首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of laboratory experiments were performed to investigate the relative contributions of CO and other single-carbon compounds to abiotic synthesis of organic compounds in hydrothermal environments. Experiments were conducted by heating aqueous solutions of CO, CO2, HCOOH, or CH4 at 250 °C under reducing conditions, and observing production of CH4 and other hydrocarbons. Native Fe was included in the experiments as a source of H2 through reaction with water and as a potential catalyst. Experiments with CO or HCOOH as the carbon source resulted in rapid generation of CH4 and other hydrocarbons that closely resembled typical products of Fischer-Tropsch organic synthesis. In contrast, experiments using CO2 or CH4 as the carbon source yielded no detectable hydrocarbon products. Carbon isotope measurements of reaction products from the CO experiments indicate that the CH4 and other hydrocarbons were substantially depleted in 13C, with CH4 δ13C values 30 to 34‰ lighter than the initial CO. Most of the fractionation apparently occurs during attachment of CO to the catalyst surface and subsequent reduction to surface-bound methylene. The initial step in polymerization of these methylene units to form hydrocarbons involves a small, positive fractionation, so that ethane and ethene are slightly enriched in 13C relative to CH4. However, subsequent addition of carbon molecules to the growing hydrocarbon chain proceeds with no net observable fractionation, so that the isotopic compositions of the C3+ light hydrocarbons are controlled by isotopic mass balance. This result is consistent with a previously proposed model for carbon isotopic patterns of light hydrocarbons in natural samples. The abundance and isotopic composition of light hydrocarbons produced with HCOOH as the carbon source were similar to those generated with CO, but the isotopic compositions of non-volatile hydrocarbons diverged, suggesting that the higher hydrocarbons were formed by different mechanisms in the CO and HCOOH experiments. The experiments indicate that CO, and possibly HCOOH, may be critical intermediates in the abiotic formation of organic compounds in geologic environments, and suggest that the low levels of these compounds present in most hydrothermal systems could represent a bottleneck restricting the extent of abiotic organic synthesis in some circumstances.  相似文献   

2.
Carbon isotopic composition was measured for products of the Fischer-Tropsch synthesis: catalytic reaction between CO and H2 to produce CO, CO2, light hydrocarbons C1-C4 and “oil” fraction. Hydrogen isotopes were also measured in the oil fraction and the produced water. Experimental runs were conducted in the flow-through reactor at 260-310 °C and 30 bar using the synthesis gas composed of 5N2 + 3H2 + 2CO, on Fe-catalyst mixed with ZSM-5 synthetic zeolite. In the two of seven runs a Fe + Co-catalyst was used that gives a lower yield of unsaturated hydrocarbons in reaction products. The isotopic effects depended on the conversion of the carbon monoxide. Under steady-state conditions (CO conversion more than 90%) a strong kinetic fractionation was observed between CO and CO2 (∼−10‰) and CO and hydrocarbons (∼+38‰). At low conversion a clear “inverse” isotopic trend of the depletion in 13C of longer hydrocarbon chains was observed. On average, Δ12 = δ13C(CH4) − δ13C(C2H6) correlates well with the CO conversion: the C2H6 is ∼6‰ isotopically lighter than CH4 at low conversion and ∼2‰ heavier at steady-state regime. Under steady-state conditions there almost no difference was observed in the isotopic composition of methane and ethane and higher hydrocarbons. The chemical composition of light hydrocarbons in the products of flow-through, dynamic FTS is different from that found in the static FTS-type experiments with Fe-catalyst, but isotopic effects are similar. Our results suggest that the isotopic distribution of carbon found in so-called “abiogenic” hydrocarbons from some natural gases (δ13C1 > δ13C2 > δ13C3  >?) is somewhat similar to that at low conversion of CO, but do not resemble the distribution characteristic for the high conversion products, at least, on Fe-catalyst. Other processes (a simple mixing of two or more endmembers) or other P-T conditions of the carbon reduction could be responsible for the “inverse” isotopic trend found in meteorites and some natural gases.  相似文献   

