首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Three successive zones of fault‐related folds disrupt the proximal part of the northern Tian Shan foreland in NW China. A new magnetostratigraphy of the Taxi He section on the north limb of the Tugulu anticline in the middle deformed zone clarifies the chronology of both tectonic deformation and depositional evolution of this collisional mountain belt. Our ~1200‐m‐thick section encompasses the upper Cenozoic terrigenous sequence within which ~300 sampling horizons yield an age span of ~8–2 Ma. Although the basal age in the Taxi He section of the Xiyu conglomerate (often cited as an indicator of initial deformation) is ~2.1 Ma, much earlier growth of the Tugulu anticline is inferred from growth strata dated at ~6.0 Ma. Folding of Neogene strata and angular unconformities in anticlines in the more proximal and distal deformed zones indicate deformation during Miocene and Early Pleistocene times, respectively. In the Taxi He area, sediment‐accumulation rates significantly accelerate at ~4 Ma, apparently in response to encroaching thrust loads. Together, growth strata, angular unconformities, and sediment‐accumulation rates document the northward migration of tectonic deformation into the northern Tian Shan foreland basin during the late Cenozoic. A progradational alluvial–lacustrine system associated with this northward progression is subdivided into two facies associations at Tugulu: a shallow lacustrine environment before ~5.9 Ma and an alluvial fan environment subsequently. The lithofacies progradation encompasses the time‐transgressive Xiyu conglomerate deposits, which should only be recognized as a lithostratigraphic unit. Along the length of the foreland, the locus of maximum shortening shifts between the medial and proximal zones of folding, whereas the total shortening across the foreland remains quite homogeneous along strike, suggesting spatially steady tectonic forcing since late Miocene times.  相似文献   

2.
The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India–Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies haematite‐ and magnetite‐bearing alluvial fan deposits in the upper portion of the sampled strata as more reliable palaeomagnetic recorders than magnetite‐bearing fluvial and lacustrine deposits that are often maghaemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m Myr?1 at 3.9±0.3 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone‐dominated) to alluvial fan (conglomerate‐dominated) deposits that likely records an approaching erosional source related to tectonically increased subsidence rather than differential compaction. Clear evidence for growth strata starting at an estimated age of ~2 Ma provides a minimum age for folding. These results are compared with previous magneotstratigraphic studies from the same and other sections of the northern Tian Shan foreland basin fill, thus enabling a critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ~4 Ma, although a climatic contribution must be considered given the close relationship of these ages with the Pliocene climate deterioration.  相似文献   

3.
Estimates of the physical boundary conditions on sediment source and sink regions and the flux between them provide insights into the evolution of topography and associated sedimentary basins. We present a regional‐scale, Plio‐Quaternary to recent sediment budget analysis of the Grande, Parapeti and Pilcomayo drainages of the central Andean fold‐thrust belt and related deposits in the Chaco foreland of southern Bolivia (18–23°S). We constrain source‐sink dimensions, fluxes and their errors with topographic maps, satellite imagery, a hydrologically conditioned digital elevation model, reconstructions of the San Juan del Oro (SJDO) erosion surface, foreland sediment isopachs and estimated denudation rates. Modern drainages range from 7453 to 86 798 km2 for a total source area of 153 632 km2. Palaeo‐drainage areas range from 9336 to 52 620 km2 and total 100 706 km2, suggesting basin source area growth of ~50% since ~10 Ma. About 2.4–3.1 × 104 km3 were excavated from below the SJDO surface since ~3 Ma. The modern foredeep is 132 080 km2 with fluvial megafan areas and volumes ranging from 6142 to 22 511 km2 and from 1511 to 3332 km3, respectively. Since Emborozú Formation deposition beginning 2.1 ± 0.2 Ma, the foreland has a fill of ~6.4 × 104 km3. The volume and rate of deposition require that at least ~40–60% of additional sediment be supplied beyond that incised from below the SJDO. The data also place a lower limit of ≥0.2 mm year?1 (perhaps ≥0.4 mm year?1) on the time‐ and space‐averaged source area denudation rate since ~2–3 Ma. These rates are within the median range measured for the Neogene, but are up to 2 orders of magnitude higher than some observations, as well as analytic solutions for basin topography and stratigraphy using a two‐dimensional mathematical model of foreland basin evolution. Source‐to‐sink sediment budget analyses and associated interpretations must explicitly and quantitatively reconcile all available area, volume and rate observations because of their inherent imprecision and the potential for magnification when they are convolved.  相似文献   

