also showed the importance of accounting for effective bed shear stress distributions. An empirical bedload model for low transport regimes was suggested. Compared with previous formulae developed for alpine rivers, this model accounts for bed stability and distribution of effective bed shear stress. It significantly improves the understanding of gravel dynamics over complex beds such as arranged beds or those with large bedforms. However, further tests are needed to use the model outside the range of conditions of this study. © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
Rills caused by run‐off concentration on erodible hillslopes have very irregular profiles and cross‐section shapes. Rill erosion directly depends on the hydraulics of flow in the rills, which may differ greatly from hydraulics of flow in larger and regular channels. In this paper, a recently theoretically deduced rill flow resistance equation, based on a power–velocity profile, was tested experimentally on plots of varying slopes (ranging from 9% to 26%) in which mobile and fixed bed rills were incised. Initially, measurements of flow velocity, water depth, cross‐section area, wetted perimeter, and bed slope, carried out in 320 reaches of mobile bed rills and in 165 reaches of fixed rills, were used for calibrating the theoretical flow resistance equation. Then the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number was separately calibrated for the mobile bed rills and for the fixed ones. The measurements carried out in both conditions (fixed and mobile bed rills) confirmed that the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach. For mobile bed rills, the data were supportive of the slope independence hypothesis of velocity, due to the feedback mechanism, stated by Govers. The feedback mechanism was able to produce quasicritical flow conditions. For fixed bed rills, obtained by fixing the rill channel, by a glue, at the end of the experimental run with a mobile bed rill, the slope independence of the flow velocity measurements was also detected. Therefore, an experimental run carried out by a rill bed fixed after modelling flow action is useful to detect the feedback mechanism. Finally, the analysis showed that, for the investigated conditions, the effect of sediment transport on the flow resistance law can be considered negligible respect to the grain roughness effect.  相似文献   

7.
A series of flume experiments were conducted with varying the flow discharges at the Fluvial Mechanics Laboratory of Indian Statistical Institute (Kolkata) to understand the co-evolution patterns of generating bed forms and the corresponding flow turbulence. Instantaneous bed elevations and velocity components were recorded continuously for sufficient time using high resolution instruments, such as, Ultrasonic Ranging System and acoustic Doppler velocimeter, at some spatial location over the deformed bed for each flow discharge. Increase in mean bed elevations and bed-slopes was found to be increased in discharge. Heavy-tailed nature of the probability density functions of magnitude of bed elevation increments, magnitude of single continuous bed elevation increments and instantaneous Reynolds shear stresses along three planes were analyzed using Pareto and truncated Pareto distributions. The spectral analysis of bed elevations revealed that the slope of log–log linearity increased with increase in flow discharge. Wavelet cross-correlations depicted strong dependence of bed form evolution on the corresponding instantaneous Reynolds shear stress along xz-plane. A Gram–Charlier type of distribution was used to estimate the probability density function of fluctuating velocity components, instantaneous Reynolds shear stresses along three planes and the joint probability density functions of the fluctuating velocity components, which showed good fit with the experimental data.  相似文献   

8.
Bed load transport in mountain streams is closely linked to streambed structures.Strambed structures are arrangements of boulders and cobbles deposited during extreme floods,in a stable configuration exhibiting high dissipation of flow.Field experiments were carried out in a mountain stream in Yunnan,southwestern China,studying bed load movement on three typical streambeds,i.e.,with well developed,partially developed,and no structures.An underwater observation and video-capturing system was designed to observe and measure the movement of bed load particles.The initiation mode, trajectory,velocity,and acceleration of bed load particles under the three conditions were observed and analyzed.Results showed that the bed load movement was highly associated with streambed condition.With well-developed structures,bed load particles moved intermittently through saltation and the bed load transport rate was very low.For partially-developed structures most bed load particles moved through saltation but a portion of sediment moved in sliding and rolling.In the case with no streambed structure(plane bed) contact load motion(sliding and rolling) gradually became dominant.Moreover,laminated load motion occurred and became the main component of bed load transport when the flow discharge and incoming sediment load were very high.Laminated load motion was a special form of bed load motion with an extremely high intensity.Bed load transport and streambed structure both acted to dissipate flow energy and were mutually constraining.High rates of bed load transport occurred in the streams with no or poor bed structures,and low bed load transport was associated with well developed structures.The bed load transport rate was inversely correlated to the degree of streambed development.  相似文献   