3.
4.
This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species (Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH4+ as an N source, and H2PO4 as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H2O-CO2-CaCO3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H2CO3 generated by dissolution of atmospheric CO2 (H2CO3 + CaCO3 → Ca2+ + 2HCO3) and H+ released during NH4+ uptake (H+ + CaCO3 → Ca2+ + HCO3). Reaction with H2CO3 and H+ supplied ∼45% and 55% of the total Ca2+ and ∼60% and 40% of the total HCO3, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH4+ was ∼2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H2CO3. In lactate bearing reactors, most H+ generated by NH4+ uptake reacted with HCO3 produced by lactate oxidation to yield CO2 and H2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H2CO3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because the solubility and dissolution rate of calcite inversely correlate with pH, heterotrophic microbial growth in the presence of nonionic organic matter and NH4+ appears to have the greatest potential for enhancing calcite weathering relative to abiotic conditions.  相似文献   

5.
A unique dataset from paired low- and high-temperature vents at 9°50′N East Pacific Rise provides insight into the microbiological activity in low-temperature diffuse fluids. The stable carbon isotopic composition of CH4 and CO2 in 9°50′N hydrothermal fluids indicates microbial methane production, perhaps coupled with microbial methane consumption. Diffuse fluids are depleted in 13C by ∼10‰ in values of δ13C of CH4, and by ∼0.55‰ in values of δ13C of CO2, relative to the values of the high-temperature source fluid (δ13C of CH4 =−20.1 ± 1.2‰, δ13C of CO2 =−4.08 ± 0.15‰). Mixing of seawater or thermogenic sources cannot account for the depletions in 13C of both CH4 and CO2 at diffuse vents relative to adjacent high-temperature vents. The substrate utilization and 13C fractionation associated with the microbiological processes of methanogenesis and methane oxidation can explain observed steady-state CH4 and CO2 concentrations and carbon isotopic compositions. A mass-isotope numerical box model of these paired vent systems is consistent with the hypothesis that microbial methane cycling is active at diffuse vents at 9°50′N. The detectable 13C modification of fluid geochemistry by microbial metabolisms may provide a useful tool for detecting active methanogenesis.  相似文献   

6.
The solubility of baddeleyite (ZrO2) and the speciation of zirconium have been investigated in HF-bearing aqueous solutions at temperatures up to 400 °C and pressures up to 700 bar. The data obtained suggest that in HF-bearing solutions zirconium is transported mainly in the form of the hydroxyfluoride species ZrF(OH)3° and ZrF2(OH)2°. Formation constants determined for these species (Zr4+ + nF + mOH = ZrFn(OH)m°) range from 43.7 at 100 °C to 46.41 at 400 °C for ZrF(OH)3°, and from 37.25 at 100 °C to 43.88 at 400 °C for ZrF2(OH)2°.Although the solubility of ZrO2 is retrograde with respect to temperature, the measured concentrations of Zr are orders of magnitude higher than those predicted from theoretical extrapolations based on simple fluoride species (ZrF3+-ZrF62−). Model calculations performed for zircon show that zirconium can be transported by aqueous fluids in concentrations sufficient to account for the concentration of this metal at conditions commonly encountered in fluoride-rich natural hydrothermal systems.  相似文献   

