首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity   总被引:1,自引:0,他引:1  
1 INTRODUCTIONObservations show that the magnetic helicity of solar magnetic structures has a predominantsign in each hemisphere of the Sun, positive in the southern hemisphere and negative in thenorthern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conservedin the frame of ideal MHD (WOltjer, 1958), and approximately conserved in the presence ofresistive dissipation and magnetic reconnection in a highly conductive plajsma (Taylor, 1974;Berger, 1984; H…  相似文献   

2.
To determine the relationship between transient coronal (soft X-ray or EUV) sigmoids and erupting flux ropes, we analyse four events in which a transient sigmoid could be associated with a filament whose apex rotates upon eruption and two further events in which the two phenomena were spatially but not temporally coincident. We find the helicity sign of the erupting field and the direction of filament rotation to be consistent with the conversion of twist into writhe under the ideal MHD constraint of helicity conservation, thus supporting our assumption of flux rope topology for the rising filament. For positive (negative) helicity the filament apex rotates clockwise (counterclockwise), consistent with the flux rope taking on a reverse (forward) S shape, which is opposite to that observed for the sigmoid. This result is incompatible with two models for sigmoid formation: one identifying sigmoids with upward arching kink-unstable flux ropes and one identifying sigmoids with a current layer between two oppositely sheared arcades. We find instead that the observations agree well with the model by Titov and Démoulin (Astron. Astrophys. 351, 707, 1999), which identifies transient sigmoids with steepened current layers below rising flux ropes.  相似文献   

3.
1 INTRODUCTIONRecently Bao, Zhang, Ai, and Zhang (1999), using Huairou vector magnetograph data,have shown that the average current helicity (h.) or the curreflt helicity imbalance ph of activeregions change rapidly after so1ar flares. Up'an the onset of flares it tends to decrease for a fewhours and then to increase again, whereas ifQ some cases the flare promotes an increase in thecurrent helicity The observations led to tbe fol1owing conclusions: (1) raPid and substantialchanges of c…  相似文献   

4.
We study the relaxation of a compressible plasma to an equilibrium with flow. The constraints of conservation of mass, energy, angular momentum, cross-helicity and relative magnetic helicity are imposed. Equilibria corresponding to the energy extrema while conserving these invariants for parallel flows yield three classes of solutions and one of them with an increasing radial density profile, relevant to solar flux tubes is presented.  相似文献   

5.
In this paper we analyse the non-potential magnetic field and the relationship with current (helicity) in the active region NOAA 9077 in 2000 July, using photospheric vector magnetograms obtained at different solar observatories and also coronal extreme-ultraviolet 171-Å images from the TRACE satellite.
We note that the shear and squeeze of magnetic field are two important indices for some flare-producing regions and can be confirmed by a sequence of photospheric vector magnetograms and EUV 171-Å features in the solar active region NOAA 9077. Evidence on the release of magnetic field near the photospheric magnetic neutral line is provided by the change of magnetic shear, electric current and current helicity in the lower solar atmosphere. It is found that the 'Bastille Day' 3B/5.7X flare on 2000 July 14 was triggered by the interaction of the different magnetic loop systems, which is relevant to the ejection of helical magnetic field from the lower solar atmosphere. The eruption of the large-scale coronal magnetic field occurs later than the decay of the highly sheared photospheric magnetic field and also current in the active region.  相似文献   

6.
We use direct numerical simulations of forced MHD turbulence with a forcing function that produces two different signs of kinetic helicity in the upper and lower parts of the domain. We show that the mean flux of magnetic helicity from the small‐scale field between the two parts of the domain can be described by a Fickian diffusion law with a diffusion coefficient that is approximately independent of the magnetic Reynolds number and about one third of the estimated turbulent magnetic diffusivity. The data suggest that the turbulent diffusive magnetic helicity flux can only be expected to alleviate catastrophic quenching at Reynolds numbers of more than several thousands. We further calculate the magnetic helicity density and its flux in the domain for three different gauges. We consider the Weyl gauge, in which the electrostatic potential vanishes, the pseudo‐Lorenz gauge, where the speed of light is replaced by the sound speed, and the ‘resistive gauge’ in which the Laplacian of the magnetic vector potential acts as a resistive term. We find that, in the statistically steady state, the time‐averaged magnetic helicity density and the magnetic helicity flux are the same in all three gauges (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

