首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We present 13 CO J  = 1 − 0 line observations of the H  ii region complex W51B located in the high-velocity (HV) stream. These observations reveal a filamentary and clumpy structure in the molecular gas. The mean local standard of rest (LSR) velocity ∼ + 65 km s−1 of the molecular gas in this region is greater than the maximum velocities allowed by kinematic Galactic rotation curves. The size and mass of the molecular clouds are ∼ 48 × 17 pc2 and ∼ 2.4 × 105 M⊙ respectively. In a position–velocity diagram, molecular gas in the southern part comprises a redshifted ring structure with v LSR=+ 60 to +73 km s−1. The velocity gradient of this ring is ∼ 0.5 km s−1 pc−1, and the mass is ∼ 6.2 × 104 M⊙. If we assume that the ring is expanding with a uniform velocity, the expansion velocity, radius and kinetic energy are ∼ 7 km s−1, ∼ 13 pc and ∼ 3.0 × 10 49 erg respectively. The kinetic energy and mass spectrum of the ring could be explained by an expanding cylindrical cloud with a centrally condensed mass distribution. The locations of two compact H  ii regions, G49.0−0.3 and G48.9−0.3, coincide with the two molecular clumps in this ring. We discuss star formation, and the mechanism that produced the ring structure.  相似文献   

2.
We have studied the kinematics and spatial distribution of the interstellar gas in the sky region  110°≤ l ≤ 135°, 10°≤ b ≤ 20°  , using the extensive Leiden–Dwingeloo Survey of H  i emission and the Columbia Survey of CO emission. The spectra show two main velocity components, namely feature A that has a mean local standard of rest (LSR) velocity of  ∼0  km s−1  and is due to the Lindblad ring of the Gould belt, and feature C that has a mean LSR velocity of  ∼−11  km s−1  and is associated to the local arm or Orion arm. The H  i and CO distributions of feature A in the region trace a large complex of gas and dust known as the Cepheus Flare, which lies at a distance of 300 pc. The spectral line profiles of feature A, which are rather broad and often double-peaked, reveal that the Cepheus Flare forms part of a big expanding shell of interstellar matter that encloses an old supernova remnant associated with a void inside the Cepheus Flare. On the other hand, by analysing the distribution and velocity structure of feature C, we have detected a second large expanding shell in the region, located at a distance of 800 pc in the local arm. This shell surrounds the stellar association Cepheus OB4 and was probably generated by stellar winds and supernovae of Cepheus OB4. The radii, expansion velocities and H  i masses of the two shells are approximately 50 pc, 4  km s−1 and  1.3 × 104 M  for the Cepheus Flare shell and 100 pc, 4 km s−1 and  9.9 × 104 M  for the Cepheus OB4 shell. Both shells have similar ages of the order of a few 106 yr.  相似文献   

3.
We present single-dish Arecibo 21-cm H  i observations, covering a 0675×0625 RA–Dec. grid, of the intermediate-velocity cloud (IVC) centred upon the M15 globular cluster. The velocity and positional structure of the IVC gas at V LSR=70 km s−1 are investigated; it is found to be clumpy and has a peak surface density N H  i ∼8×1019 cm−2. Additionally, we have performed a long H  i integration towards HD 203664, a Galactic halo star some 31 from M15, in which optical IVC absorption has previously been detected. No H  i with a velocity exceeding 60 km s−1 was found to a brightness temperature limit of 0.05 K. However, additional pointings did detect IVC gas approximately mid-way between HD 203664 and M15. Finally, we present both Arecibo H  i pointings and low-resolution spectra in the Ca  ii H and K lines towards 15 field stars in the general field towards M15, in an attempt to obtain the distance to the IVC. Intermediate-velocity H  i is detected towards seven sightlines. Stellar spectral types are derived for 12 of the sample. Assuming that these stars lie on the main sequence, their distances are estimated to lie in the range 150≤ d ≤1350 pc. No Ca  ii absorption is observed, either because the IVC is further away than ∼1350 pc or more likely because the gas along these sightlines is of too low a density to be detected by the current observations.  相似文献   

4.
G35.6−0.4 is an extended radio source in the Galactic plane which has previously been identified as either a supernova remnant or an H  ii region. Observations from the Very Large Array Galactic Plane Survey at 1.4 GHz with a resolution of 1 arcmin allow the extent of G35.6−0.4 to be defined for the first time. Comparison with other radio survey observations show that this source has a non-thermal spectral index, with   S ∝ν−0.47±0.07  . G35.6−0.4 does not have obvious associated infrared emission, so it is identified as a Galactic supernova remnant, not an H  ii region. It is  ≈15 × 11 arcmin2  in extent, showing partial limb brightening.  相似文献   

