首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is envisaged that high-level nuclear waste (HLW) will be disposed of in underground repositories. Many proposed repository designs include steel waste canisters and bentonite backfill. Natural analogues and experimental data indicate that the montmorillonite component of the backfill could react with steel corrosion products to produce non-swelling Fe-rich phyllosilicates such as chamosite, berthierine, or Fe-rich smectite. In K-bearing systems, the alteration of montmorillonite to illite/glauconite could also be envisaged. If montmorillonite were altered to non-swelling minerals, the swelling capacity and self-healing properties of the bentonite backfill could be reduced, thereby diminishing backfill performance. The main aim of this paper was to investigate Fe-rich phyllosilicate mineral stability at the canister-backfill interface using thermodynamic modelling. Estimates of thermodynamic properties were made for Fe-rich clay minerals in order to construct approximate phase-relations for end-member/simplified mineral compositions in logarithmic activity space. Logarithmic activity diagrams (for the system Al2O3-FeO-Fe2O3-MgO-Na2O-SiO2-H2O) suggest that if pore waters are supersaturated with respect to magnetite in HLW repositories, Fe(II)-rich saponite is the most likely montmorillonite alteration product (if fO2(g) values are significantly lower than magnetite-hematite equilibrium). Therefore, the alteration of montmorillonite may not be detrimental to nuclear waste repositories that include Fe, as long as the swelling behaviour of the Fe-rich smectite produced is maintained. If fO2(g) exceeds magnetite-hematite equilibrium, and solutions are saturated with respect to magnetite in HLW repositories, berthierine is likely to be more stable than smectite minerals. The alteration of montmorillonite to berthierine could be detrimental to the performance of HLW repositories.  相似文献   

2.
In this study a series of CH4 adsorption experiments on clay-rich rocks were conducted at 35 °C, 50 °C and 65 °C and at CH4 pressure up to 15 MPa under dry conditions. The clay-dominated rock samples used are fresh samples from quarries and mines. Samples are individually dominated by montmorillonite, kaolinite, illite, chlorite, and interstratified illite/smectite. The experimental results show that clay mineral type greatly affects CH4 sorption capacity under the experimental conditions. In terms of relative CH4 sorption capacity: montmorillonite ? illite/smectite mixed layer > kaolinite > chlorite > illite. Physisorption is the dominant process for CH4 absorption on clay minerals, as a result, there is a linear correlation between CH4 sorption capacity and BET surface area in these clay-mineral dominated rocks. The abundance of micro-mesopores in the size range of a few to a few 10 s of nanometers in montmorillonite clay and illite–smectite interstratified clay results in large BET surface area values for these mineral species.  相似文献   

3.
Although iron isotopes provide a new powerful tool for tracing a variety of geochemical processes, the unambiguous interpretation of iron isotope ratios in natural systems and the development of predictive theoretical models require accurate data on equilibrium isotope fractionation between fluids and minerals. We investigated Fe isotope fractionation between hematite (Fe2O3) and aqueous acidic NaCl fluids via hematite dissolution and precipitation experiments at temperatures from 200 to 450 °C and pressures from saturated vapor pressure (Psat) to 600 bar. Precipitation experiments at 200 °C and Psat from aqueous solution, in which Fe aqueous speciation is dominated by ferric iron (FeIII) chloride complexes, show no detectable Fe isotope fractionation between hematite and fluid, Δ57Fefluid-hematite = δ57Fefluid − δ57Fehematite = 0.01 ± 0.08‰ (2 × standard error, 2SE). In contrast, experiments at 300 °C and Psat, where ferrous iron chloride species (FeCl2 and FeCl+) dominate in the fluid, yield significant fluid enrichment in the light isotope, with identical values of Δ57Fefluid-hematite = −0.54 ± 0.15‰ (2SE) both for dissolution and precipitation runs. Hematite dissolution experiments at 450 °C and 600 bar, in which Fe speciation is also dominated by ferrous chloride species, yield Δ57Fefluid-hematite values close to zero within errors, 0.15 ± 0.17‰ (2SE). In most experiments, chemical, redox, and isotopic equilibrium was attained, as shown by constancy over time of total dissolved Fe concentrations, aqueous FeII and FeIII fractions, and Fe isotope ratios in solution, and identical Δ57Fe values from dissolution and precipitation runs. Our measured equilibrium Δ57Fefluid-hematite values at different temperatures, fluid compositions and iron redox state are within the range of fractionations in the system fluid-hematite estimated using reported theoretical β-factors for hematite and aqueous Fe species and the distribution of Fe aqueous complexes in solution. These theoretical predictions are however affected by large discrepancies among different studies, typically ±1‰ for the Δ57Fe Fe(aq)-hematite value at 200 °C. Our data may thus help to refine theoretical models for β-factors of aqueous iron species. This study provides the first experimental calibration of Fe isotope fractionation in the system hematite-saline aqueous fluid at elevated temperatures; it demonstrates the importance of redox control on Fe isotope fractionation at hydrothermal conditions.  相似文献   