9.
Bed load transport rate was measured in ten self-formed small-scale gravel braided streams developed in a laboratory flume at several different values of steady discharge and flume gradient. The streams are approximate Froude models of typical prototype braided streams but of no particular river. Slight viscous effects may be present in the models because particle Reynolds numbers are close to 70. Total bed load discharge was measured every fifteen minutes throughout each 60 hour run. In addition, 80 channel cross-sections were measured in each run to establish the average channel geometry. Total bed load transport rate correlates well with total discharge and total stream power, although at a given stream power bed load discharge is greater when braiding is less intense and the width/depth ratio is lower. Analysis using unit stream power and cross-section average bed shear stress reveals that the laboratory data conform to existing empirical bed load transport relationships. However, comparison with field data from gravel-bed rivers shows discrepancies that may be due to differences in bed material size gradation and bed sediment structure. At constant discharge, wide fluctuations in bed load discharge occur with some regularity. Periods range from 2 to 10 hours in the models, which is equivalent to several tens of hours in a prototype. The presence of these long-period fluctuations compounds the problems of field measurement of bed load in braided streams.  相似文献   

10.
If increased sediment supply to a river channel exceeds its transport capacity, deposition necessarily occurs as the bed adjusts to accommodate the increased supply. Both the mean and spatial patterns in bed elevation and grain size may change and an ability to understand their relative importance is needed to predict bed response. We report on an experiment in a field‐scale flume in which sediment supply is increased to a gravel bed with alternate bars. Sediment was recirculated in the experiments, but augmented in two steps, after which the bed was allowed to reach a new steady state. The transport rate at the end of the experiment was three times larger than at the start. High‐resolution sediment flux and topographic measurements, grain size derived from photographs, and hydrodynamic modeling allow us to document the topographic and textural response of the bed to increased sediment supply. The spatial patterns of bed topography and texture were forced by the flume setup and the initial and final steady states included long stationary alternate bars with associated grain size sorting. The transient bed contained several scales of shorter wavelength migrating bedforms superimposed on, and temporarily replacing the stationary alternate bars. Bed topography and textural patterns adjusted to increased sediment supply over different timescales. Bed slope and mean stress increased directly with sediment supply rate to produce a new transport steady state in a time about 2.5 times the minimum needed to deposit the required sediment wedge, indicating a trap efficiency of about 40% for the aggrading wedge. Adjustments in local topography and sorting, primarily in the form of smaller, migrating bars, continued for a period approximately equal to that required to initially reach transport steady state. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The plants and animals that inhabit river channels may act as zoogeomorphic agents affecting the nature and rates of sediment recruitment, transport and deposition. The impact of benthic‐feeding fish, which disturb bed material sediments during their search for food, has received very little attention, even though benthic feeding species are widespread in rivers and may collectively expend significant amounts of energy foraging across the bed. An ex situ experiment was conducted to investigate the impact of a benthic feeding fish (Barbel Barbus barbus) on particle displacements, bed sediment structures, gravel entrainment and transport fluxes. In a laboratory flume changes in bed surface topography were measured and grain displacements examined when an imbricated, water‐worked bed of 5.6 to 16 mm gravels was exposed to feeding juvenile Barbel (on average, 0.195 m in length). Grain entrainment rates and bedload fluxes were measured under a moderate transport regime for substrates that had been exposed to feeding fish and control substrates which had not. On average, approximately 37% of the substrate, by area, was modified by foraging fish during a four‐hour treatment period, resulting in increased microtopographic roughness and reduced particle imbrication. Structural changes by fish corresponded with an average increase in bedload flux of 60% under entrainment flows, whilst on average the total number of grains transported during the entrainment phase was 82% higher from substrates that had been disturbed by Barbel. Together, these results indicate that by increasing surface microtopography and undoing the naturally stable structures produced by water working, foraging can increase the mobility of gravel‐bed materials. An interesting implication of this result is that by increasing the quantity of available, transportable sediment and lowering entrainment thresholds, benthic feeding might affect bedload fluxes in gravel‐bed rivers. The evidence presented here is sufficient to suggest that further investigation of this possibility is warranted. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We present herein clear field evidence for the persistence of a coarse surface layer in a gravel‐bed river during flows capable of transporting all grain sizes present on the channel bed. Detailed field measurements of channel topography and bed surface grain size were made in a gravel‐bed reach of the Colorado River prior to a flood in 2003. Runoff produced during the 2003 snowmelt was far above average, resulting in a sustained period of high flow with a peak discharge of 27 m3/s (170% of normal peak flow); all available grain sizes within the study reach were mobilized in this period of time. During the 2003 peak flow, the river avulsed immediately upstream of the study reach, thereby abandoning approximately one half kilometer of the former channel. The abandonment was rapid (probably within a few hours), leaving the bed texture essentially frozen in place at the peak of the flood. All locations sampled prior to the flood were resampled following the stream abandonment. In response to the high flow, the surface median grain size (D50s) coarsened slightly in the outer part of the bend while remaining nearly constant along the inner part of the bend, resulting in an overall increase from 18 to 21 mm for the study reach. Thus, the coarse bed surface texture persisted despite shear stresses throughout the bend that were well above the critical entrainment value. This may be explained because the response of the bed texture to increases in flow strength depends primarily upon the continued availability of the various grain size percentiles in the supply, which in this case was essentially unlimited for all sizes present in the channel. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Hydrodynamic river models are applied to design and evaluate measures for purposes such as safety against flooding. The modelling of river processes involves numerous uncertainties, resulting in uncertain model results. Knowledge of the type and magnitude of these uncertainties is crucial for a meaningful interpretation of the model results. Uncertainty in the hydraulic roughness due to bed forms is one of the main contributors to the uncertainty in the modelled water levels. The aim of this study was to quantify the uncertainty in the bed form roughness under design conditions and quantify the effect on the design water levels in the Dutch river Waal. Five roughness models that predict bed form roughness based on measured bed form and flow characteristics were extrapolated to design conditions. The results show that the 95% confidence interval of the predicted Nikuradse roughness values under design conditions ranges from 0.32 to 1.03 m. This uncertainty was propagated through the two‐dimensional hydrodynamic model, WAQUA, by means of a Monte Carlo simulation for an idealized schematization of the Dutch river Waal. The uncertain bed form roughness results in an uncertainty in the design water levels, with a 95% confidence interval of 0.53 m, which is significant for Dutch river management practice. The uncertainty in the bed form roughness was mainly caused by a lack of knowledge about the physical process of bed form evolution that causes roughness. An improved estimation of bed form roughness can significantly reduce the uncertainty in the design water levels. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Dominant discharge may be defined as that discharge which transports most bed sediment in a stream that is close to steady-state conditions. The concept is examined in relation to two single thread gravel-bedded streams. One stream is alluvial and free to adjust its geometry whilst in the other, channel capacity and form are partially constrained by cohesive till-banks and a heavily compacted bed. The total quantity of bedload and its calibre were measured for every flood over a six year period, so that the relationship between the grain-size of bedload and the most effective discharge could be examined in the context of thresholds for channel change. The dominant discharge concept was applicable to the alluvial stream in that the bankfull value is an effective discharge for maintaining channel capacity. The concept applied less well to the ‘non-alluvial’ stream. Although in both streams the bankfull value was exceeded for less than 0.34 per cent of the time, overbank flows are important in instigating channel change. It is only during overbank flows that the largest bed material is entrained in quantity. For within-channel flows a threshold separates flows which winnow fine matrix from those which entrain the finer bed gravels. This threshold occurred at 60 per cent bankfull. It was concluded that the dominant discharge concept can be applied to streams close to steady-state which are alluvial, competent, and free to adjust their boundaries. An important proviso is that two channel-stability domains can be recognized. These domains represent channel maintenance and channel adjustment and are defined by intrinsic thresholds in the bed material entrainment function.  相似文献   