5.
Five galaxy groups with properties similar to those of the Local Group have been surveyed for H  i clouds with the Arecibo Telescope. In total 300 pointings have been observed on grids of approximately 2.5×1.5 Mpc2 centred on the groups. The 4.5 σ detection limit on the minimal detectable H  i masses is approximately 7×106 M ( H 0=65 km s−1 Mpc−1) . All detections could be attributed to optical galaxies; no significant detections of H  i clouds have been made. This null result leads to the conclusion that the total H  i mass of intragroup clouds must be less than 10 per cent of the total H  i mass of galaxy groups and less than 0.05 per cent of the dynamical mass. The recent hypothesis that Galactic high-velocity clouds are Local Group satellite galaxies is highly inconsistent with these observations.  相似文献   

6.
We consider the possibility that the excess of cosmic rays near ∼1018 eV, reported by the AGASA and SUGAR groups from the direction of the Galactic Centre, is caused by a young, very fast pulsar in the high-density medium. The pulsar accelerates iron nuclei to energies ∼1020 eV, as postulated by the Galactic models for the origin of the highest-energy cosmic rays. The iron nuclei, about 1 yr after pulsar formation, leave the supernova envelope without energy losses and diffuse through the dense central region of the Galaxy. Some of them collide with the background matter creating neutrons (from disintegration of Fe), neutrinos and gamma-rays (in inelastic collisions). We suggest that neutrons produced at a specific time after the pulsar formation are responsible for the observed excess of cosmic rays at ∼1018 eV. From normalization of the calculated neutron flux to the one observed in the cosmic ray excess, we predict the neutrino and gamma-ray fluxes. It has been found that the 1 km2 neutrino detector of the IceCube type should detect from a few up to several events per year from the Galactic Centre, depending on the parameters of the considered model. Moreover, future systems of Cherenkov telescopes (CANGAROO III, HESS, VERITAS) should be able to observe  1–10 TeV  gamma-rays from the Galactic Centre if the pulsar was created inside a huge molecular cloud about  3–10×103 yr  ago.  相似文献   

7.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

8.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

9.
During the past decade or so, measurements of Galactic H  i absorption using VLBI against extragalactic sources, as well as multi-epoch observations in pulsar directions, have detected small-scale transverse variations corresponding to tens of au at the distance of the absorbing matter. Hitherto these measurements have been interpreted as small-scale structure in the H  i distribution with densities n H  i ∼104–105 cm−3, orders of magnitude greater than those of the pc-scale structure. Naturally, it is difficult to imagine how such structures could exist in equilibrium with other components of the ISM.
In this paper we show that structure on all scales contributes to the differences on neighbouring lines of sight, and that the observed differences can be accounted for by a natural extension of the distribution of irregularities in the distribution of H  i opacities at larger scales, using a single power law. This, in our opinion, should put an end to the decades-long puzzle of the so-called small-scale structure in H  i and other species in the Galaxy.  相似文献   

10.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

11.
We present a search for  CO(1 → 0)  emission in three Local Group dwarf irregular galaxies: IC 5152, the Phoenix dwarf and UGCA 438, using the ATNF Mopra radio telescope. Our scans largely cover the optical extent of the galaxies and the stripped H  i cloud west of the Phoenix dwarf. Apart from a tentative but non-significant emission peak at one position in the Phoenix dwarf, no significant emission was detected in the CO spectra of these galaxies. For a velocity width of 6 km s−1, we derive 4σ upper limits of 0.03, 0.04 and 0.06 K km s−1 for IC 5152, the Phoenix dwarf and UGCA 438, respectively. This is an improvement of over a factor of 10 compared with previous observations of IC 5152; the other two galaxies had not yet been observed at millimetre wavelengths. Assuming a Galactic CO-to-H2 conversion factor, we derive upper limits on the molecular gas mass of  6.2 × 104, 3.7 × 103  and  1.4 × 105 M  for IC 5152, the Phoenix dwarf and UGCA 438, respectively. We investigate two possible causes for the lack of CO emission in these galaxies. On the one hand, there may be a genuine lack of molecular gas in these systems, in spite of the presence of large amounts of neutral gas. However, in the case of IC 5152 which is actively forming stars, molecular gas is at least expected to be present in the star-forming regions. On the other hand, there may be a large increase in the CO-to-H2 conversion factor in very low-metallicity dwarfs  (−2 ≤[Fe/H]≤−1)  , making CO a poor tracer of the molecular gas content in dwarf galaxies.  相似文献   