4.
We present the results of an experimental study into the sulfidation of magnetite to form pyrite/marcasite under hydrothermal conditions (90-300 °C, vapor saturated pressures), a process associated with gold deposition in a number of ore deposits. The formation of pyrite/marcasite was studied as a function of reaction time, temperature, pH, sulfide concentration, solid-weight-to-fluid-volume ratio, and geometric surface area of magnetite in polytetrafluoroethylene-lined autoclaves (PTFE) and a titanium and stainless steel flow-through cell. Marcasite was formed only at pH21°C <4 and was the dominant Fe disulfide at pH21°C 1.11, while pyrite predominated at pH21°C >2 and formed even under basic conditions (up to pH21°C 12-13). Marcasite formation was favored at higher temperatures. Fine-grained pyrrhotite formed in the initial stage of the reaction together with pyrite in some experiments with large surface area of magnetite (grain size <125 μm). This pyrrhotite eventually gave way to pyrite. The transformation rate of magnetite to Fe disulfide increased with decreasing pH (at 120 °C; pH120°C 0.96-4.42), and that rate of the transformation increased from 120 to 190 °C.Scanning electron microscope (SEM) imaging revealed that micro-pores (0.1-5 μm scale) existed at the reaction front between the parent magnetite and the product pyrite, and that the pyrite and/or marcasite were euhedral at pH21°C <4 and anhedral at higher pH. The newly formed pyrite was micro-porous (0.1-5 μm); this micro-porosity facilitates fluid transport to the reaction interface between magnetite and pyrite, thus promoting the replacement reaction. The pyrite precipitated onto the parent magnetite was polycrystalline and did not preserve the crystallographic orientation of the magnetite. The pyrite precipitation was also observed on the PTFE liner, which is consistent with pyrite crystallizing from solution. The mechanism of the reaction is that of a dissolution-reprecipitation reaction with the precipitation of pyrite being the rate-limiting step relative to magnetite dissolution under mildly acidic conditions (e.g., pH155°C 4.42).The experimental results are in good agreement with sulfide phase assemblage and textures reported from sulfidized Banded Iron Formations: pyrite, marcasite and pyrrhotite have been found to exist or co-exist in different sulfidized Banded Iron Formations, and the microtextures show no evidence of sub-μm-scale pseudomorphism of magnetite by pyrite.  相似文献   