7.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   

8.
Low temperature vent fluids (<91 °C) issuing from the ultramafic-hosted hydrothermal system at Lost City, 30°N Mid-Atlantic Ridge, are enriched in dissolved volatiles (H2,CH4) while attaining elevated pH values, indicative of the serpentization processes that govern water/rock interactions deep in the oceanic crust. Here, we present a series of theoretical models to evaluate the extent of hydrothermal alteration and assess the effect of cooling on the systematics of pH-controlled B aqueous species. Peridotite-seawater equilibria calculations indicate that the mineral assemblage composed of diopside, brucite and chrysotile likely dictates fluid pH at moderate temperature serpentinization processes (<300 °C), by imposing constraints on the aCa++/a2H+ ratios and the activity of dissolved SiO2. Based on Sr abundances and the 87Sr/86Sr isotope ratios of vent fluids reported from Lost City, estimated water/rock mass ratios (w/r = 2-4) are consistent with published models involving dissolved CO2 and alkane concentrations. Combining the reported δ18O values of vent fluids (0.7‰) with such w/r mass ratios, allows us to bracket subseafloor reaction temperatures in the vicinity of 250 °C. These estimates are in agreement with previous theoretical studies supporting extensive conductive heat loss within the upflow zones. Experimental studies on peridotite-seawater alteration suggest that fluid pH increases during cooling which then rapidly enhances boron removal from solution and incorporation into secondary phases, providing an explanation for the highly depleted dissolved boron concentrations measured in the low temperature but alkaline Lost City vent fluids. Finally, to account for the depleted 11B composition (δ11B ∼25-30‰) of vent fluids relative to seawater, isotopic fractionation between tetrahedrally coordinated aqueous boron species with BO3-bearing mineral sites (e.g. in calcite, brucite) is proposed.  相似文献   

9.
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2 fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3 (r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.  相似文献   

10.
To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO2 and H2-bearing aqueous fluids were conducted at 400 °C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C1-C3 hydrocarbons and relatively large changes in dissolved CO2 and H2 concentrations, consistent with formation of additional hydrocarbon components beyond C3. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an “isotopic reversal” trend was not observed for 13C values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant 13C depletion in CH4 suggests either depolymerization reactions occurring in addition to synthesis, or reactions between the C1-C3 hydrocarbons and carbon species absorbed on mineral surfaces and in solution.  相似文献   

11.
Stable isotopes (H, O, C) were determined for ground and surface waters collected from two relatively undisturbed massive sulfide deposits (Halfmile Lake and Restigouche) in the Bathurst Mining Camp (BMC), New Brunswick, Canada. Additional waters from active and inactive mines in the BMC were also collected. Oxygen and hydrogen isotopes of surface and shallow groundwaters from both the Halfmile Lake and Restigouche deposits are remarkably uniform (− 13 to − 14‰ and − 85 to − 95‰ for δ18OVSMOW and δ2HVSMOW, respectively). These values are lighter than predicted for northern New Brunswick and, combined with elevated deuterium excess values, suggest that recharge waters are dominated by winter precipitation, recharged during spring melting. Deeper groundwaters from the Restigouche deposit, and from active and inactive mines have heavier δ18OVSMOW ratios (up to − 10.8‰) than shallow groundwaters suggesting recharge under warmer climate or mixing with Shield-type brines. Some of the co-variation in Cl concentrations and δ18OVSMOW ratios can be explained by mixing between saline and shallow recharge water end-members. Carbon isotopic compositions of dissolved inorganic carbon (DIC) are variable, ranging from − 15 to − 5‰ δ13CVPDB for most ground and surface waters. Much of the variation in the carbon isotopes is consistent with closed system groundwater evolution involving soil zone CO2 and fracture zone carbonate minerals (calcite, dolomite and siderite; average = − 6.5‰ δ13CVPDB). The DIC of saline Restigouche deposit groundwater is isotopically heavy (∼+ 12‰ δ13CVPDB), indicating carbon isotopic fractionation from methanogenesis via CO2 reduction, consistent with the lack of dissolved sulfate in these waters and the observation of CH4-degassing during sampling.  相似文献   

