首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2005,20(3):537-544
Thermal analyses (TG–DTA), elemental composition and isotope analyses (13C and 15N) were performed on humic acids (HA) from peats, leonardites and lignites, in order to investigate their structure and the changes taking place during the humification process. Thermal analyses showed structural differences between HA samples in relation to their coalification rank. In particular the lignite HA were characterized by a more stable chemical composition at high temperatures.The δ13C and δ15N values can provide information on the biogeochemical processes involved in HA formation. In particular, peat HA were linked to anoxic environments that enable plant residues to persist in their structure. In contrast, leonardite and lignite HA formation seems to be governed by different biogeochemical processes from those responsible for peat diagenesis. However, the isotopic analyses did not provide any distinction between leonardite and lignite HA. On the basis of the data presented in this study, it may be concluded that TG–DTA and isotope ratio measurements are powerful tools for investigating the formation pathway of humic substances from coals.  相似文献   

2.
A peat deposit from the East European Russian Arctic, spanning nearly 10 000 years, was investigated to study soil organic matter degradation using analyses of bulk elemental and stable isotopic compositions and plant macrofossil remains. The peat accumulated initially in a wet fen that was transformed into a peat plateau bog following aggradation of permafrost in the late Holocene (~2500 cal a BP). Total organic carbon and total nitrogen (N) concentrations are higher in the fen peat than in the moss‐dominated bog peat layers. Layers in the sequence that have lower concentrations of total hydrogen (H) are associated with degraded vascular plant residues. C/N and H/C atomic ratios indicate better preservation of organic matter in peat material dominated by bryophytes as opposed to vascular plants. The presence of permafrost in the peat plateau stage and water‐saturated conditions at the bottom of the fen stage appear to lead to better preservation of organic plant material. δ15N values suggest N isotopic fractionation was driven primarily by microbial decomposition whereas differences in δ13C values appear to reflect mainly changes in plant assemblages. Positive shifts in both δ15N and δ13C values coincide with a local change to drier conditions as a result of the onset of permafrost and frost heave of the peat surface. This pattern suggests that permafrost aggradation not only resulted in changes in vegetation but also aerated the underlying fen peat, which enhanced microbial denitrification, causing the observed 15N‐enrichment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The Cenozoic Krabi Basin in the southern part of peninsular Thailand contains about 112 million tons proven coal reserves. At present, coal is only produced from the Bang Mark mine located in the southern part of the basin, where the main lignite bed is 7-20 m thick. The lignite bed occurs in an overall paralic succession. The present paper investigates the depositional conditions of an approximately 8 m thick lignite bed (main seam) in the Bang Mark mine using organic petrography, including maceral ratios, and geochemistry. The results are further interpreted in a sequence stratigraphic context. The lignite is of low rank and is completely dominated by huminite indicating generally oxygen-deficient conditions in the precursor mire. Very low inertinite contents suggest rare occurrences of wildfires. The lower part of the lignite bed represents a topogenous fresh water peat mire with open water areas that in few cases may have experienced influx of saline water. The peat mire was subjected to periodic inundations and deposition of siliciclastics. Tissue preservation was relatively poor. The upper part of the lignite bed represents a slightly domed fresh water ombrogenous peat mire with a stable watertable and a balance between peat accumulation and accommodation space creation that favoured preservation of plant tissues. In general, the mire vegetation changed from less woody in the topogenous mire to more arborescent in the ombrogenous mire, where plants with suberinised wood cell walls also were more frequent. Decompacted, the lignite bed corresponds to a minimum ~ 11 m thick peat deposit that records from ~ 22,000 to 55,000 years of peat accumulation. Watertable rise in the peat mire was controlled overall by relative sea-level rise. In a sequence stratigraphic context, the lignite bed overlies a terrestrialisation surface (TeS; sensu Diessel, 2007) and the lowermost part records peat formation during a falling watertable and a decreasing accommodation/peat accumulation ratio (terrestrialisation). An accommodation reversal surface (ARS; sensu Diessel, 2007) indicates a change to paludification style of peat formation characterised by rising watertable and a high accommodation/peat accumulation ratio. Another ARS marks a gradual change to a situation with a balanced accommodation/peat accumulation ratio. The overall watertable rise throughout peat formation, but at a gradually slower rate from base to top, suggests that the lignite bed could be located in the late transgressive systems tract (TST).  相似文献   