5.
The detection of phyllosilicates and sulfates on Mars has revealed a complex aqueous history which suggests distinct geochemical environments separated temporally and spatially. Recent observations by MRO CRISM in Mawrth Vallis have shown that phyllosilicate deposits exhibit a specific stratigraphy, which remains incompletely understood. Moreover, MER Spirit has evidenced association between phyllosilicates, amorphous silica and sulfates. We investigated the hypothesis that these parageneses resulted from the acidic weathering of older phyllosilicate deposits. We exposed nontronite (Fe-rich smectite), montmorillonite (Al-rich smectite) and kaolinite to H2SO4 solutions at pH 0, 2 and 4, and at a temperature of 60 °C. After the acid treatment, a combination of mineralogical techniques was used to assess the degree of alteration of the three phyllosilicate minerals. XRF, XRD and ESEM measurements show that nontronite was the most unstable when acid leached, followed by montmorillonite and then kaolinite. Progressive acidic leaching of nontronite leads to alteration of the phyllosilicate to amorphous silica, along with Fe-sulfate and anatase, and the formation of an acidic Al,Fe-rich solution. Alteration of montmorillonite resulted in the formation of Fe-, Al-, Ca- and Mg-sulfates, and a Al-rich leaching solution. Comparatively, leaching of kaolinite resulted in the formation of Al-sulfates and a Al-rich solution as well, with only slight alteration of the primary mineralogical features. The effects of acid leaching of the phyllosilicates were also observed in NIR reflectance spectra, allowing a comparison with CRISM spectra from Mawrth Vallis. Based on our results, we propose a new model where acid leaching of mixed phyllosilicate deposits leads to kaolinite overlaying montmorillonite, which in turn caps Fe,Mg-smectites. Leaching of cations and subsequent evaporation leads to sulfate deposits, as supported by geochemical modeling, while amorphous silica remains as a residue. Depending on the intensity (pH) and length of exposure of acidic leaching, our model can explain the stratigraphic distribution of phyllosilicates, and the association of sulfates, silica and smectites.  相似文献   

6.
Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA, USA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe-rich precipitates. Batch reactors were used to conduct experiments at 50 °C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10−13 mol m−2 s−1) was measured in the treatment with no Al and a concentration of 4.32 mol L−1 NaOH in the contact solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminants and radionuclides.  相似文献   

7.
Cement-bentonite interactions will occur in deep geological repositories for high level radioactive waste. We performed laboratory experiments in order to constrain some previous geochemical and mineralogical uncertainties in the formation of secondary minerals in the high pH reaction of FEBEX bentonite at moderate temperatures.The reactivity of a Mg-homoionic FEBEX bentonite was studied at 25, 60 and 90 °C in batch reactors using two solutions representative of short and long time evolution stages of cement degradation. These solutions were periodically renewed in order to maintain a constant pH regime for a period of almost 2 years.Chabazite and merlinoite were observed to be the main zeolites that formed at 60 °C, while merlinoite was the dominant zeolite formed at 90 °C with the hyperalkaline (K-Na-OH) solution. The alkaline experiments (Ca-OH solution) showed minor reactivity and negligible mineralogical alteration, but the overall results suggest that the reaction tends to equilibrium conditions between C-S-H and montmorillonite at high temperature and metastable conditions at low temperature. The montmorillonite dissolution rates were calculated for all experiments, showing good agreement with previous calculations.  相似文献   

8.
Mechanisms of iron oxide transformations in hydrothermal systems   总被引:2,自引:0,他引:2  
Coexistence of magnetite and hematite in hydrothermal systems has often been used to constrain the redox potential of fluids, assuming that the redox equilibrium is attained among all minerals and aqueous species. However, as temperature decreases, disequilibrium mineral assemblages may occur due to the slow kinetics of reaction involving the minerals and fluids. In this study, we conducted a series of experiments in which hematite or magnetite was reacted with an acidic solution under H2-rich hydrothermal conditions (T = 100-250 °C, ) to investigate the kinetics of redox and non-redox transformations between hematite and magnetite, and the mechanisms of iron oxide transformation under hydrothermal conditions. The formation of euhedral crystals of hematite in 150 and 200 °C experiments, in which magnetite was used as the starting material, indicates that non-redox transformation of magnetite to hematite occurred within 24 h. The chemical composition of the experimental solutions was controlled by the non-redox transformation between magnetite and hematite throughout the experiments. While solution compositions were controlled by the non-redox transformation in the first 3 days in a 250 °C experiment, reductive dissolution of magnetite became important after 5 days and affected the solution chemistry. At 100 °C, the presence of maghemite was indicated in the first 7 days. Based on these results, equilibrium constants of non-redox transformation between magnetite and hematite and those of non-redox transformation between magnetite and maghemite were calculated. Our results suggest that the redox transformation of hematite to magnetite occurs in the following steps: (1) reductive dissolution of hematite to and (2) non-redox transformation of hematite and to magnetite.  相似文献   

