首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In this study, idealised conditions are used to study the influence of vertical structure of the bogus vortex on its motion in numerical models by comparing the resultant forecast tracks. Two vortices were used: one has a cyclonic circulation throughout the troposphere and the other has an upper tropospheric anticyclone. Both vortices have the same structure in the middle and lower troposphere. The two vortices were inserted into four different environmental flows on a beta-plane: (a) a resting atmosphere; (b) a uniform flow; (c) a horozontal shear flow and (d) a vertical shear flow. The results show that the forecast tracks are very sensitive to the vertical structure of the bogus vortex, especially when the environmental flow is very weak, or is westerly and has a cyclonic horizontal shear. However, this sensitivity is reduced in moderate vertical shear. This motion sensitivity is found to arise from the vertical coupling mechanism by which the upper-and lower-level circulations interact with each other when a horizontal displacement occurs between them.The vertical structure of the bogus vortex can also affect the intensity of the model cyclone, depending on the configuration of the environmental flow. In general, the bogus vortex without an upper-level anticyclone will intensify quicker and will develop more intense than the one with an upper-level anticyclone. The vertical coupling mechanism can result in different asymmetric rainfall pattern in cyclone core region depending on the vertical structure of the bogus vortex. The asymmetric divergent flow associated with these convective asymmetries may in turn further influence the vortex motion. It is suggested that care needs to be taken in determining the vertical structure of the bogus vortex in numerical models.With 14 Figures  相似文献   

2.
对惯性重力内波方程组分别通过线性和非线性求解探讨造成2010年10月海南岛一次特大暴雨中一类热带中尺度涡旋生成发展的动力、热力机制,研究发现:(1)在副热带高压和大陆冷高压南侧反气旋性纬向水平风切变大值区、静力不稳定大气层结、积云对流潜热释放、低空急流、适当强度的冷空气有利于热带中尺度涡旋的形成和发展;(2)非线性惯性重力内波的孤立波解与这类热带中尺度涡旋有很好的联系,在静力不稳定的大气层结下,热带中尺度涡旋的形态主要由对流凝结潜热加热所决定,即潜热加热下的孤立波解要求热带中尺度涡旋在垂直方向是一个浅薄的涡旋系统;另外强盛的对流凝结潜热对热带中尺度涡旋垂直运动振幅的增强起主要作用,更有利于涡旋的发展和维持。基于天气事实分析的理论研究为深化影响海南的热带中尺度涡旋乃至南海中尺度对流系统的机理认识进行了探索。  相似文献   

3.
"98.7"特大暴雨低涡的螺旋度和动能诊断分析   总被引:49,自引:26,他引:23  
“98.7”特大暴雨过程与700hPa低涡切变线的强烈发展以及丰沛的水汽和强垂直运动密切相关。螺旋度的诊断结果揭示,与强暴雨区和切变线低涡相应的是一对符号相反而又紧邻的螺旋度带。它们的垂直结构是一对符号相反而又互伴的螺旋度柱;螺旋度及其诸分量的量级是相同的。这表明,垂直运动的水平切变和水平速度的垂直切变以及水平速度的水平切变对螺旋度有相同大小的员献,也意味着强垂直运动和低空急流对暴雨的发生和发展极其重要。动能的诊断结果显示。强动能区与暴雨区和低涡切变线有很好的对应关系,在中、低空的强动能中心也正是强降雨中心;动能最强的700hPa也是低涡切变线发展最强的层面。强动能及其强梯度区和强螺旋度区基本一致。表明强动能及其强梯度对螺旋度变率及其通量有重要贡献。  相似文献   

4.
Abstract

We examine the response of stably stratified airflow to a slab‐symmetric diabatic forcing associated with condensation in long‐lasting precipitation bands. The steady‐state linearized Boussinesq equations are used to model the diagnostic relationship between the vertical motion field, the heating source and the ambient flow. The basic‐state flow is assumed to be horizontally uniform and non‐rotating, but the static stability and wind vary in the vertical. Linear theory shows that the speed of the along‐band wind component is unimportant for slab‐symmetric heating since it cannot contribute towards the advection of buoyancy or vertical motion.