4.
Interactions between lignite and soluble uranyl species have been investigated experimentally at different temperatures from 20° to 400°C. Fixation of uranyl species by lignite (45° to 250°C) and their reduction to uraninite (120° to 400°C) were observed. The fixation of uranyl species by lignite results in the formation of stable organo-uranyl compounds. The reduction of uranyl species by lignite results in a stoichiometric liberation of H+ in the solution medium and in a dehydrogenation of lignite. This dehydrogenation can be attributed to two different processes. The first is an oxidation of alcohol functional groups into aldehyde or ketone functions accompanied by a simultaneous reduction of uranyl species. The second is a dehydrogenation of hydrocarbonaceous aliphatic moieties induced by the uranium species. The molecular hydrogen produced during this process is subsequently used for an additional reduction of uranyl species.  相似文献   

5.
Characterization of the Panandhro lignite deposits from western Indian state of Gujarat, based on the geochemical and palynological evidences, has been performed to assess the floral composition, maturity and hydrocarbon potential of the sequence. Elementally, the lignites consist of moderate carbon, low hydrogen and moderate sulfur contents. The samples are characterized by high TOC contents (lignite: av. 46.43 wt.%, resin: 62.47 wt.%). The average HI values for the lignite is 136 mg HC/g TOC, and that of the associated resin is 671 mg HC/g TOC. The highest Tmax is recoded in lignite (422°C) and lowest in the resin (39°C) samples. The FTIR spectrum of lignite is characterized by highly intense OH stretching peak ~3350 cm-1, aliphatic CHx stretching peaks between 3000-2800 cm-1, aromatic C=O stretching and an aromatic C=C stretching. The spectrum of resin shows strongest absorption due to aliphatic CHx stretching between 2940-2915 cm-1 and 2870-2850 cm-1, and deformation by the medium peak between 1450 and 1650 cm-1. The recovered palynofloral assemblage indicates the dominance of angiosperm pollen grains with maximum abundance of Arecaceae family, and subdominant pteridophytic spores. Marine influence is indicated by the presence of abundant dinoflagellate cysts. The occurrence of flora from a variety of ecological niches suggests a luxuriant diverse vegetation pattern existed in the vicinity of depositional site under humid tropical conditions. The overall characteristics of the lignite deposits point towards their ability to generate (upon maturation) hydrocarbons as they have types III–II admixed kerogen (organic matters).  相似文献   

6.
7.
To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg–1 to 39.5 mg kg–1 and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg–1. Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal I is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95–99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased from lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.  相似文献   

8.
A sequence of alternating lacustrine marls, peat and basalts was penetrated in the Notera-3 well in the northern part of the Jordan Rift, Israel. The 2781 m thick sequence, ranges from Upper Miocene to Recent, reflects high sedimentation rate in the active continental rift associated with the Dead Sea Transform. The deep burial and the relatively high geothermal gradient (40°C km−1) compensate for the short time span so that coalification expressed by vitrinite reflectance consistently increases with depth, from about 0.32% Ro at 1040 m to 0.48% Ro at 2495 m.Analysis of the peat reveals that the O/C, S/C and δ13C of the humic acids (HA) and the heavy to light normal alkane ratios are the only parameters sensitive enough to express this slight maturation increase with depth. A sharp δ13C change from about − 18‰ prevailing in the uppermost meters to an average of − 27.5‰ at 15 m and deeper reflects a change in the higher plant source of the peat (from C4 to C3 plants) rather than an early diagenetic modification.The δ13C, O/C, S/C and N/C ratios are usually lower in the kerogens than in the corresponding HA. The decrease in the δ13C and the O/C ratios are explained by elimination of oxygen-containing functional groups during transformation and by polymerization effects. The gradual decrease in the 12C and the O/C of the HA with depth are attributed to decarboxylation coupled with kinetic effects. The N/C depletion during the transformation from HA to kerogens probably results from the breakdown of amino acids. The S/C ratio which decreases both during this transformation and also with maturation is most readily explained by the breakdown of ester sulfate-containing groups such as sulfated polysaccarids, which formed diagenetically during the humification process.  相似文献   