9.
99Technetium (99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life (t1/2 = 2.13 × 105 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe2+) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both without and with AQDS). The extent and initial rate of bioreduction were positively correlated with the percent smectite in the S-I series (i.e., layer expandability). Fe(II) in the bioreduced clay minerals subsequently was used to reduce Tc(VII) to Tc(IV) in PIPES buffer. Similar to the trend of bioreduction, in the S-I series, reduced NAu-2 showed the highest reactivity toward Tc(VII), and reduced illite exhibited the least. The initial rate of Tc(VII) reduction, after normalization to clay and Fe(II) concentrations, was positively correlated with the percent smectite in the S-I series. Fe(II) in chlorite and palygorskite was also reactive toward Tc(VII) reduction. These data demonstrate that crystal chemical parameters (layer expandability, Fe and Fe(II) contents, and surface area, etc.) play important roles in controlling the extent and rate of bioreduction and the reactivity toward Tc(VII) reduction. Reduced Tc(IV) resides within clay mineral matrix, and this association could minimize any potential of reoxidation over long term.  相似文献   

10.
Glass-iron-clay setups were reacted at 90 °C for 6-18 months to investigate the coupled interactions between glass alteration, Fe corrosion and clay transformation. The reacted interfaces were probed at the microscopic level using complementary characterization methods (scanning electron microscopy coupled with energy-dispersive X-ray analysis, micro-Raman spectroscopy, micro X-ray diffraction, micro X-ray fluorescence spectroscopy, and micro X-ray absorption near-edge structure spectroscopy). The 10-μm thick Fe foil was fully corroded within 10 months, exposing glass to the pore solution. Iron corrosion led to the formation of a layer containing mostly magnetite, siderite and Fe-rich phyllosilicates with one tetrahedral and one octahedral sheet (TO) or two tetrahedral and one octahedral (TOT) sheet per layer. The clay in contact with this corrosion layer was enriched in siderite (FeCO3). Glass alteration resulted in the formation of a gel layer whose thickness increased with reaction time (from 20 μm after 6 months to 80 μm after 18 months) and a thin layer of secondary precipitates that concentrated lanthanides, P, and Mo. Assuming conservative behavior of Zr, the Si molar concentration in the gel is about 57% that in the glass. Glass dissolution remained at a rate close to the initial dissolution rate r0. The data are consistent with glass dissolution sustained by the uptake of dissolved Si and charge-compensating cations on secondary (corrosion) products, thus maintaining the gel porosity open and facilitating the leaching of easily soluble elements.  相似文献   

11.
The sorption of Eu(III) onto kaolinite and montmorillonite was investigated up to 150 °C. The clays were purified samples, saturated with Na in the case of montmorillonite. Batch experiments were conducted at 25, 40, 80 and 150 °C in 0.5 M NaClO4 solutions to measure the distribution coefficients (Kd) of Eu as a trace element (<10−6 mol/L) between the solution and kaolinite. For the Na-montmorillonite, we used Kd results from a previous study [Tertre, E., Berger, G., Castet, S., Loubet, M., Giffaut, E., 2005. Experimental study of adsorption of Ni2+, Cs+ and Ln3+ onto Na-montmorillonite up to 150 °C. Geochim. Cosmochim. Acta69, 4937-4948] obtained under exactly the same conditions. The number and nature of the Eu species sorbed onto both clay minerals were investigated by time resolved laser fluorescence spectroscopy (TRLFS) in specific experiments in the same temperature range. We identified a unique inner-sphere complex linked to the aluminol sites in both clays, assumed to be AlOEu2+ at the edge of the particles, and a second exchangeable outer-sphere complex for montmorillonite, probably in an interlayer position. The Kd values were used to adjust the parameters of a surface complexation model (DLM: diffuse layer model) from 25 to 150 °C. The number of Eu complexes and the stoichiometry of reactions were constrained by TRLFS. The acidity constants of the amphoteric aluminol sites were taken from another study [Tertre, E., Castet, S., Berger, G., Loubet, M., Giffaut, E. Acid/base surface chemistry of kaolinite and Na-montmorillonite at 25 and 60 °C: experimental study and modelling. Geochim. Cosmochim. Acta, in press], which integrates the influence of the negative structural charge of clays on the acid/base properties of edge sites as a function of temperature and ionic strength. The results of the modelling show that the observed shift of the sorption edge towards low pH with increasing temperature results solely from the contribution of the AlOEu2+ edge complexes. Finally, we successfully tested the performance of our model by confronting the predictions with experimental Kd data. We used our own data obtained at lower ionic strength (previous study) or higher suspension density and higher starting concentration (TRLFS runs, this study), as well as published data from other experimental studies [Bradbury, M.H., Baeyens, B., 2002. Sorption of Eu on Na and Ca-montmorillonite: experimental investigations and modeling with cation exchange and surface complexation. Geochim. Cosmochim. Acta66, 2325-2334; Kowal-Fouchard, A., 2002. Etude des mécanismes de rétention des ions U(IV) et Eu(III) sur les argiles: influence des silicates. Ph.D. Thesis, Université Paris Sud, France, 330p].  相似文献   