8.
It is now accepted that the solar activity has direct impact on the Earth climate, but is also responsible for the geomagnetic storms. It is thus fundamental to understand the mechanisms responsible for this activity. We present here first some aspects of the solar activity at the different atmospheric layers of the sun: active region at photospheric levels, filaments (prominences) and flares at chromospheric level and CME's at coronal level. A quick sum‐up of the principal characteristics of each is given as well as the key questions still under investigation. In the second part, two principal parameters are presented to describe these features: helicity and topology. Finally, we sum‐up the observational challenges for new solar telescopes.  相似文献   

9.
The hemispheric pattern of solar filaments is considered in the context of the global magnetic field of the solar corona. In recent work Mackay and van Ballegooijen have shown how, for a pair of interacting magnetic bipoles, the observed chirality pattern could be explained by the dominant range of bipole tilt angles and helicity in each hemisphere. This study aims to test this earlier result through a direct comparison between theory and observations, using newly developed simulations of the actual surface and 3D coronal magnetic fields over a 6-month period, on a global scale. We consider two key components: (1) observations of filament chirality for the sample of 255 filaments and (2) our new simulations of the large-scale surface magnetic field. Based on a flux-transport model, these will be used as the lower boundary condition for the future 3D coronal simulations. Our technique differs significantly from those of other authors, where the coronal field is either assumed to be purely potential or has to be reset back to potential every 27 days for the photospheric field to remain accurate. In our case we ensure accuracy by the insertion of newly emerging bipolar active regions, based on observed photospheric synoptic magnetograms. The large-scale surface field is shown to remain accurate over the 6-month period, without any resetting. This new technique will enable future simulations to consider the long-term buildup and transport of helicity and shear in the coronal magnetic field over many months or years.  相似文献   

10.
We reconstruct the developing history of solar 10.7 cm radio flux (F10.7) since 1848, based on the yearly sunspot number and the variations. A relationship between the maximum and the linear regression slope of the first 3 years starting from minimum of the solar cycle is considered. We put forward a method of predicting the maximum of F10.7 by means of the slope-maximum relationship. Running tests for cycles 19 to 23 indicate that the method can properly predict the peak of F10.7.  相似文献   

11.
EIT waves are observed in EUV as bright fronts. Some of these bright fronts propagate across the solar disk. EIT waves are all associated with a flare and a CME and are commonly interpreted as fast-mode magnetosonic waves. Propagating EIT waves could also be the direct signature of the gradual opening of magnetic field lines during a CME. We quantitatively addressed this alternative interpretation. Using two independent 3D MHD codes, we performed nondimensional numerical simulations of a slowly rotating magnetic bipole, which progressively result in the formation of a twisted magnetic flux tube and its fast expansion, as during a CME. We analyse the origins, the development, and the observability in EUV of the narrow electric currents sheets that appear in the simulations. Both codes give similar results, which we confront with two well-known SOHO/EIT observations of propagating EIT waves (7 April and 12 May 1997), by scaling the vertical magnetic field components of the simulated bipole to the line of sight magnetic field observed by SOHO/MDI and the sign of helicity to the orientation of the soft X-ray sigmoids observed by Yohkoh/SXT. A large-scale and narrow current shell appears around the twisted flux tube in the dynamic phase of its expansion. This current shell is formed by the return currents of the system, which separate the twisted flux tube from the surrounding fields. It intensifies as the flux tube accelerates and it is co-spatial with weak plasma compression. The current density integrated over the altitude has the shape of an ellipse, which expands and rotates when viewed from above, reproducing the generic properties of propagating EIT waves. The timing, orientation, and location of bright and faint patches observed in the two EIT waves are remarkably well reproduced. We conjecture that propagating EIT waves are the observational signature of Joule heating in electric current shells, which separate expanding flux tubes from their surrounding fields during CMEs or plasma compression inside this current shell. We also conjecture that the bright edges of halo CMEs show the plasma compression in these current shells.  相似文献   