4.
The well‐constrained seismic stratigraphy of the offshore Canterbury basin provides the opportunity to investigate long‐term changes in sediment supply related to the formation of a transpressive plate boundary (Alpine Fault). Reconstructions of the relative motion of the Australian and Pacific plates reveal divergence in the central Southern Alps prior to ~20.1 Ma (chron 6o), followed by increasing average rates of convergence, with a marked increase after ~6 Ma (late Miocene). A strike–slip component existed prior to 33.5 Ma (chron 13o) and perhaps as early as Eocene (45 Ma). However, rapid strike–slip motion (>30 mm yr?1) began at ~20.1 Ma (chron 6o). Since ~20.1 Ma there has been no significant change in the strike–slip component of relative plate motion. Sedimentation rates are calculated from individual sequence volumes that are then summed to represent sequence groups covering the same time periods as the tectonic reconstructions. Rates are relatively high (>22 mm yr?1), from 15 to ~11.5 Ma (sequence group 1). Rates decrease to a minimum (<15 mm yr?1) during the ~11.5–6 Ma interval (sequence group 2), followed by increased rates during the periods of ~6–2.6 Ma (21 mm yr?1; group 3) and 2.6–0 Ma (~25 mm yr?1; group 4). Good agreement between sedimentation and tectonic convergence rates in sequence groups 2–4 indicates that tectonism has been the dominant control on sediment supply to the Canterbury basin since ~11.5 Ma. In particular, high sedimentation rates of 21 and ~25 mm yr?1 in groups 3 and 4, respectively, may reflect increased plate convergence and uplift at the Southern Alps at ~6 Ma. The early‐middle Miocene (~15–11.5 Ma) high sedimentation rate (22 mm yr?1) correlates with low convergence rates (~2 mm yr?1) and is mainly a response to global climatic and eustatic forcing.  相似文献   

5.
We have constrained the time‐space migration of the Zagros foredeep basin by performing Sr isotope stratigraphy on 31 samples of marine macrofossils from Neogene sediments now exposed in the Zagros mountain belt in southwest Iran. Our results show that these deposits (represented mainly by the Mishan Formation) are strongly diachronous, with ages ranging between 17.2 ± 0.2 and 1.1 ± 0.1 Ma. These deposits are older in the west (Dezful region) and become progressively younger towards the south and the south‐east (Fars region). Our results show that the marine foredeep was replaced by a fluvial sedimentary environment between ca. 14 and 12 Ma in the western sector, while this occurred between ca. 8 and 1 Ma in the eastern sector, becoming younger towards the south. These results enable us to show that the foreland basin migrated perpendicular to the orogen at rates of between 17.5 and 50 mm year?1 throughout the Neogene, exceeding migration rates in the Alps, Pyrenees, Apennines and Himalayan foreland basins. The sporadically elevated rates in the Zagros appear to be related to times when major widely spaced pre‐existing basement faults became reactivated. Finally, our results, when combined with published data, have enabled us to establish a new chronostratigraphic diagram for the Neogene portion of the Zagros foreland basin. Our study highlights that foreland basins are extremely dynamic settings where depocentres and palaeoenvironments may change rapidly in both time and space in relation to migrating deformation.  相似文献   