12.
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr.  相似文献   

13.
Tochilinite represents a mineral group of ordered mixed-layer structures containing alternating Fe1−xS layers with mackinawite-like structure and metal hydroxide layers with Mg(OH)2-like structure. In this article, we report the preparation of a series of tochilinite-originated (or Fe1−xS-based) intercalation compounds (ICs). According to their preparation procedures, these ICs can be divided into four kinds. The first kind of IC was sodium tochilinite (Na-tochilinite), which was prepared by the hydrothermal reaction of metallic Fe particles with concentrated Na2S·9H2O aqueous solutions. The hydroxide layer of the Na-tochilinite was a mixed hydroxide of Na+ ions along with a certain amount of Fe2+ ions. When the hydroxide layer of the Na-tochilinite completely dissolved in aqueous solutions, a Fe-deficient mackinawite-like phase Fe1−xS was obtained, which was probably an electron-deficient p-type conductor. The second kind of ICs was prepared by ‘low-temperature direct intercalation in aqueous solutions, using Na-tochilinite as a parental precursor. When the Na-tochilinite was ultrasonicated in aqueous solutions containing Lewis basic complexing agents (like NH3, N2H4, 2,2′-bipyridine (bipy), and 1,10-phenanthroline (phen)), the Na+ ions of the Na-tochilinite were removed and the Lewis basic complexing agents entered the hydroxide layer of the Na-tochilinite and became coordinated with the Fe2+ ions, and the second kind of ICs was thus produced. The second kind of ICs includes NH3 IC, N2H4 IC, N2H4-NH3 IC, [Fe(bipy)3]2+-containing IC and [Fe(phen)3]2+-containing IC. The third kind of ICs, which includes NH3 IC, N2H4-NH3 IC and N2H4-LiOH (NaOH) IC, was prepared by the hydrothermal reaction of metallic Fe particles with (NH4)2S aqueous solution, S (elemental) + N2H4·H2O aqueous solution, and S + N2H4·H2O + LiOH (NaOH) aqueous solution, respectively. The third kind of ICs has a close relationship with the second kind of ICs both in composition and structure. The fourth kind of ICs was prepared by the oxidation and reduction of some of the N2H4-containing ICs mentioned above, which include N2H2 (diazene or diimide) IC, N2 (dinitrogen) IC and NH3 IC. The N2H2 IC was prepared by mild air oxidation of the N2H4-LiOH IC. The N2 IC was prepared by strong air oxidation of the N2H4-LiOH IC, however, we have not been able to separate the pure phase N2 IC. Hydrothermal reduction of the N2H4 IC made by the direct intercalation method in strong reducing environment by H2S + Fe (metal) led to the production of the NH3 IC of the fourth kind of ICs. The NH3 ICs prepared by the three methods had similar compositions and structures. As almost all the ICs reported in this paper were extremely sensitive both to air and to the electron beam, they were mainly characterized by XRD.The properties and interrelationships (or mutual transformations) of the Fe1−xS-based ICs revealed novel chemistry occurring in the sub-nanoscopic space between the micrometer- to nanometer-sized electron-deficient Fe1−xS layers. An important finding of this novel chemistry was that the Fe1−xS-based ICs tended to oxidize or reduce the intercalated species when the redox state of their environments varied. The results of our experiments potentially have many cosmochemical implications. The most important implication is that our experimental results, along with previous studies, strongly suggested that some of the ammonium salts, ammonia and carbonates existing in the matrix of the CM carbonaceous chondrites may have been formed by abiotic reactions employing molecular nitrogen as the nitrogen source and carbon monoxide as the carbon source and iron sulfide and/or iron hydroxide as catalysts.  相似文献   

14.
The ultraviolet spectra of dilute aqueous solutions of antimony (III) have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, equilibrium constants were obtained for the following reactions:
H3SbO30 ? H+ + H2SbO3  相似文献   

15.
Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH4 with depth (5500 μmol L−1 DIC, 500 μmol L−1 CH4). Highest DIC and CH4 production rates occurred close to the water table (decomposition constant kd ∼ 10−3-10−4 a−1) or in some distinct zones at depth (kd ∼ 10−4 a−1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10−7 a−1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (−20 to −25 kJ mol−1 CH4). The methanogenic precursor acetate also accumulated (150 μmol L−1). In line with these findings, CH4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of −35 to −40 kJ mol−1 CH4. This was indicated by an isotopic fractionation αCO2-CH4 of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol−1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.  相似文献   