9.
Peatlands are widespread and important natural archives of environmental change. Here we explore the potential of the recently introduced MBT-CBT proxy (methylation index and cyclisation ratio of branched tetraethers) to estimate past annual mean air temperature (MAT) based on the distribution of bacterially-derived branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in peat and coal. To this end, branched GDGTs in an ombrotrophic peat bog from Switzerland and three coal deposits of increasing maturity were analysed.For the surface of the bog, reconstructed annual MAT is higher than both measured annual MAT and measured in situ pore water temperature. Changes in the CBT ratio, considered a proxy for pH, with depth in the bog do not match with present day in situ pore water pH, but coincide with a peat stratigraphic boundary. This indicates that GDGTs down the bog profile are predominantly fossil and not derived from extant biomass. The MBT-CBT derived annual MAT record also shows a large drop at this stratigraphic boundary, which likely relates to past change in trophic status of the bog. Branched GDGTs are abundant in an immature lignite (vitrinite reflectance, Ro 0.25%), but occur in low amount in a slightly more mature coal (Ro 0.32%). Annual MAT could be reconstructed for the lignite alone and is higher than other proxy-based estimates from approximately the same time and location.Our results indicate potential for the application of the MBT-CBT proxy in peat and immature coals, but improved constraints on the effects of different types of peat on branched GDGT distributions as well as improved calibration of MAT estimates are needed before the method can be confidently applied.  相似文献   

10.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

11.
This paper entails the results of the investigations undertaken to assess the oil potential of two lignite deposits, Rajpardi and Vastan, from Gujarat, western India. They are ‘Low rank B’ type lignite. Petrographically, they are enriched in huminite and are low in liptinite and inertinite. Their elevated hydrogen content, in relation to carbon, has probably made them perhydrous in nature and oil prone. The reactivity of these coals during liquefaction has also been discussed in the light of petrofactor. Good correlation has been noticed between oil yield and conversion (r2 = 0.999) in both the lignite deposits. The VRr (0.24–0.35% in both lignites), H/C atomic ratio (0.11–1.39 in Rajpardi and 1.09–1.88 in Vastan), reactive maceral content (91.6–99.8 vol % mmf in Rajpardi lignite and 75.5–99.7 vol % in Vastan lignite) and VMdaf (64.8–67.9 wt % in Rajpardi lignite and 42.1–80.0 wt % in Vastan lignite) of these lignites have a favourable range required for a coal to generate oil. Huminite is seen to play a vital role in conversion and maintains a good correlation with it. The calculations show that these lignites have a high conversion (> 95%) and oil yield (> 65%).  相似文献   