6.
The South‐Pyrenean Foreland Basin is a sedimentary trough developed during Palaeogene times in response Pyrenean orogenesis. The structural development of the chain progressively involved the foreland basin deposits resulting in synsedimentary thrusting and growth of folds through the basin. The lower Eocene Roda Sandstone was deposited in a shallow‐marine environment whose topography (bathymetry) was modified by a series of growing gentle folds. This synsedimentary folding is evidenced in the field (i) thickening of sedimentary units above synclinal structures and thinning over anticlines; (ii) carbonate platform deposits growing on top of anticlines; (iii) the areal distribution of benthic foraminifera in transgressive facies assemblages determined by an irregular, fold‐influenced palaeobathymetry; (iv) variation of sandstone palaeocurrents related to the presence of a sedimentary trough formed by the synsedimentary growth of a syncline. In addition, synsedimentary folding has been evidenced from seismic data. In the Roda Sandstone example, the growth of gentle folds occurred in an area with high sedimentation rates (~0.21 ± 0.06 mm y?1). Due to the high sedimentation rates, exceeding the folds uplift rate (~0.10 ± 0.01 mm y?1), there are no noticeable unconformities in the growth strata at outcrop scale. However, the effects on the sedimentation are very significant, because the sediments were deposited close to sea level, and thus were very sensitive to fauna and facies distribution.  相似文献   

7.
This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro‐foreland basin (Venetian–Friulian Basin). Our discussion is based on the depositional architecture and basin‐scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long‐term trends and short‐term high‐magnitude (‘aberrant’) episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year?1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year?1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene–Pleistocene, when the basin‐scale depositional rate increased to an average of 0.26 mm year?1 (Pliocene) and 0.73 mm year?1 (Pleistocene). This result fits nicely with the long‐term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7–0.9 Ma), the acceleration of the global cooling trend (since 3–4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high‐frequency and high‐magnitude cooling–warming cycles are particularly powerful in promoting erosion in mid‐latitude mountain belts and therefore in increasing the sediment flux in foreland basins.  相似文献   

8.
Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia–Eurasia collision zone offer the unique possibility to study middle–late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long‐term evolution of the Iranian Plateau, including the regional spatio‐temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle–late Miocene crustal shortening and thickening processes led to the growth of a basement‐cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland‐basin (Great Pari Basin) to the east between 16.5 and 10.7 Ma. By 10.7 Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement‐cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle‐flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.  相似文献   

9.
The Longmen Shan Foreland Basin developed as a flexural foredeep during the Late Triassic Indosinian orogeny, spanning the time period c. 227–206 Ma. The basin fill can be divided into three tectonostratigraphic units overlying a basal megasequence boundary, and is superimposed on the Palaeozoic–Middle Triassic (Anisian) carbonate‐dominated margin of the South China Block. The remains of the load system responsible for flexure of the South China foreland can be seen in the Songpan‐Ganzi Fold Belt and Longmen Shan Thrust Belt. Early in its history the Longmen Shan Foreland Basin extended well beyond its present northwestern boundary along the trace of the Pengguan Fault, to at least the palinspastically restored position of the Beichuan Fault. The basal boundary of the foreland basin megasequence is a good candidate for a flexural forebulge unconformity, passing from conformity close to the present trace of the Beichuan Fault to a karstified surface towards the southeast. The overlying tectonostratigraphic unit shows establishment and drowning of a distal margin carbonate ramp and sponge build‐up, deepening into offshore marine muds, followed by progradation of marginal marine siliciclastics, collectively reminiscent of the Alpine underfilled trinity of Sinclair (1997) . Tectonostratigraphic unit 2 is marked by the severing of the basin's oceanic connection, a major lake flooding and the gradual establishment of major deltaic‐paralic systems that prograded from the eroding Longmen Shan orogen. The third tectonostratigraphic unit is typified by coarse, proximal conglomerates, commonly truncating underlying rocks, which fine upwards into lacustrine shales. The foreland basin stratigraphy has been further investigated using a simple analytical model based on the deflection by supracrustal loads of a continuous elastic plate overlying a fluid substratum. Load configurations have been partly informed by field geology and constrained by maximum elevations and topographic profiles of present‐day mountain belts. The closest match between model predictions and stratigraphic observations is for a relatively rigid plate with flexural rigidity on the order of 5 × 1023 to 5 × 1024 N m (equivalent elastic thickness of c. 43–54 km). The orogenic load system initially (c. 227–220 Ma) advanced rapidly (>15 mm yr?1) towards the South China Block in the Carnian, associated with the rapid closure of the Songpan‐Ganzi ocean, before slowing to < 5 mm yr?1 during the sedimentation of the upper two tectonostratigraphic units (c. 220–206 Ma).  相似文献   