For typical atmospheric stratification and a moving heating source associated with a cloud band, the Taylor‐Goldstein equation is solved numerically. The numerical results show that the cross‐band wind shear tilts the updraft core and broadens it. While the magnitude of the shear is increased, the circulation becomes stronger. The details of the wind profile are also important in determining the intensity and structure of the circulation. When the wind profile indicates a convex bulge (i.e. the low‐level shear is weaker than the upper‐level shear), the circulation becomes slightly weaker in comparison with the linear wind profile. Conversely, the circulation becomes stronger when the wind profile has a concave shape. Increasing the concave bulge tends to enhance the circulation but not in a monotonic fashion. This non‐monotonic relation between the vertical motion and the parabolic wind profile is interpreted in terms of kinetic energy changes of parcels that interchange their altitudes.  相似文献   

5.
利用NCEP/NCAR(0.25°×0.25°)逐6 h再分析资料、常规观测资料、多普勒雷达资料对2018年9月19日晚发生在四川盆地东北部的强降水超级单体风暴进行诊断分析。研究表明:此次强降水超级单体风暴发生在较强的不稳定能量、很低的抬升凝结高度、低层深厚湿层、较弱的对流抑制能量及中等到强的垂直风切变的背景条件下,低层冷空气的侵入最终触发了本次过程。在强降水超级单体风暴发展演变过程中,中低层较强垂直风切变的重要作用是产生水平涡管。水平涡管又在上升气流的作用下抬升为垂直涡管,最后产生垂直涡度。而通过对大气垂直涡度方程的分析发现:垂直涡管在随高度增加的上升气流的拉伸作用下,不断加强,致使上升气流更强烈旋转,水平旋转又反过来加强了上升气流。上升气流与水平涡旋持续不断的正反馈机制是形成中气旋的重要原因。  相似文献   

6.
Two-dimensional asymmetric merger of two like-signed vorticity monopoles with different sizes and vorticities is examined by combining simplified analytical models and contour dynamics experiments. The model results can capture the key dynamics and hence allow the prediction of the critical merger distance in a number of the situations. The models ignore deformation of one of the two vortices, replacing it with a point vortex, and employ a corotating frame of reference with a rotation rate estimated by point vortices. Thus, the two vortex problem becomes two separate problems of a single vortex in a background shear flow. Vortex merger is found to happen when the vortex cannot resist the background shear flow. Vortex merger and merging processes depend on the centroid distance d, the circulation ratio, (qi and ri are the vorticity and radius, respectively) and initial conditions. In the lowest order, the background flow is approximated by a uniform shear field, and the behavior of an elliptical vortex can be described by the Kida (1981) equation supplemented with one describing the time evolution of the centroid distance. This model reveals that merger takes place because the natural rotation of an elliptical vortex is overcome by the background uniform shear flow; the ellipse inversely rotates and is drawn out by the background straining field. The vortex deformation in a background flow field induces an inward flow at the position of the other vortex; as a result, the centroid distance decreases and two vortices merge. The critical merger distance from this model agrees quite well with the results from contour dynamics experiments for two vortices. Inclusion of higher order non-uniform shear in the background flow extends the critical merger distance, which gives almost perfect estimates for the experiment. In the non-uniform shear flow, partial merger occurs, where the vortex sheds off a filament, but the remaining part of the vortex resumes its natural rotation.  相似文献   