12.
The objective of this study was to reconstruct the paleoenviromnent during formation of the deposit at Amynteon–Ptolemaida based mainly on its petrographic but also supported by its paleobotanic character and fossils found in the lignite beds themselves. The deposit of Amynteon occurs in the northern part of the elongated basin of Ptolemaida–Amynteon. The type of lignite formation is, in general terms, similar to the deposit of Ptolemaida, and the lignite is present in the Pleistocene strata of the basin. The alternating nature of lignite and interburden is an important characteristic of the deposit. In this study, we selected 20 samples of lignite from a representative drillhole, namely B-258 in order to discern its petrography. Optical microscopy showed that the huminite group macerals are dominant, ranging from 42.5% to 95.3%. Humotelinite is present in low to high quantities (12.0–79.5%), followed closely by humodetrinite. Humocollinite is present in very small amounts. In addition, macerals of the liptinite and inertinite groups are found in small concentrations, with a few exceptions.A number of indices, such as gelification index (GI), vegetation index (VI), groundwater index (GWI), tissue preservation index (TPI), and their ratios (e.g., VI/GWI, TPI/GI), were used to reconstruct the conditions prevailing during peat formation. The results indicate that the paleoenvironment was mainly limnic at the initial stages and transitioned to limnotelmatic with occasional rheotrophic conditions. The organic matter responsible for lignite formation developed mainly in a forested swamp environment with occasional transitions either towards a wet limnic (open water) or a drier telmatic environment.  相似文献   

13.
In 65 samples, we got values (unusually replicable and consistent for this type of work) of concentration, 14C/13C (AMS) age, and δ13C for: peat, dissolved organic carbon (DOC), peat fractions, and dissolved CO2 and CH4 at 50-cm intervals down to 700 cm in Ellergower Moss, a rainwater-dependent raised (domed) bog in southwest Scotland. (1) We attribute the consistency of the results to Ellergower Moss being unusually homogeneous, with unusually low hydraulic conductivity, and containing only a few gas spaces; and to the sampling methods including 18-month equilibration of in situ samplers. (2) The dissolved gas concentration depth profiles are convex and very similar to each other, though CO2 is 5-10 times more concentrated than CH4, while the profile of DOC is concave. (3) The age profile of peat is near linearly proportional to depth; that for DOC is about 500-1000 yr younger than the peat at the same depth; the dissolved gases are 500-4300 years younger than the peat. The age of the operational peat fractions humic acid and humin is similar to that of whole peat. (4) The δ13C profile for deep peat is almost constant; δ13C-CO2 is more enriched than the peat (δ13C-CO2 35‰ more); δ13C-CH4 is the same amount more depleted. Nearer the surface both dissolved gases become steadily more depleted, δ13C is about 20‰ less at the surface. (5) A simulation shows that mass flow can account for the concentration and age profiles of DOC, but for the gases diffusion and an additional source near the surface are needed as well, and diffusion accounts for over 99% of the dissolved gas movements. (6) The same processes must operate in other peatlands but the results for Ellergower should not be extrapolated uncritically to them.  相似文献   

14.
近10年来我国泥炭地学的研究进展   总被引:8,自引:1,他引:7  
我国泥炭地学经过30余年的初创时期,到1990年基本完成了创建阶段。20世纪90年代以来,泥炭地学处于发展时期,在泥炭沼泽生态系统、泥炭特性与物质组成、泥炭形成环境与聚煤作用对比、泥炭地温室气体与全球变化、泥炭沼泽水文与微地貌、泥炭形成机制与成炭期、泥炭地层以及以泥炭为信息载体的环境变迁等方面的研究日益接近世界先进水平,某些研究甚至处于世界领先地位;与国际交往更加频繁;在泥炭应用和研究方法等方面也取得了显著成就。但泥炭地恢复等方面研究较加拿大等先进国家还有一定距离。总结了我国泥炭地学近10年的研究历史和现状,并对未来研究做了展望。  相似文献   