10.
Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia   总被引:3,自引:1,他引:3  
Eastward Andean orogenic growth since the late Oligocene led to variable crustal loading, flexural subsidence and foreland basin sedimentation in the Chaco basin. To understand the interaction between Andean tectonics and contemporaneous foreland development, we analyse stratigraphic, sedimentologic and seismic data from the Subandean Belt and the Chaco Basin. The structural features provide a mechanism for transferring zones of deposition, subsidence and uplift. These can be reconstructed based on regional distribution of clastic sequences. Isopach maps, combined with sedimentary architecture analysis, establish systematic thickness variations, facies changes and depositional styles. The foreland basin consists of five stratigraphic successions controlled by Andean orogenic episodes and climate: (1) the foreland basin sequence commences between ~27 and 14 Ma with the regionally unconformable, thin, easterly sourced fluvial Petaca strata. It represents a significant time interval of low sediment accumulation in a forebulge‐backbulge depocentre. (2) The overlying ~14–7 Ma‐old Yecua Formation, deposited in marine, fluvial and lacustrine settings, represents increased subsidence rates from thrust‐belt loading outpacing sedimentation rates. It marks the onset of active deformation and the underfilled stage of the foreland basin in a distal foredeep. (3) The overlying ~7–6 Ma‐old, westerly sourced Tariquia Formation indicates a relatively high accommodation and sediment supply concomitant with the onset of deposition of Andean‐derived sediment in the medial‐foredeep depocentre on a distal fluvial megafan. Progradation of syntectonic, wedge‐shaped, westerly sourced, thickening‐ and coarsening‐upward clastics of the (4) ~6–2.1 Ma‐old Guandacay and (5) ~2.1 Ma‐to‐Recent Emborozú Formations represent the propagation of the deformation front in the present Subandean Zone, thereby indicating selective trapping of coarse sediments in the proximal foredeep and wedge‐top depocentres, respectively. Overall, the late Cenozoic stratigraphic intervals record the easterly propagation of the deformation front and foreland depocentre in response to loading and flexure by the growing Intra‐ and Subandean fold‐and‐thrust belt.  相似文献   

11.
The synkinematic strata of the Kuqa foreland basin record a rich history of Cenozoic reactivation of the Palaeozoic Tian Shan mountain belt. Here, we present new constraints on the history of deformation in the southern Tian Shan, based on an analysis of interactions between tectonics and sedimentation in the western Kuqa basin. We constructed six balanced cross‐sections of the basin, integrating surface geology, well data and a grid of seismic reflection profiles. These profiles show that the Qiulitage fold belt on the southern edge of the Kuqa basin developed by thin‐skinned compression salt tectonics. The structural styles have been influenced by two major factors: the nature of early‐formed diapirs and the basinward depositional limit of the Kumugeliemu salt. Several early diapirs developed in the western Kuqa basin, soon after salt deposition, which acted to localize the subsequent shortening. Where diapirs had low relief and a thick overburden they tended to tighten into salt domes 3000–7000 m in height. Conversely, where the original diapirs had higher relief and a thinner overburden they tended to evolve into salt nappes, with the northern flanks of the diapirs thrusting over their southern flanks. Salt was expelled forward, up dip along the mother salt layer, tended to accumulate at the distal pinch‐out of Kumugeliemu salt located at the Qiulitage fold belt. Furthermore, the synkinematic strata (6–8 km thick) of the Kuqa basin indicate that during the Cenozoic reactivation of the Tian Shan, shortening of the western Kuqa basin was mainly in the hinterland until the early Miocene. Then, compression spread simultaneously southwards to the Dawanqi anticline, the Qiulitage fold belt and the southernmost blind detachment fold at the end of Miocene. The western Kuqa basin has a shortening of ca. 23 km. We consider that ca. 9 km was consumed from the end of the Miocene (5.2/5.8 Ma) to the early Pleistocene (2.58 Ma) and another ca. 14 km have been absorbed since then. Thus, we obtain a ca. 3.4/2.8 mm year?1 average shortening from 5.2/5.8 to 2.58 Ma, followed by a 60–90% increase in average shortening rate to ca. 5.4 mm year?1 since 2.58 Ma. This suggests that the reactivation of the modern Tian Shan has been accelerating up to the present day.  相似文献   

