首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solubility and speciation of the assemblage MoO2-MoO3 in water vapour were investigated in experiments conducted at 350 °C, Ptotal from 59 to 160 bar and fHCl from 0 to 3.4 bar (0-2.0 mol%). Measured solubility at these conditions ranges from 22 to 2500 ppm (∑fMo from 4.4 × 10−4 to 6.5 × 10−2 bar). The concentration of Mo in the vapour at fHCl below 0.1 bar is similar to that in pure water vapour, but increases by two orders of magnitude at fHCl above 0.1 bar. The fugacity of gaseous Mo species is independent of chloride concentration at fHCl below 0.1 bar, but increases with increasing fHCl above this pressure. The dominant Mo species at fHCl below 0.1 bar is interpreted to be the same as it is in pure water vapour, and to form as a result of the reaction
(A1)  相似文献   

2.
We have conducted experiments to evaluate the vapour-liquid fractionation of Mo(VI) in the system MoO3-NH3-H2O at 300-370 °C and saturated vapour pressure, using a two-chamber autoclave that allows separate trapping of the vapour and liquid. The measured total Mo concentrations in each phase were used to calculate a distribution coefficient, , which increases as the density of the vapour approaches that of the liquid, and is greater than one for pH ? 4. Molybdenum speciation in the vapour is described by a single complex, MoO3H2O. By contrast, thermodynamic modeling of the distribution of Mo species in the liquid indicates that bimolybdate (HMoO4) is the dominant aqueous species at the conditions of our experiments, and that molybdate (MoO42−) and molybdic acid (H2MoO40) are present in smaller quantities. As vapour-liquid fractionation occurs between neutral species, it is governed by the reaction H2MoO40(aq) = MoO3 · H2O(g). Fractionation is therefore controlled by the concentration of H2MoO40 in the liquid, which increases with increasing temperature and decreasing pH. Owing to the pH dependence of , it cannot be used to describe Mo fractionation in aqueous vapour-liquid systems with compositions different than those of this study. We have therefore calculated a composition-independent (Henry’s Law) constant, , for each experimental point, using the measured total Mo concentration in the vapour and the modeled concentration of H2MoO40 in the liquid. This constant may be applied to aqueous vapour-liquid systems of known liquid composition to estimate the concentration of Mo in a vapour for which little chemical information is available, and thereby supplement the available fractionation data for natural porphyry-forming systems. The results of this study demonstrate that at conditions typical of natural porphyry ore-forming systems, a significant amount of molybdenum fractionates into the vapour over the liquid, and the vapour may transport quantities of Mo in excess of that in the liquid at pH conditions below those of the muscovite-microcline reaction boundary.  相似文献   

3.
The solubility of natural, near-end-member wollastonite-I (>99.5% CaSiO3) has been determined at temperatures from 400 to 800 °C and pressures between 0.8 and 5 GPa in piston-cylinder apparatus with the weight-loss method. Chemical analysis of quench products and optical monitoring in a hydrothermal diamond anvil cell demonstrates that no additional phases form during dissolution. Wollastonite-I, therefore, dissolves congruently in the pressure-temperature range investigated. The solubility of CaSiO3 varies between 0.175 and 13.485 wt% and increases systematically with both temperature and pressure up to 3.0 GPa. Above 3.0 GPa wollastonite-I reacts rapidly to the high-pressure modification wollastonite-II. No obvious trends are evident in the solubility of wollastonite-II, with values between 1.93 and 10.61 wt%. The systematics of wollastonite-I solubility can be described well by a composite polynomial expression that leads to isothermal linear correlation with the density of water. The molality of dissolved wollastonite-I in pure water is then
log(mwoll)=2.2288-3418.23×T-1+671386.84×T-2+logρH2O×(5.4578+2359.11×T-1).  相似文献   

4.
This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H2O-H2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm3, the mole fraction of H2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H2O and H2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H2O-H2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H2S or H2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form:
(A1)  相似文献   