12.
Redox processes of structural Fe in clay minerals play an important role in biogeochemical cycles and for the dynamics of contaminant transformation in soils and aquifers. Reactions of Fe(II)/Fe(III) in clay minerals depend on a variety of mineralogical and environmental factors, which make the assessment of Fe redox reactivity challenging. Here, we use middle and near infrared (IR) spectroscopy to identify reactive structural Fe(II) arrangements in four smectites that differ in total Fe content, octahedral cationic composition, location of the negative excess charge, and configuration of octahedral hydroxyl groups. Additionally, we investigated the mineral properties responsible for the reversibility of structural alterations during Fe reduction and re-oxidation. For Wyoming montmorillonite (SWy-2), a smectite of low structural Fe content (2.8 wt%), we identified octahedral AlFe(II)-OH as the only reactive Fe(II) species, while high structural Fe content (>12 wt%) was prerequisite for the formation of multiple Fe(II)-entities (dioctahedral AlFe(II)-OH, MgFe(II)-OH, Fe(II)Fe(II)-OH, and trioctahedral Fe(II)Fe(II)Fe(II)-OH) in iron-rich smectites Ölberg montmorillonite, and ferruginous smectite (SWa-1), as well as in synthetic nontronite. Depending on the overall cationic composition and the location of excess charge, different reactive Fe(II) species formed during Fe reduction in iron-rich smectites, including tetrahedral Fe(II) groups in synthetic nontronite. Trioctahedral Fe(II) domains were found in tetrahedrally charged ferruginous smectite and synthetic nontronite in their reduced state while these Fe(II) entities were absent in Ölberg montmorillonite, which exhibits an octahedral layer charge. Fe(III) reduction in iron-rich smectites was accompanied by intense dehydroxylation and structural rearrangements, which were only partially reversible through re-oxidation. Re-oxidation of Wyoming montmorillonite, in contrast, restored the original mineral structure. Fe(II) oxidation experiments with nitroaromatic compounds as reactive probes were used to link our spectroscopic evidence to the apparent reactivity of structural Fe(II) in a generalized kinetic model, which takes into account the presence of Fe(II) entities of distinctly different reactivity as well as the dynamics of Fe(II) rearrangements.  相似文献   