16.
The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 °C was inferred by methane-based chemical-isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200-240 °C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 °C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (δD ∼ −20‰, δ18O ∼10‰) and a CO2-rich composition (XCO20.4) has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to ∼0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system.  相似文献   

17.
We have developed a quantitative model of CO2 and H2O isotopic mixing between magmatic and hydrothermal gases for the fumarolic emissions of the La Fossa crater (Vulcano Island, Italy). On the basis of isotope balance equations, the model takes into account the isotope equilibrium between H2O and CO2 and extends the recent model of chemical and energy two-end-member mixing by Nuccio et al. (1999). As a result, the H2O and CO2 content and the δD, δ18O, and δ13C isotope compositions for both magmatic and hydrothermal end-members have been assessed. Low contributions of meteoric steam, added at a shallow depth, have been also recognized and quantified in the fumaroles throughout the period from 1988 to 1998. Nonequilibrium oxygen isotope exchange also seems to be occurring between ascending gases and wall rocks along some fumarolic conduits.The δ13CCO2 of the magmatic gases varies around −3 to 1‰ vs. Peedee belemnite (PDB), following a perfect synchronism with the variations of the CO2 concentration in the magmatic gases. This suggests a process of isotope fractionation because of vapor exsolution caused by magma depressurization. The hydrogen isotopes in the magmatic gases (−1 to −‰ vs. standard mean ocean water [SMOW]), as well as the above δ13CCO2 value, are coherent with a convergent tectonic setting of magma generation, where the local mantle is widely contaminated by fluids released from the subducted slab. Magma contamination in the crust probably amplifies this effect.The computed isotope composition of carbon and hydrogen in the hydrothermal vapors has been used to calculate the δD and δ13C of the entire hydrothermal system, including mixed H2O-CO2 vapor, liquid water, and dissolved carbon. We have computed values of about 10‰ vs. SMOW for water and −2 to −6.5‰ vs. PDB for CO2. On these grounds, we think that Mediterranean marine water (δDH2O ≈ 10‰) feeds the hydrothermal system. It infiltrates at depth throughout the local rocks, reaching oxygen isotope equilibrium at high temperatures. Interaction processes between magmatic gases and the evolving seawater also seem to occur, causing the dissolution of isotopically fractionated aqueous CO2 and providing the source for hydrothermal carbon. These results have important implications concerning fluid circulation beneath Vulcano and address the more convenient routine of geochemical surveillance.  相似文献   