12.
The generation of magnetic flux in the solar interior and its transport from the convection zone into the photosphere, the chromosphere, and the corona will be in the focus of solar physics research for the next decades. With 4 m class telescopes, one plans to measure essential processes of radiative magneto‐hydrodynamics that are needed to understand the nature of solar magnetic fields. One key‐ingredient to understand the behavior of solar magnetic field is the process of flux emergence into the solar photosphere, and how the magnetic flux reorganizes to form the magnetic phenomena of active regions like sunspots and pores. Here, we present a spectropolarimetric and imaging data set from a region of emerging magnetic flux, in which a proto‐spot without penumbra forms a penumbra. During the formation of the penumbra the area and the magnetic flux of the spot increases. First results of our data analysis demonstrate that the additional magnetic flux, which contributes to the increasing area of the penumbra, is supplied by the region of emerging magnetic flux. We observe emerging bipoles that are aligned such that the spot polarity is closer to the spot. As an emerging bipole separates, the pole of the spot polarity migrates towards the spot, and finally merges with it. We speculate that this is a fundamental process, which makes the sunspot accumulate magnetic flux. As more and more flux is accumulated a penumbra forms and transforms the proto‐spot into a full‐fledged sunspot (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
1 INTRODUCTION Magnetic field plays an important role in solar activity. The stressing and subsequent partialrelaxation of magnetic fields in the active regions are generally accepted to be the energy sourceof solar flares. To quantitatively study the extent of stressed magnetic field as distinct from itspotential field, Hagyard et al. (1984) defined a magnetic shear angle膖he azimuth differencebetween the observed transverse magnetic field vector and the computed potential field vectorth…  相似文献   

14.
We summarize studies of helical properties of solar magnetic fields such as current helicity and twist of magnetic fields in solar active regions (ARs), that are observational tracers of the alpha-effect in the solar convective zone (SCZ). Information on their spatial distribution is obtained by analysis of systematic mag-netographic observations of active regions taken at Huairou Solar Observing Station of National Astronomical Observatories of Chinese Academy of Sciences. The main property is that the tracers of the alpha-effect are antisymmetric about the solar equator. Identifying longitudinal migration of active regions with their individual rotation rates and taking into account the internal differential rotation law within the SCZ known from helioseismology, we deduce the distribution of the effect over depth. We have found evidence that the alpha-effect changes its value and sign near the bottom of the SCZ, and this is in accord with the theoretical studies and numerical simulations. We discuss  相似文献   

15.
The frequencies of solar p-modes are known to change over the solar cycle. There is also recent evidence that the relation between frequency shift of low-degree modes and magnetic flux or other activity indicators differs between the rising and falling phases of the solar cycle, leading to a hysteresis in such diagrams. We consider the influence of the changing large-scale surface distribution of the magnetic flux on low-degree ( l ≤3) p-mode frequencies. To that end, we use time-dependent models of the magnetic flux distribution and study the ensuing frequency shifts of modes with different order and degree as a function of time. The resulting curves are periodic functions (in simple cases just sine curves) shifted in time by different amounts for the different modes. We show how this may easily lead to hysteresis cycles comparable to those observed. Our models suggest that high-latitude fields are necessary to produce a significant difference in hysteresis between odd- and even-degree modes. Only magnetic field distributions within a small parameter range are consistent with the observations by Jiménez-Reyes et al. Observations of p-mode frequency shifts are therefore capable of providing an additional diagnostic of the magnetic field near the solar poles. The magnetic distribution that is consistent with the p-mode observations also appears reasonable compared with direct measurements of the magnetic field.  相似文献   