12.
The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year?1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year?1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year?1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year?1). Adjusted rates to discount these local erosional products (117 Mt year?1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.  相似文献   

13.
Integrated geohistory analysis performed on high‐resolution stratigraphy of Venezia 1 and Lido 1 wells (Quaternary–Pliocene interval) and low‐resolution stratigraphy of a simulated well extending Lido 1 down to the base of Cenozoic (Palaeocene–Miocene interval) is used to reconstruct the interplay between subsidence and sedimentation that occurred in the Venice area (eastern Po Plain) during the last 60 Myr, and to discuss the relationships between calculated subsidence rates and time resolution of stratigraphic data. Both subsidence and sedimentation are mostly related to the tectonic evolution of the belts that surround the Venice basin, influencing the lithosphere vertical motions and the input of clastic sediments through time. In particular, two subsidence phases are recorded between 40–33.5 and 32.5–24 Myr (0.13 and 0.14 mm year?1, respectively), coeval with tectonic phases in the Dinaric belt. Vice versa, during the main South‐Alpine orogenic phase (middle–late Miocene), quiescence or little uplift (?0.03 mm year?1) reflects the location of the Venice area close to the peripheral bulge of the South‐Alpine foreland system. Early Pliocene evolution is characterised by a number of subsidence/uplift events, among which two uplifts occurred between 5–4.5 and 3–2.2 Myr (at ?0.4 and ?0.2 mm year?1, respectively) and can be correlated with tectonic motions in the Apennines. During the last million years, the Venice area was initially characterised by uplift (?0.6 mm year?1 rising to ?1.5 mm year?1 between 0.4 and 0.38 Myr), eventually replaced by subsidence at a rate ranging between 1.6 and 1.0 mm year?1 up to 0.12 Myr and then decreased to 0.4 mm year?1, as an average, up to present. Our results highlight that time resolution of the stratigraphic dataset deeply influences the order of magnitude obtained for the calculated subsidence rate. This is because subsidence seems to have worked through short‐lived peaks (in the order of 105 years), alternating with long relatively quiescent intervals. This suggests caution when components of subsidence are deduced by subtracting long‐term to short‐term subsidence rate.  相似文献   

14.
Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Río Iruya canyon of NW Argentina (23° S) exposes ca. 7500 m of Orán Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U‐Pb zircon ages from six interbedded ash layers and new magnetostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an average sedimentation rate of 0.93 ± 0.02 (2σ) km Myr?1. We then pair U‐Pb detrital zircon dating with quartz trace‐element analysis to track changes in sedimentary provenance from ca. 7.6 to 1.8 Ma. Results suggest that from ca. 7.6 to ca. 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long‐lived topographic barrier separated the eastern Puna from the foreland for much of the mid‐late Miocene, and that the arrival of Jurassic‐Neogene zircons records regional tectonic reactivation at ca. 6.3 Ma. A second major provenance shift at ca. 4 Ma is marked by changes in the zircon and quartz populations, which appear to be derived from a restricted source region in Proterozoic‐Ordovician meta‐sediments. Considered in conjunction with the onset of coarse conglomerate deposition, we attribute this shift to accelerated uplift of the Santa Victoria range, which currently defines the catchment's western limit. A third shift at ca. 2.3 Ma records an apparent disconnection of the Iruya with the eastern Puna, perhaps due to defeat of the proto Rio‐Iruya by the rising Santa Victoria range. This study is one of the first applications of quartz trace‐element provenance analysis, which we show to be an effective complement to U‐Pb detrital zircon dating when appropriate statistical methods are applied.  相似文献   