5.
The solubility of synthetic NdPO4 monazite end-member was experimentally determined from 300 up to 800 °C, at 2000 bars in pure water, and in aqueous chloride or phosphate solutions. Both the classical weight-loss method and a new method based on isotope dilution coupled with thermal ionization mass spectrometer were used. In the range of temperature studied monazite showed a prograde solubility from 10−5.4 m at 300 °C up to 10−2.57 m at 800 °C. Experiments in H2O-H3PO4-NaCl-HCl solutions suggested Nd(OH)30 was the major species that was formed at high temperature and pressure. The equilibrium constants (log K) for the reaction:
  相似文献   

6.
The ultraviolet spectra of dilute aqueous solutions of antimony (III) have been measured from 25 to 300 °C at the saturated vapour pressure. From these measurements, equilibrium constants were obtained for the following reactions:
H3SbO30 ? H+ + H2SbO3  相似文献   

7.
This UV spectrophotometric study was aimed at providing precise, experimentally derived thermodynamic data for the ionisation of molybdic acid (H2MoO4) from 30 to 300 °C and at equilibrium saturated vapour pressures. The determination of the equilibrium constants and associated thermodynamic parameters were facilitated by spectrophotometric measurements using a specially designed high temperature optical Ti-Pd flow-through cell with silica glass windows.The following van’t Hoff isochore equations describe the temperature dependence of the first and second ionisation constants of molybdic acid up to 300 °C:
  相似文献   

8.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

9.
The solubility of gold in hydrogen sulfide gas: An experimental study   总被引:1,自引:0,他引:1  
The solubility of gold in H2S gas has been investigated at temperatures of 300, 350 and 400 °C and pressures up to 230 bars. Experimentally determined values of the solubility of Au are 0.4-1.4 ppb at 300 °C, 1-8 ppb at 350 °C and 8.6-95 ppb at 400 °C. Owing to a positive dependence of the logarithm of the fugacity of gold on the logarithm of the fugacity of H2S, it is proposed that the solubility of Au can be attributed to formation of a solvated gaseous sulfide or bisulfide complex through reactions of the type:
(A)  相似文献   

10.
The solubility of FeSm, synthetic nanoparticulate mackinawite, in aqueous solution was measured at 23 °C from pH 3-10 using an in situ precipitation and dissolution procedure and the solution species was investigated voltammetrically. The solubility is described by a pH-dependent reaction and a pH-independent reaction. The pH-dependent dissolution reaction can be described by
FeSm+2H+→Fe2++H2S  相似文献   

11.
We grew a hydrogen-utilizing methanogen, Methanothermobacter thermoautotrophicus strain ΔH, in coculture and pure culture conditions to evaluate the hydrogen isotope fractionation associated with carbonate reduction under low (< several tens of μM; coculture) and high (>6 mM; pure culture) concentrations of H2 in the headspace. In the cocultures, which were grown at 55 °C with a thermophilic butyrate-oxidizing syntroph, the hydrogen isotopic relationship between methane and water was well represented by the following equation:
δDCH4=0.725(±0.003)·δDH2O-275(±3),  相似文献   

12.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

13.
In this study, the solubility constant of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5·4H2O, termed as phase 5, is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant in logarithmic units at 25 °C for the following reaction,
Mg3Cl(OH)5·4H2O+5H+=3Mg2++9H2O(l)+Cl-  相似文献   

14.
The enthalpy of mixing of the calcite-rhodochrosite (Ca,Mn)CO3 solid solution was determined at 25 °C from calorimetric measurements of the enthalpy of precipitation of solids with different compositions. A detailed study of the broadening of powder X-ray diffraction peaks shows that most of the precipitates are compositionally homogeneous. All the experimental enthalpy of mixing (ΔHm) values are positive and fit reasonably well (R2 = 0.86) to a Guggenheim function of three terms:
  相似文献   