12.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

13.
We present consistent modelling of line and continuum infrared (IR) spectra in the region close to the Galactic Centre. The models account for the coupled effect of shocks and photoionization from an external source. The results show that the shock velocities range between ∼65 and 80 km s−1 and the pre-shock densities between 1 cm−3 in the interstellar medium (ISM) to 200 cm−3 in the filamentary structures. The pre-shock magnetic field increases from 5 × 10−6 G in the surrounding ISM to ∼8 × 10−5 G in the arched filaments. The stellar temperatures are ∼38 000 K in the Quintuplet cluster and ∼27 000 K in the Arches Cluster. The ionization parameter is relatively low (<0.01) with the highest values near the clusters, reaching a maximum >0.01 near the Arches Cluster. Depletion from the gaseous phase of Si is found throughout the whole observed region, indicating the presence of silicate dust. Grains including iron are concentrated throughout the arched filaments. The modelling of the continuum spectral energy distribution in the IR range indicates that a component of dust at temperatures of ∼100–200 K is present in the central region of the Galaxy. Radio emission appears to be thermal bremsstrahlung in the E2–W1 filaments crossing strip; however, a synchrotron component is not excluded. More data are necessary to resolve these questions.  相似文献   

14.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

15.
The central arcminute of the Perseus cooling flow galaxy, NGC 1275, has been mapped with the JCMT in 12CO(2–1) at 21-arcsec resolution, with detections out to at least 36 arcsec (12 kpc). Within the limits of the resolution and coverage, the distribution of gas appears to be roughly east–west, consistent with previous observations of CO, X-ray, Hα and dust emission. The total detected molecular hydrogen mass is ∼ 1.6 × 1010 M, using a Galactic conversion factor. The inner central rotating disc is apparent in the data, but the overall distribution is not one of rotation. Rather, the line profiles are bluewards-asymmetric, consistent with previous observations in H  i and [O  iii ]. We suggest that the blueshift may be due to an acquired mean velocity of ∼ 150 km s−1 imparted by the radio jet in the advancing direction. Within the uncertainties of the analysis, the available radio energy appears to be sufficient, and the interpretation is consistent with that of Bo¨hringer et al. for displaced X-ray emission. We have also made the first observations of 13CO(2–1) and 12CO(3–2) emission from the central 21-arcsec region of NGC 1275 and combined these data with IRAM data supplied by Reuter et al. to form line ratios over equivalent, well-sampled regions. An LVG radiative transfer analysis indicates that the line ratios are not well reproduced by single values of kinetic temperature, molecular hydrogen density and abundance per unit velocity gradient. At least two temperatures are suggested by a simple two-component LVG model, possibly reflecting a temperature gradient in this region.  相似文献   

16.
We report on a search for atomic hydrogen holes and shells in the nearby starburst galaxy M82, using high angular resolution (∼1.3 arcsec) VLA H  i absorption observations. From this study, we have detected four H  i shells in the central kiloparsec of M82. The sizes of these shells (∼30–50 pc) are smaller than those of the majority of shells observed in the Large Magellanic Cloud, although the M82 shells have higher expansion velocities (∼30 km s−1) and typical kinetic energies of  1051–1052 erg  . Because our observations were made in absorption, strong selection effects are present which hinder the detection of shells that could be present outside, or behind, the extended radio continuum associated with the starburst. Nevertheless, our detection of four shells in M82 actually represents a higher density of shells per unit area compared with the Large Magellanic Cloud.
We also discuss the gas dynamics in the central kiloparsec of M82, and discuss the velocity structure of gas in a barred potential and in wind-driven shells. We conclude that in M82 the observed gas dynamics are most likely a superposition of both effects.  相似文献   