15.
Sorption of methane on lignite from Polish deposits   总被引:1,自引:0,他引:1  
Coal samples from Miocene lignite deposits (ortholignite—ECE-UN 2002) in Belchatow, Adamow, Konin and Turow (Poland) were analyzed to determine the relationships between coal properties and gas capacity.Investigations presented here addressed the occurrence of methane sorbet in lignite deposits within Poland's largest penetrated lignite deposits (e.g., Belchatow, Adamow, Turow and Konin).Lignite samples collected from surface mines were detritic coal with variable contents of xylites. The highest level of xylites (up to 25 vol.%) was found in carbon samples taken from the Belchatow deposit. Samples from other mines contained no more than 10 vol.% xylites. Petrographic compositions were dominated by huminite group macerals (73-88 vol.%) with atrinite, densinite and texto-ulminite, a porous form of ulminite; inertinite groups were less important components (4-8 vol.%).Isotherms were determined for methane sorption at 298 K with test pressure ranges below 1.2 MPa. At a pressure of 1.0 MPa, the largest gas capacity of approximately 1.7 [dm3 STP/kg] was found in the sample from Belchatow. This result may have been attributable to differences in the porosity of the samples; the porosity of the sample from Belchatow was twice as high as the porosities of the other coal samples. This variation in porosity resulted from the lithologic and maceral composition of the coal sample that contained substantial quantities of porous textinite and texto-ulminite.The thermal sorption equation was used to determine the limiting values of isosteric enthalpy of sorption, which suggested weak interactions between methane and the lignite matrix. The residual gas capacity of the tested samples was also determined.All samples exhibited a high residual methane-bearing capacity, which may not only cause methane to be released from coal at a pressure of 1 bar but also may pose a gas risk during mining operations.  相似文献   

16.
This study presents a multiproxy record of Holocene environmental change in the region East of the Pechora Delta. A peat plateau profile (Ortino II) is analyzed for plant macrofossils, sediment type, loss on ignition, and radiocarbon dating. A paleosol profile (Ortino III) is described and radiocarbon dated. A previously published peat plateau profile (Ortino I) was analyzed for pollen and conifer stomata, loss on ignition, and radiocarbon dating. The interpretation of the latter site is reassessed in view of new evidence. Spruce immigrated to the study area at about 8900 14C yr B.P. Peatland development started at approximately the same time. During the Early Holocene Hypsithermal taiga forests occupied most of the present East-European tundra and peatlands were permafrost free. Cooling started after 5000 14C yr B.P., resulting in a retreat of forests and permafrost aggradation. Remaining forests disappeared from the study area around 3000 14C yr B.P., coinciding with more permafrost aggradation. The retreat of forests resulted in landscape instability and the redistribution of sand by eolian activity. The displacement of the Arctic forest line and permafrost zones indicates a warming of at least 2–3°C in mean July and annual temperatures during the Early Holocene. At least two cooling periods can be recognized for the second half of the Holocene, starting at about 4800 and 3000 14C yr B.P.  相似文献   

17.
The Ilgin lignite field can be subdivided into the Haramiköy and Kurugöl areas which are separated by an area of basement and a fault. The lignite-bearing sequence consists mainly of fluvial and lacustrine Neogene deposits. The Ilgin lignite, averaging 8 m (up to 25 m) thick, is blackish brown and dark brown in colour. The lignite contains abundant brown wood, plant remains and white gastropod shells. Samples have an average of 38.9% moisture on an as-received basis and a mean of 3.9% total sulphur on an air-dried basis. Geochemical analysis, using an ICP-MS, was undertaken. Thirteen lignite core samples from three boreholes drilled in the Kurugöl area were ashed at 750°C. The average trace element contents of the lignite show a higher concentration of U (average 43 ppm) when compared to the range for most coals in the world, while the others (Ti, P, Sc, Be, Mn, Co, Cu, Zn, Ga, As, Rb, Sr, Zr, Nb, Mo, Cs, Ba, Y, Ta, W, Tl, Pb, Bi, Th, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu) agree with the global ranges. The Ilgin lignite is identified as of Middle Miocene (Middle Serravallian) age and occurs within lacustrine sediments deposited under subtropical climatic conditions.  相似文献   