13.
Highly reducing and high-pH vent fluids characterize moderately low temperature ultramafic-hosted hydrothermal systems, such as the recently discovered Lost City hydrothermal field at 30°N Mid-Atlantic Ridge Ridge (MAR). To better understand the role of mineral reaction rates on changes in fluid chemistry and mineralization processes in these and similar systems, we conducted an experimental study involving seawater and peridotite at 200 °C, 500 bar. Time series changes in fluid chemistry were monitored and compared with analogous data predicted using experimental and theoretical data for mineral dissolution rates. Although there was qualitative agreement between predicted and measured changes in the chemical evolution of the fluid for some species, the rate and magnitude of increase in pH, dissolved chloride and H2 did not agree well with predictions based on theoretical modeling results. Experimental data indicate that dissolved H2 abruptly and intermittently increased, reaching a value only approximately 20% of that predicted assuming magnetite as the primary Fe-bearing alteration phase. The distribution and valence of Fe in primary and secondary minerals reveal that the most abundant secondary mineral, serpentine, contained significant amounts of both ferric and ferrous Fe, with the less abundant brucite, also being Fe-rich (XFe = 0.3). Surprisingly, magnetite was present in only trace amounts, indicating that H2 generation was largely accommodated by the formation of Fe-chrysotile. Accordingly, the diversity of Fe-bearing secondary minerals together with rates of serpentinization less than theoretically predicted, account best for the relatively low dissolved H2 concentrations produced. Thus, the experimental data can be used to obtain provisional estimates of thermodynamic data for Fe-bearing minerals, enhancing the application of reaction path models depicting mass transfer processes during serpentinization at mid-ocean ridges. Similarly, the observed differences between theoretically predicted and experimentally measured pH values result from constraints imposed by complex patterns of mass transfer inherent to the experimental system. In particular, the experimental observation of a late stage increase in Na/Cl ratio likely results from the dissolution of a Na2O component of clinopyroxene, which causes pH to increase sufficiently to induce precipitation of a Ca-bearing phase, perhaps portlandite. As with the redox variability observed during the experiment, this event could not be predicted, underscoring the need to use caution when modeling alteration processes in the chemically complex ultramafic-hosted hydrothermal systems at elevated temperatures and pressures.  相似文献   

14.
In the context of the potential confinement of high-level radioactive wastes (HLW) within the clay engineered barrier system (EBS) in deep geological formations, the evolution of the retention properties of smectite when interacting with Fe(0) needs to be assessed. If some potential natural analogues describing iron-clay reactivity are easily found, metallic iron-clay interactions are poorly described in studies regarding the Earth. Therefore, experimental investigations are needed. Several parameters influence Fe(0)-clay interactions, such as temperature, the interlayer composition of swelling clays, and the presence of octahedral Fe3+, etc. From a geometrical point of view, it is thought that clay destabilization is mainly controlled by phenomena starting at the edge faces of the particles. In the present work, the rates of the smectite-Fe(0) reaction at 80 °C were assessed by XRD, Mössbauer, and CEC analyses for three smectites. The investigations show marked differences in the degree of stability, which cannot be explained by the crystal-chemistry rules established in previous studies. Therefore, the Fe(0)-smectite interactions were studied in view of textural and energetic surface quantitative analyses. The studied smectites have equivalent nitrogen BET-specific surface areas, equivalent argon edge surface areas and slightly different basal surface areas. This similarity in particle shape indicates that the edge surface area cannot be accounted for when explaining the observed differences in reactivity. However, a correlation is obtained between smectite reactivity and the energetic heterogeneity of its edge faces. This is interpreted in terms of a multiplication of the number of sites on the edge faces, where the electron transfer between Fe(0) and the smectite structure can occur.  相似文献   

15.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

16.
A series of kinetic experiments has been carried out to investigate the rates of dissolution (release of Al and Si) of common sandstone minerals in response to acidification of pore waters (pH = 3), using an experimental procedure designed to maximise the proportion of solid to fluid, and to minimise possible damage from agitation. The results have then been compared with those from experiments using disaggregated sandstones from two North Sea reservoirs. Experiments were carried out at 25 °C and 80 °C and in 0.01, 0.1 and 1 M NaCl solutions, with a pH of 3. Hydrochloric acid was used as the source of acidity and rate constants were determined based on both release of Al and Si. Mineral dissolution rates were closely comparable to literature values, despite the different experimental technique, except in the case of smectite where particle aggregation appears to have inhibited reaction. The dissolution rates calculated for reservoir sandstones based on their modal mineralogy and surface areas agree within a factor of 2 with the measured vales. Based on the reaction rates measured here, reservoir rocks rich in feldspar, illite and/or smectite are likely to react most rapidly with acidified pore waters.  相似文献   