17.
We have used the Swedish ESO Submillimeter Telescope to observe the molecular gas in the Circinus galaxy using the CO(1 → 0) transition as a tracer. The central region and major axis have been mapped and several other points were also observed. The gas in the galaxy is concentrated towards the nucleus, the peak being coincident with the radio/optical core. The inclination of the molecular galactic disc is more comparable to that of the radio continuum than to that of the large-scale H  i emission. Evidence for an anomalous spur structure pointing radially away from the galactic centre is presented, and may indicate a causal link between it and similar features seen in optical lines and radio continuum. Our data suggest the presence of a central molecular ring or disc with radius 300 ± 50 pc and a rotation velocity of about 200 km s−1 (assuming i  = 73°). The dynamical mass of the nucleus is estimated to be no greater than 3.9 × 109 M. Assuming that the distribution of gas varies smoothly in the outer regions, we calculate the mass of molecular gas in the galaxy to be at least M mol = 1.1 × 109 M, and the star-forming efficiency to be 11 ± 2 L M−1. These results imply that Circinus is undergoing a massive central starburst which may be, at least partially, responsible for its extended minor axis emission seen in several wavebands.  相似文献   

18.
We investigate the dynamical effects of a molecular cloud complex with a mass ∼ 107 M and a size ∼ a few 100 pc on the vertical distribution of stars and atomic hydrogen gas in a spiral galactic disc. Such massive complexes have now been observed in a number of spiral galaxies. The extended mass distribution in a complex, with an average mass density 6 times higher than the Oort limit, is shown to dominate the local gravitational field. This results in a significant redistribution or clustering of the surrounding disc components towards the mid-plane, with a resulting decrease in their vertical scaleheights.
The modified, self-consistent stellar density distribution is obtained by solving the combined Poisson equation and the force equation along the z -direction for an isothermal stellar disc on which the complex is imposed. The effect of the complex is strongest at its centre, where the stellar mid-plane density increases by a factor of 2.6 and the vertical scaleheight decreases by a factor of 3.4 compared with the undisturbed stellar disc. A surprising result is the large radial distance of ∼ 500 pc from the complex centre over which the complex influences the disc; this is due to the extended mass distribution in a complex. The complex has a comparable effect on the vertical distribution of the atomic hydrogen gas in the galactic disc. This 'pinching' or constraining effect should be detectable in the nearby spiral galaxies, as for example has been done for NGC 2403 by Sicking. Thus the gravitational field of a complex results in local corrugations of the stellar and H  i vertical scaleheights, and the galactic disc potential is highly non-uniform on scales of the intercomplex separation of ∼ 1 kpc.  相似文献   

19.
Transient microstructure in the diffuse interstellar medium (ISM) has been observed towards Galactic and extragalactic sources for decades, usually in lines of atoms and ions, and, more recently, in molecular lines. Evidently, there is a molecular component to the transient microstructure. In this paper, we explore the chemistry that may arise in such microstructure. We use a photodissociation region (PDR) code to model the conditions of relatively high density, low temperature, very low visual extinction and very short elapsed time that are appropriate for these objects. We find that there is a well-defined region of parameter space where detectable abundances of molecular species might be found. The best matching models are those where the interstellar microstructure is young (<100 yr), small (∼100 au) and dense  (>104 cm−3)  .  相似文献   

20.
We investigate shattering and coagulation of dust grains in turbulent interstellar medium (ISM). The typical velocity of dust grain as a function of grain size has been calculated for various ISM phases based on a theory of grain dynamics in compressible magnetohydrodynamic turbulence. In this paper, we develop a scheme of grain shattering and coagulation and apply it to turbulent ISM by using the grain velocities predicted by the above turbulence theory. Since large grains tend to acquire large velocity dispersions as shown by earlier studies, large grains tend to be shattered. Large shattering effects are indeed seen in warm ionized medium within a few Myr for grains with radius   a ≳ 10−6  cm. We also show that shattering in warm neutral medium can limit the largest grain size in ISM  ( a ∼ 2 × 10−5 cm)  . On the other hand, coagulation tends to modify small grains since it only occurs when the grain velocity is small enough. Coagulation significantly modifies the grain size distribution in dense clouds (DC), where a large fraction of the grains with   a < 10−6 cm  coagulate in 10 Myr. In fact, the correlation among   RV   , the carbon bump strength and the ultraviolet slope in the observed Milky Way extinction curves can be explained by the coagulation in DC. It is possible that the grain size distribution in the Milky Way is determined by a combination of all the above effects of shattering and coagulation. Considering that shattering and coagulation in turbulence are effective if dust-to-gas ratio is typically more than ∼1/10 of the Galactic value, the regulation mechanism of grain size distribution should be different between metal-poor and metal-rich environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号