18.
Experimental data on copper sorption by organic and mineral sorbing agents have shown that sorption can take place from very dilute solutions. The degree of sorption depends on the total amount of dissolved copper in solution, the velocity of the circulating solution, on the duration of contact between the sorbent and fresh solutions, and on the degree of diffusion of the solution within the sorbent. Organic matter, namely pine loam, peat, lignite, and humic acid, absorbs copper from very dilute solutions (from 2x10-4 to 2x10-5 grams per liter copper concentrations, 2.5 to 4.5 percent); other sorbents, namely; sand, kaolin, feldspar, and quartz, absorb one-tenth as much as the organic sorbents. Desorption is very slight in organic material; it is almost complete in mineral sorbents. It is believed that sorption plays a very significant part in the formation of sedimentary copper deposits, particularly in the copper sandstones of the Urals.  相似文献   

19.
The storage of low level radioactive waste in trenches overlying an unconfined groundwater flow system in sands has generated a contaminant plume (with chemical characteristics of dilute sanitary landfill leachate) containing 14C both as dissolved inorganic and organic C. In the groundwater, dissolved organic compounds account, on average, for 22% of the total C and 10% of the 14C. Approximately 300 m from the waste management site, the groundwater discharges to the surface in a wetland containing up to 3 m of peat and an extensive tree cover. Drainage from the wetland passes through a gauged stream. Radiocarbon input to the groundwater discharge area in 1991 was determined to be between 3.3 and 4.2 GBq, based on data from a line of sampling wells along the groundwater input boundary of the wetland, with control provided by water and tritium balance data. During the 1991 study year, only 1.5–2% of both the inorganic and organic 14C inputs left the wetland in surface water drainage. Vegetation growth in the wetland during the study year contained 8–10% of the released radiocarbon. If the rate of 14C accumulation in the peat has been constant, 7–9% of the annual radiocarbon input has been retained in the organic soil. Much of this soil accumulation can be attributed to litter from standing vegetation, making distribution coefficients an inappropriate model for 14C partitioning between groundwater and soil. The plant/soil 14C concentration ratio was 24 to 33, but application of a concentration ratio to describe the transfer of radiocarbon to plants is also believed to be inappropriate. This study indicates that over 80% of the groundwater radiocarbon is rapidly lost to the atmosphere when the groundwater comes to surface, and we infer that most of the 14C accumulation in vegetation occurs by CO2 transfer from the air to the plant.  相似文献   

20.
During the Miocene numerous sedimentary basins formed on the territory of Bulgaria as a result of the extensional tectonic settings related to the post-orogenic development of the late Alpine orogen. In this study, we review the petrographic composition and biomarker assemblage of two adjacent basins in western Bulgaria, i.e. Beli Breg and Staniantsi basins. Both contain lignite formed during late Miocene (c. 6 Ma). Despite similar tectonic settings and depositional environments, the lignite seams possess different petrographic and organic geochemical characteristics, reflecting differences in the peat forming palaeo-communities and facies variations. The peat-forming vegetation in Beli Breg Basin was dominated by decay resistant coniferous plants, as indicated by abundant fossil wood remains, very good tissue preservation and a biomarker assemblage dominated by diterpenoids. In contrast, Staniantsi lignite is poor in fossil wood and contains a significant amount of triterpenoid biomarkers, suggesting the predominance of angiosperm plants in the swamp. The results of the biomarker analyses are consistent with palaeobotanical and palynological data from the literature.The lignite seams in both basins formed under frequently changing Eh conditions, as indicated by the severe degradation of the non-gymnosperm tissues, the low gelification index values and the variations in pristane/phytane ratio, probably as a result of seasonal drying of the swamps and changes of the ground water table. Hopanoid contents in Beli Breg lignite are very low and are consistent with the abundance of decay-resistant vegetation. In contrast, bacterial activity was obviously higher in the Staniantsi swamp, however, resulting only in slightly enhanced gelification of plant tissues. The geochemical data suggest that the diagenetic changes of the organic matter were mainly governed by thermal degradation, rather than bacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号