17.
The aqueous interfacial chemistry of kaolinite and Na-montmorillonite samples was investigated by potentiometric measurements using acid/base continuous titrations and batch experiments at 25 and 60 °C. Using the batch experimental method, a continuous drift of pH was observed reflecting the mineral dissolution. Consequently, the continuous titration method appears to be the best way of studying solid surface reactions. For each clay mineral, the net proton surface excess/consumption was calculated as a function of pH and ionic strength (0.025, 0.1 and 0.5 M). At 25 °C, and according to the literature data, the pH corresponding to zero net proton consumption for montmorillonite appears to depend on ionic strength, whereas the value for kaolinite is constant and close to 5. Similar results are obtained at 60 °C, which suggests that the point of zero net proton consumption for clay minerals does not depend on temperature, at least up to 60 °C. On the other hand, the temperature rise induces a slight increase of the net proton surface excess. Finally, the diffuse double layer formalism (DDLM) is used to model the experimental data. The model involves two processes: the protonation/deprotonation of two types of edge sites (aluminol and silanol) and H+/Na+ exchange reactions on basal surfaces, while a tiny proportion of the negative structural charge remains uncompensated. This last process maintains a negative surface potential whatever the pH of the solution, which is in agreement with electrokinetic data.  相似文献   

18.
Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P.  相似文献   

19.
To understand the initial reactions of granite in a CO2-saturated hydrothermal system, experiments were conducted using a batch-type autoclave over a temperature range of 100–350 °C at up to 250 bar and numerical computations of phase equilibria based on the experimental results were carried out. The experiments showed that the dissolution of granite and the deposition of secondary minerals were encouraged by the addition of CO2. Solution chemistry and examination of the granite’s surface texture suggested that its initial dissolution is characterized by the release of Na and Ca (from the dissolution of plagioclase) and that initial precipitation occurs by deposition of some secondary minerals on to plagioclase and/or biotite in the CO2-saturated system. However, the effect of CO2 was small at 350 °C owing to the low activity of H2CO3. According to EDX analysis and numerical phase equilibrium calculations, the secondary minerals formed might be kaolinite, muscovite, smectite and calcite. That is, the granite as a whole might have the potential to take-up dissolved CO2. The results suggest that the alteration of granite under CO2-saturated hydrothermal conditions has the potential to capture CO2 when it is injected at moderate temperatures (150–250 °C) into granite-hosted rock masses.  相似文献   

20.
Assessing the ferric-ferrous ratio in magmas prior to eruption remains a challenging task. X-ray absorption near-edge structure (μXANES) spectra were collected at the iron K-edge in water-rich peralkaline silicic melt/glass inclusions trapped in quartz. These experiments were carried out between 800 and 20 °C. The chemical environment of iron was also determined in the naturally quenched samples (glass inclusions and matrix glass) and in the peralkaline rhyolitic reference glasses, with variable [Fe3+ / ∑Fe] ratios.In the reference glasses, both the intensity of the pre-peaks (Fe2+, Fe3+) and site geometry of iron change as the oxidation state increases. Fourfold-coordinated Fe3+ prevails in highly oxidised peralkaline silicic glasses, using alkalis for charge balance. The position of the pre-edge centroid of the 1s-3d transition correlates with the Fe3+ / ΣFe ratios that allowed calibration of the redox state of iron of our natural samples.At high temperatures, Fe2+ dominates in the pre-edge structure of melt inclusions. Upon cooling down to 20 °C, the intensity of the Fe3+ peak increases, the centroid position of the pre-edge features shifts by nearly 0.5 eV and the main edge moves slightly towards higher energies. The slower the cooling rate, the higher the ferric iron contribution. Iterative μXANES experiments performed on the same samples show that the process is reversible. However, this apparent oxidation of iron upon cooling is an artefact of changes in Fe coordination. It implies that the [Fe3+ / ΣFe] ratio of glassy samples, measured at 20 °C, may be overestimated by a factor > 1.7, and that this ratio cannot be reliably retrieved by probing naturally cooled glass inclusions, and most silicate glasses. High temperature μXANES experiments led first to an assessment of the ferric-ferrous ratio in the water-rich peralkaline melt in pre-eruptive magmatic conditions and second to the determination of the corresponding oxygen fugacity at 740 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号