15.
Basement heat flow is one of the key unknowns in sedimentary basin analysis. Its quantification is challenging not in the least due to the various feedback mechanisms between the basin and lithosphere processes. This study explores two main feedbacks, sediment blanketing and thinning of sediments during lithospheric stretching, in a series of synthetic models and a reconstruction case study from the Norwegian Sea. Three types of basin models are used: (1) a newly developed one‐dimensional (1D) forward model, (2) a decompaction/backstripping approach and (3) the commercial basin modelling software TECMOD2D for automated forward basin reconstructions. The blanketing effect of sedimentation is reviewed and systematically studied in a suite of 1D model runs. We find that even for moderate sedimentation rates (0.5 mm year?1), basement heat flow is depressed by ~25% with respect to the case without sedimentation; for high sedimentation rates (1.5 mm year?1), basement heat flow is depressed by ~50%. We have further compared different methods for computing sedimentation rates from the presently observed stratigraphy. Here, we find that decompaction/backstripping‐based methods may systematically underestimate sedimentation rates and total subsidence. The reason for this is that sediments are thinned during lithosphere extension in forward basin models while there are not in backstripping/decompaction approaches. The importance of sediment blanketing and differences in modelling approaches is illustrated in a reconstruction case study from the Norwegian Sea. The thermal and structural evolution of a transect across the Vøring Basin has been reconstructed using the backstripping/decompaction approach and TECMOD2D. Computed total subsidence curves differ by up to ~3 km and differences in computed basement heat flows reach up to 50%. These findings show that strong feedbacks exist between basin and lithosphere processes and that resolving them require integrated lithosphere‐scale basin models.  相似文献   

16.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

17.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

18.
Magallanes–Austral Basin (MAB) fill is preserved along a >1000 km north–south trending outcrop belt in the southern Patagonia region of Argentina and Chile. Although the stratigraphic evolution of the MAB has been well documented in the Chilean sector (referred to as the Magallanes Basin), its northern terminus in southern Argentina (Austral Basin) is poorly constrained. We present new stratigraphic and geochronologic analyses of the early basin fill (Aptian–Turonian) from the Argentine sector (49–51°S) of the MAB to document spatial variability in stratigraphy and timing of deposition during the initial stages of basin evolution. The initiation of the retroarc foreland basin fill is marked by the transition from mudstone to coarse‐clastic deposition, which is characterised by the consistent presence of sandstone beds > ca. 20 cm thick interpreted to represent sediment gravity flows deposited in a submarine fan system. Depositional environments within the early fill of the basin range from lower to upper deep‐water fan settings as well as previously undocumented slope deposits. These facies are present as far north as El Chalten, Argentina (ca. 49°S), indicating that facies‐equivalent rocks can be traced along‐strike for at least 5 degrees of latitude, based on correlation with strata as far south as the Cordillera Darwin (ca. 54°S). Eight new U‐Pb zircon ages from ash beds reveal an overall southward younging trend in the initiation of coarse clastic deposition. Inferred depositional ages range from ca. 115 ± 1.9 Ma in the northernmost study area to not older than 92 ± 1 Ma and 89 ± 1.5 Ma in the central and southern sectors respectively. The apparent diachronous delivery of coarse detritus into the basin may reflect (1) gradual southward progradation of a deep‐water fan system from a northerly point source and/or (2) orogen‐parallel variations in the timing and magnitude of thrust‐belt deformation and erosion that provided more local sources for sediment delivery.  相似文献   