15.
A thermodynamic model is presented to calculate methane solubility, liquid phase density and gas phase composition of the H2O-CH4 and H2O-CH4-NaCl systems from 273 to 523 K (possibly up to 573 K), from 1 to 2000 bar and from 0 to 6 mol kg−1 of NaCl with experimental accuracy. By a more strict theoretical approach and using updated experimental data, this model made substantial improvements over previous models: (1) the accuracy of methane solubility in pure water in the temperature range between 273 and 283 K is increased from about 10% to about 5%, but confirms the accuracy of the Duan model [Duan Z., Moller N., Weare J.H., 1992a. Prediction of methane solubilities in natural waters to high ionic strength from 0 to 250 °C and from 0 to 1600 bar. Geochim. Cosmochim. Acta56, 1451-1460] above 283 K up to 2000 bar; (2) the accuracy of methane solubility in the NaCl aqueous solutions is increased from >12% to about 6% on average from 273 K and 1 bar to 523 K and 2000 bar; (3) this model is able to calculate water content in the gas phase and liquid phase density, which cannot be calculated by previous models; and (4) it covers a wider range of temperature and pressure space. With a simple approach, this model is extended to predict CH4 solubility in other aqueous salt solutions containing Na+, K+, Mg2+, Ca2+, Cl and , such as seawater and geothermal brines, with excellent accuracy. This model is also able to calculate homogenization pressure of fluid inclusions (CH4-H2O-NaCl) and CH4 solubility in water at gas-liquid-hydrate phase equilibrium. A computer code is developed for this model and can be downloaded from the website: www.geochem-model.org/programs.htm.  相似文献   

16.
In order to fully assess the role of rutile in fractionation of Nb/Ta during partial melting of hydrous metabasalt, we have measured rutile - felsic melt partition coefficients (D values) for Nb and Ta with tonalitic to trondhjemitic compositions at 1.5-3.5 GPa, 900-1350 °C and ∼5.0-20 wt% H2O. DNb, DTa and DNb/DTa range from 17 ± 1 to 246 ± 13, 34 ± 2 to 232 ± 25 and 0.51 ± 0.04 to 1.06 ± 0.13, respectively. For the compositions investigated, melt composition appears to have no observable effect on the partitioning; the effect of pressure is also slight; whereas temperature and H2O have marked effects. DNb, DTa and DNb/DTa increase with decreasing temperature and H2O content, showing a reversal of DNb/DTa from <1.0 to >1.0. Using the data that approached equilibrium and obeyed Henry’s law, expressions describing the dependences of DNb, DTa and DNb/DTa on temperature, pressure and melt H2O content were obtained:
(1)  相似文献   

17.
The solubility of copper chloride in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 280 to 320°C and pressures up to 103 bars. Results of these experiments show that the solubility of copper in the vapor phase is significant and increases with increasing fH2O, but is retrograde with respect to temperature. This solubility is attributed to the formation of hydrated copper-chloride gas species, interpreted to have a copper-chlorine ratio of 1:1 (e.g., CuCl, Cu3Cl3, etc.) and a hydration number varying from 7.6 at 320°C, to 6.0 at 300°C, and 6.1 at 280°C. Complex formation is proposed to have occurred through the reaction:
A1  相似文献   