16.
Transequatorial Filament Eruption and Its Link to a Coronal Mass Ejection   总被引:3,自引:0,他引:3  
We revisit the Bastille Day flare/CME Event of 2000 July 14, and demonstrate that this flare/CME event is not related to only one single active region (AR). Activation and eruption of a huge transequatorial filament are seen to precede the simultaneous filament eruption and flare in the source active region, NOAA AR 9077, and the full halo-CME in the high corona. Evidence of reconfiguration of large-scale magnetic structures related to the event is illustrated by SOHO EIT and Yohkoh SXT observations, as well as, the reconstructed 3D magnetic lines of force based on the force-free assumption. We suggest that the AR filament in AR9077 was connected to the transequatorial filament. The large-scale magnetic composition related to the transequatorial filament and its sheared magnetic arcade appears to be an essential part of the CME parent magnetic structure. Estimations show that the filament-arcade system has enough magnetic helicity to account for the helicity carried by the related CMEs. In addition, rather global magnetic connectivity, covering almost all the visible range in longitude and a huge span in latitude on the Sun, is implied by the Nancay Radioheliograph (NRH) observations. The analysis of the Bastille Day event suggests that although the triggering of a global CME might take place in an AR, a much larger scale magnetic composition seems to be the source of the ejected magnetic flux, helicity and plasma. The Bastille Day event is the first described example in the literature, in which a transequatorial filament activity appears to play a key role in a global CME. Many tens of halo-CME are found to be associated with transequatorial filaments and their magnetic environment.  相似文献   

17.
We study the variation of the frequency splitting coefficients describing the solar asphericity in both GONG and MDI data, and use these data to investigate temporal sound-speed variations as a function of both depth and latitude during the period 1995–2000 and a little beyond. The temporal variations in even splitting coefficients are found to be correlated to the corresponding component of magnetic flux at the solar surface. We confirm that the sound-speed variations associated with the surface magnetic field are superficial. Temporally averaged results show a significant excess in sound speed around     and latitude of 60°.  相似文献   

18.
Magnetic helicity quantifies the degree to which the magnetic field in a volume is globally sheared and/or twisted. This quantity is believed to play a key role in solar activity due to its conservation property. Helicity is continuously injected into the corona during the evolution of active regions (ARs). To better understand and quantify the role of magnetic helicity in solar activity, the distribution of magnetic helicity flux in ARs needs to be studied. The helicity distribution can be computed from the temporal evolution of photospheric magnetograms of ARs such as the ones provided by SDO/HMI and Hinode/SOT. Most recent analyses of photospheric helicity flux derived a proxy to the helicity-flux density based on the relative rotation rate of photospheric magnetic footpoints. Although this proxy allows a good estimate of the photospheric helicity flux, it is still not a true helicity flux density because it does not take into account the connectivity of the magnetic field lines. For the first time, we implement a helicity density that takes this connectivity into account. To use it for future observational studies, we tested the method and its precision on several types of models involving different patterns of helicity injection. We also tested it on more complex configurations – from magnetohydrodynamics (MHD) simulations – containing quasi-separatrix layers. We demonstrate that this connectivity-based proxy is best-suited to map the true distribution of photospheric helicity injection.  相似文献   

19.
太阳磁场观测研究   总被引:5,自引:0,他引:5  
简要回顾了近几年国际上太阳磁场研究的一些重要进展,包括耀斑与磁切和电流的关系,电流螺度和磁螺度,磁场拓扑性,三维磁场外推,色球磁场研究,日冕磁场研究,内网络磁元,磁流和振荡,极区磁场观测以及色球磁元观测等方面内容,同时也介绍了怀柔太阳观测站最近所取得的主要成果,自20世纪90年代以来,YOHKOH高分辨率的太阳X射线数据,SOHO的多波段大尺度观测,TRACE的高分辨太阳过渡区资料,为研究太阳磁场从内部到距离几十太阳半径处的大范围演化提供了依据,高效的空间资料结合长期的地面资料,将是正派推动太阳磁场研究的重要手段和必然趋势。  相似文献   

20.
From late October to the beginning of November 2003, a series of intense solar eruptive events took place on the Sun. More than six active regions (ARs), including three large ARs (NOAA numbers AR 10484, AR 10486, and AR 10488), were involved in the activity. Among the six ARs, four of them bear obviously quasi-simultaneous emergence of magnetic flux. Based on the global Hα and SOHO/EIT EUV observations, we found that a very long filament channel went through the six ARs. This implies that there is a magnetic connection among these ARs. The idea of large-scale magnetic connectivity among the ARs is supported by the consistency of the same chirality in the three major ARs and in their associated magnetic clouds. Although the detailed mechanisms for the quasi-simultaneous flux emergence and the large-scale flux system formation need to be extensively investigated, the observations provide new clues in studying the global solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号