15.
16.
The hyporheic zone is a layer of substrate on a river bed where benthic animals normally live,grow,feed,reproduce,and exist for any portion of their life cycle.The hyporheic zone was studied by samplin...  相似文献   

17.
Large asymmetric bedforms known as dunes commonly dominate the bed of sand rivers. Due to the turbulence generation over their stoss and lee sides, dunes are of central importance in predicting hydraulic roughness and water levels. During floods in steep alluvial rivers, dunes are observed to grow rapidly as flow strength increases, undergoing an unstable transition regime, after which they are washed out in what is called upper stage plane bed. This transition of dunes to upper stage plane bed is associated with high transport of bed sediment in suspension and large decrease in bedform roughness. In the present study, we aim to improve the prediction of dune development and dune transition to upper stage plane bed by introducing the transport of suspended sediment in an existing dune evolution model. In addition, flume experiments are carried out to investigate dune development under bed load and suspended load dominated transport regimes, and to get insight in the time scales related to the transition of dunes to upper stage plane bed. Simulations with the extended model including the transport of suspended sediment show significant improvement in the prediction of equilibrium dune parameters (e.g. dune height, dune length, dune steepness, dune migration rate, dune lee side slope) both under bed load dominant and suspended load dominant transport regimes. The chosen modeling approach also allows us to model the transition of dunes to upper stage plane bed which was not possible with the original dune evolution model. The extended model predicts change in the dune shapes as was observed in the flume experiments with decreasing dune heights and dune lee slopes. Furthermore, the time scale of dune transition to upper stage plane bed was quite well predicted by the extended model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Bo Wang  Yi-Jun Xu 《水文研究》2020,34(13):2864-2877
Bed material transport at river bifurcations is crucial for channel stability and downstream geomorphic dynamics. However, measurements of bed material transport at bifurcations of large alluvial rivers are difficult to make, and standard estimates based on the assumption of proportional partitioning of flow and bedload transport at bifurcations may be erroneous. In this study, we employed a combined approach based on observed topographic change (erosion/deposition) and bed material transport predicted from a one-dimensional model to investigate bed material fluxes near the engineering-controlled Mississippi-Atchafalaya River diversion, which is of great importance to sediment distribution and delivery to Louisiana's coast. Yang's (1973) sediment transport equation was utilized to estimate daily bed material loads upstream, downstream, and through the diversion during 2004–2013. Bathymetric changes in these channels were assessed with single beam data collected in 2004 and 2013. Results show that over the study period, 24% of the Mississippi River flow was diverted into the Atchafalaya River, while the rest remained in the mainstem Mississippi. Upstream of the diversion, the bed material yield was predicted to be 201 million metric tons (MT), of which approximately 35 MT (i.e., 17%) passed through the bifurcation channel to the Atchafalaya River. The findings from this study reveal that in the mainstem Mississippi, the percentage of bed material diversion (83%) is larger than the percentage of flow diversion (76%); Conversely, the diversion channel receives a disproportionate amount of flow (24%) relative to bed material supply (17%). Consequently, severe bed scouring occurred in the controlled Outflow Channel to the Atchafalaya River, while riverbed aggradation progressed in the mainstem Mississippi downstream of the diversion structures, implying reduced flow capacity and potential risk of a high backwater during megafloods. The study demonstrates that Yang's sediment transport equation provides plausible results of bed material fluxes for a highly complicated large river diversion, and that integration of the sediment transport equation with observed morphological changes in riverbed is a valuable approach to investigate sediment dynamics at controlled river bifurcations.  相似文献   

19.
Coarse bed load was sampled in a gravel/cobble bed stream during two major floods in the snowmelt runoff season. The channel is characterized by high rates of bank erosion and, therefore, high rates of sediment supply and bed load flux. Peak discharge reached four times bank‐full, and bed load was sampled at flows 0·7–1·7 times bank‐full. A large aperture bed load sampler (1 m by 0·45 m) captured the largest particles in motion, and specifically targeted the coarse bed load size distribution by using a relatively large mesh (32 mm or D25 of streambed surface size distribution). Bed load flux was highly variable, with a peak value of 0·85 kg/s/m for the coarse fraction above 38 mm. Bed load size distribution and maximum particle size was related to flow strength. Entrainment was size selective for particles D70 and larger (88–155 mm), while particles in the range D30D70 (35–88 mm) ceased to move at essentially the same flow. Bed load flux was size selective in that coarse fractions of the streambed surface were under‐represented in or absent from the bed load. Painted tracer particles revealed that the streambed surface in the riffles could remain stable even during high rates of bed load transport. These observations suggest that a large proportion of bed load sediments was sourced from outside the riffles. Repeat surveys confirmed major scour and fill in pools (up to 0·75 m), and bank erosion (>2 m), which together contributed large volumes of sediment to the bed load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
微曝气生态浮床净化入湖河口污染河水原位模型实验   总被引:5,自引:1,他引:4  
针对污染河水黑臭缺氧、NH_4~+-N含量高等问题,研发了一种"漂浮载体悬挂弹性生物膜填料+水生植物并辅以人工微曝气系统"的微曝气生态浮床系统.通过原位模型实验,研究了其在大清河入湖河口对污染河水的净化效果,当水力负荷为1500mm/d时,对TN和NH_4~+-N的平均去除率分别为81.1%、91.3%,对TP的平均去除率为72.7%,对PO_4~(3-)-p的平均去除率为92.5%,对有机物亦有较强的去除能力;处理1m~3水需要的曝气费用约为0.007元.微曝气生态浮床系统整体运行稳定、去除效率高、能耗低,适合流水环境,可直接在污染河道和人湖河口区对污染河水进行自流净化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号