18.
Solubilities of corundum (Al2O3) and wollastonite (CaSiO3) were measured in H2O-NaCl solutions at 800 °C and 10 kbar and NaCl concentrations up to halite saturation by weight-loss methods. Additional data on quartz solubility at a single NaCl concentration were obtained as a supplement to previous work. Single crystals of synthetic corundum, natural wollastonite or natural quartz were equilibrated with H2O and NaCl at pressure (P) and temperature (T) in a piston-cylinder apparatus with NaCl pressure medium and graphite heater sleeves. The three minerals show fundamentally different dissolution behavior. Corundum solubility undergoes large enhancement with NaCl concentration, rising rapidly from Al2O3 molality (mAl2O3) of 0.0013(1) (1σ error) in pure H2O and then leveling off to a maximum of ∼0.015 at halite saturation (XNaCl ≈ 0.58, where X is mole fraction). Solubility enhancement relative to that in pure H2O, , passes through a maximum at XNaCl ≈ 0.15 and then declines towards halite saturation. Quenched fluids have neutral pH at 25 °C. Wollastonite has low solubility in pure H2O at this P and T(mCaSiO3=0.0167(6)). It undergoes great enhancement, with a maximum solubility relative to that in H2O at XNaCl ≈ 0.33, and solubility >0.5 molal at halite saturation. Solute silica is 2.5 times higher than at quartz saturation in the system H2O-NaCl-SiO2, and quenched fluids are very basic (pH 11). Quartz shows monotonically decreasing solubility from mSiO2=1.248 in pure H2O to 0.202 at halite saturation. Quenched fluids are pH neutral. A simple ideal-mixing model for quartz-saturated solutions that requires as input only the solubility and speciation of silica in pure H2O reproduces the data and indicates that hydrogen bonding of molecular H2O to dissolved silica species is thermodynamically negligible. The maxima in for corundum and wollastonite indicate that the solute products include hydrates and Na+ and/or Cl species produced by molar ratios of reactant H2O to NaCl of 6:1 and 2:1, respectively. Our results imply that quite simple mechanisms may exist in the dissolution of common rock-forming minerals in saline fluids at high P and T and allow assessment of the interaction of simple, congruently soluble rock-forming minerals with brines associated with deep-crustal metamorphism.  相似文献   

19.
Spectrophotometric measurements of the pH in natural waters such as seawater have been shown to yield precise results. In this paper, the sulfonephthalein indicator m-cresol purple (mCP, H2I) has been used to determine the pH of NaCl brines. The indicator has been calibrated in NaCl solutions from 5 to 45 °C and ionic strengths from 0.03 to 5.5 m. The calibrations were made using TRIS buffers (0.03 m, TRIS/TRIS-HCl) with known dissociation constants pKTRIS in NaCl solutions [Foti C., Rigano C. and Sammartano S. (1999) Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strength. Ann. Chim. 89, 1-12]. The values of pH were determined from
pH=pKmCP+log{(R-e1)/(e2-Re3)}  相似文献   

20.
Reports of the high ion content of steam and low-density supercritical fluids date back to the work of Carlon [Carlon H. R. (1980) Ion content of air humidified by boiling water.J. Appl.Phys.51, 171-173], who invoked ion and neutral-water clustering as mechanism to explain why ions partition into the low-density aqueous phase. Mass spectrometric, vibrational spectroscopic measurements and quantum chemical calculations have refined this concept by proposing strongly bound ion-solvent aggregates and water clusters such as Eigen- and Zundel-type proton clusters H3O+·(H2O)m and the more weakly bound water oligomers (H2O)m. The extent to which these clusters affect fluid chemistry is determined by their abundance, however, little is known regarding the stability of such moieties in natural low-density high-temperature fluids. Here we report results from quantum chemical calculations using chemical-accuracy multi-level G3 (Curtiss-Pople) and CBS-Q theory (Peterson) to address this question. In particular, we have investigated the cluster structures and clustering equilibria for the ions and H3S+·(H2O)m(H2S)n, where m ? 6 and n ? 4, at 300-1000 K and 1 bar as well as under vapor-liquid equilibrium conditions between 300 and 646 K. We find that incremental hydration enthalpies and entropies derived from van’t Hoff analyses for the attachment of H2O and H2S onto H3O+, and H3S+ are in excellent agreement with experimental values and that the addition of water to all three ions is energetically more favorable than solvation by H2S. As clusters grow in size, the energetic trends of cluster hydration begin to reflect those for bulk H2O liquids, i.e. calculated hydration enthalpies and entropies approach values characteristic of the condensation of bulk water (ΔHo = −44.0 kJ mol−1, ΔSo = −118.8 J K mol−1). Water and hydrogen sulfide cluster calculations at higher temperatures indicate that a significant fraction of H3O+, and H3S+ ions exists as solvated moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号