19.
Reactivation of intraplate structures and weak zones within the foreland lithosphere disrupt the modelled geometry and pattern of migration of the flexural wave in foreland basins. In the southern Appalachians (USA), the Middle Ordovician unconformity, irregular Middle Ordovician distal foreland deposition and backstepping of Middle–lower Upper Ordovician carbonate strata have been related to migration of the flexural wave. However, integration of stratigraphy, tectonic subsidence history and composition of palinspastically restored distal foreland strata, using a map of subsurface basement structures as reference, allows us to distinguish an early event of inversion from two events of flexural migration. Sections restoring at very short distances outside the boundaries of a former basement graben have the youngest passive‐margin strata preserved beneath Middle Ordovician (~466 Ma) peritidal to deep lagoonal carbonates with gravel‐size chert clasts. In contrast, sections restoring inside the graben record >470 m of truncation of pre‐Middle Ordovician passive‐margin strata, late onset of deposition (~456 Ma), and subaerial features in carbonate and siliciclastic strata. The lacuna geometry and early patterns of distal foreland uplift and carbonate deposition indicate that inversion of a basement graben in response to Middle Ordovician convergence, rather than a migrating or semi‐fixed forebulge, was the primary control on the early evolution of the distal foreland. Drowning of the carbonate platform in more proximal settings, northeastward onset of deposition on upthrown blocks, and thick accumulation of carbonates in downthrown blocks record northwestward and northeastward flexural wave migration at the Middle–Late Ordovician boundary. In early Late Ordovician, the overall shoaling of carbonate and siliciclastic depocentres and the rise of tectonic subsidence curves indicate hinterlandward migration of flexural uplift. Both events of flexural migration were accompanied by influx of volcanic ash and synorogenic sediments.  相似文献   

20.
《Basin Research》2018,30(Z1):1-14
The paleogeographic reconstruction of the Variscan Mountains during late Carboniferous‐Permian post‐orogenic extension remains poorly understood, owing to the subsequent erosion and/or burial of most associated sedimentary basins during the Mesozoic. The Graissessac‐Lodève Basin (southern France) preserves a thick and exceptionally complete record of continental sedimentation spanning late Carboniferous through late Permian time. This section records the localized tectonic and paleogeographic evolution of southern France in the context of the low‐latitude Variscan Belt of Western Europe. This study presents new detrital zircon and framework mineralogy data that address the provenance of siliciclastic strata exposed in the basin. The ages and compositions of units that constitute the Montagne Noire metamorphic core complex (west of the basin) dictate the detrital zircon age populations and sandstone compositions in Permian strata, recording rapid exhumation and unroofing of the Montagne Noire dome. Cambrian‐Archean zircons and metamorphic lithic‐rich compositions record derivation from recycled detritus of the earliest Paleozoic sedimentary cover and Neoproterozoic‐early Cambrian metasedimentary Schistes X, which formerly covered the Montagne Noire dome. Ordovician zircons and subarkosic framework compositions indicate erosion of orthogneiss units that formed a large part of the dome. The youngest zircon population (320–285 Ma) reflects derivation from late Carboniferous‐early Permian granite units in the axial zone of the Montagne Noire. This population appears first in the early Permian, persists throughout the Permian section and is accompanied by sandstone compositions dominated by feldspar, polycrystalline quartz and metamorphic lithic fragments. The most recent migmatization, magmatism and deformation occurred ca. 298 ± 2 Ma, at ca. 17 km depth (based on peak metamorphic conditions). Accordingly, these new provenance data, together with zircon fission‐track thermochronology, demonstrate that exhumation of the Montagne Noire core complex was rapid (1–17 mm year−1) and early (300–285 Ma), reflecting deep‐seated uplift in the southern Massif Central during post‐orogenic extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号