18.
Carbon dioxide emissions and heat flow have been determined from the Ohaaki hydrothermal field, Taupo Volcanic Zone (TVZ), New Zealand following 20 a of production (116 MWe). Soil CO2 degassing was quantified with 2663 CO2 flux measurements using the accumulation chamber method, and 2563 soil temperatures were measured and converted to equivalent heat flow (W m−2) using published soil temperature heat flow functions. Both CO2 flux and heat flow were analysed statistically and then modelled using 500 sequential Gaussian simulations. Forty subsoil CO2 gas samples were also analysed for stable C isotopes. Following 20 a of production, current CO2 emissions equated to 111 ± 6.7 T/d. Observed heat flow was 70 ± 6.4 MW, compared with a pre-production value of 122 MW. This 52 MW reduction in surface heat flow is due to production-induced drying up of all alkali–Cl outflows (61.5 MW) and steam-heated pools (8.6 MW) within the Ohaaki West thermal area (OHW). The drying up of all alkali–Cl outflows at Ohaaki means that the soil zone is now the major natural pathway of heat release from the high-temperature reservoir. On the other hand, a net gain in thermal ground heat flow of 18 MW (from 25 MW to 43.3 ± 5 MW) at OHW is associated with permeability increases resulting from surface unit fracturing by production-induced ground subsidence. The Ohaaki East (OHE) thermal area showed no change in distribution of shallow and deep soil temperature contours despite 20 a of production, with an observed heat flow of 26.7 ± 3 MW and a CO2 emission rate of 39 ± 3 T/d. The negligible change in the thermal status of the OHE thermal area is attributed to the low permeability of the reservoir beneath this area, which has limited production (mass extraction) and sheltered the area from the pressure decline within the main reservoir. Chemistry suggests that although alkali–Cl outflows once contributed significantly to the natural surface heat flow (∼50%) they contributed little (<1%) to pre-production CO2 emissions due to the loss of >99% of the original CO2 content due to depressurisation and boiling as the fluids ascended to the surface. Consequently, the soil has persisted as the major (99%) pathway of CO2 release to the atmosphere from the high temperature reservoir at Ohaaki. The CO2 flux and heat flow surveys indicate that despite 20 a of production the variability in location, spatial extent and magnitude of CO2 flux remains consistent with established geochemical and geophysical models of the Ohaaki Field. At both OHW and OHE carbon isotopic analyses of soil gas indicate a two-stage fractionation process for moderate-flux (>60 g m−2 d−1) sites; boiling during fluid ascent within the underlying reservoir and isotopic enrichment as CO2 diffuses through porous media of the soil zone. For high-flux sites (>300 g m−2 d−1), the δ13CO2 signature (−7.4 ± 0.3‰ OHW and −6.5 ± 0.6‰ OHE) is unaffected by near-surface (soil zone) fractionation processes and reflects the composition of the boiled magmatic CO2 source for each respective upflow. Flux thresholds of <30 g m−2 d−1 for purely diffusive gas transport, between 30 and 300 g m−2 d−1 for combined diffusive–advective transport, and ?300 g m−2 d−1 for purely advective gas transport at Ohaaki were assigned. δ13CO2 values and cumulative probability plots of CO2 flux data both identified a threshold of ∼15 g m−2 d−1 by which background (atmospheric and soil respired) CO2 may be differentiated from hydrothermal CO2.  相似文献   

19.
20.
Various iron-bearing primary phases and rocks have been weathered experimentally to simulate possible present and past weathering processes occurring on Mars. We used magnetite, monoclinic and hexagonal pyrrhotites, and metallic iron as it is suggested that meteoritic input to the martian surface may account for an important source of reduced iron. The phases were weathered in two different atmospheres: one composed of CO2 + H2O, to model the present and primary martian atmosphere, and a CO2 + H2O + H2O2 atmosphere to simulate the effect of strong oxidizing agents. Experiments were conducted at room temperature and a pressure of 0.75 atm. Magnetite is the only stable phase in the experiments and is thus likely to be released on the surface of Mars from primary rocks during weathering processes. Siderite, elemental sulfur, ferrous sulfates and ferric (oxy)hydroxides (goethite and lepidocrocite) are the main products in a water-bearing atmosphere, depending on the substrate. In the peroxide atmosphere, weathering products are dominated by ferric sulfates and goethite. A kinetic model was then developed for iron weathering in a water atmosphere, using the shrinking core model (SCM). This model includes competition between chemical reaction and diffusion of reactants through porous layers of secondary products. The results indicate that for short time scales, the mechanism is dominated by a chemical reaction with second order kinetics (k = 7.75 × 10−5 g−1/h), whereas for longer time scales, the mechanism is diffusion-controlled (DeA = 2.71 × 10−10 m2/h). The results indicate that a primary CO2- and H2O-rich atmosphere should favour sulfur, ferrous phases such as siderite or Fe2+-sulfates, associated with ferric (oxy)hydroxides (goethite and lepidocrocite). Further evolution to more oxidizing conditions may have forced these precursors to evolve into ferric sulfates and goethite/hematite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号