7.
利用2008年6月广西致洪暴雨过程高分辨率数值模式资料,分析引起暴雨的中尺度涡旋在移动和持续性发展过程中其内部结构的演变以及系统的动力学特征。研究结果表明,中尺度涡旋是导致此次广西暴雨的主要系统,其发展移动过程中伴随有强烈上升运动的深厚湿对流,并在中高层持续形成明显的暖心结构。此次涡旋系统移动过程可分为涡旋南移和涡旋东移两个阶段,由于受到环境场的影响,涡旋中心区域动量、热量和水汽的再分配为其持续性发展提供有利条件。同时诊断分析表明,涡旋内部存在具有继发特征的长时间维持的组织化深厚湿对流系统,以强非地转分量为特征的超地转流,并表现出涡散运动共存且同量级的特征,具有典型的准平衡特征。  相似文献   

8.
A vorticity budget investigation is performed using the output data from a numerical simulation of a typical MCV (mesoscale convectively generated votex) case in South China. Results suggest that the divergence caused by convection in the low troposphere is the main producer of positive vorticity, while vertical vorticity transferred by the tilting term from the horizontal vorticity compensates the upward output of cyclonic vorticity. Scale analyses of the vorticity equation suggest that the advection of planetary vorticity can be neglected owing to the low latitude, which is different from the larger scale systems in high latitude areas. In addition, the distribution of relative vorticity tendency on pressure level is not uniform. A vortex will move along the vector from the negative to the positive vorticity tendency region. The mechanism of the phenomenon-that nearly all of the convectively ascending region is located southward/southeastward of the vortex center-is also discussed. Convergence with regard to latent heat release would be in favor of the spin-up of meso-vortex, however, the horizontal vorticity caused by windshear is tilted by vertical motion due to convection. Consequently, the negative and positive vorticity tendencies are located symmetrically about the convective center, which suggests that the vortex southward movement is dynamically driven by convection.  相似文献   

9.
Using real-time data and the WRF mesoscale model,a heavy rain event in the process of Mesoscale Convective Complex(MCC) turning into banded Mesoscale Convective Systems(MCSs) during 18-19 June 2010 is simulated and analyzed in this paper.The results indicated that the formation and maintenance of a southwest vortex and shear line at 850 h Pa was the mesoscale system that affected the production of this heavy rain.The low-vortex heavy rain mainly happened in the development stage of MCC,and the circular MCC turned into banded MCSs in the late stage with mainly shear line precipitation.In the vicinity of rainfall area,the intense horizontal vorticity due to the vertical shear of u and v caused the rotation,and in correspondence,the ascending branch of the vertical circulation triggered the formation of heavy rain.The different distributions of u and v in the vertical direction produced varying vertical circulations.The horizontal vorticity near the low-vortex and shear line had obvious differences which led to varying reasons for heavy rain formation.The low-vortex heavy rain was mainly caused by the vertical shear of v,and the shear line rainfall formed owing to the vertical shear of both u and v.In this process,the vertical shear of v constituted the EW-trending rain band along the shear line,and the latitudinal non-uniformity of the vertical shear in u caused the vertical motion,which was closely related to the generation and development of MCSs at the shear line and the formation of multiple rain clusters.There was also a similar difference in the positively-tilting term(conversion from horizontal vorticity to vertical positive vorticity) near the rainfall center between the low-vortex and the shear line.The conversion in the low vortex was mainly determined by бv/бp0,while that of the shear line by бu/бp0.The scale of the conversion from the horizontal vorticity to vertical vorticity was relatively small,and it was easily ignored in the averaged state.The twisting term was mainly conducive to the reinforcement of precipitation,whereas its contribution to the development of southwest vortex and shear line was relatively small.  相似文献   

10.
Typhoon is regarded as a convergent,modified Rankine vortex.Based on the vorticity equations written attwo levels,higher and lower in the troposphere,typhoon motions are discussed in this study.The analyticalexpressions of vortex motion direction and speed have been derived for simple homogeneous basic flows at twolevels.The expressions indicate that in the easterties,vertical wind shear enhances the steering of east flow,causing the vortex moving westward faster,otherwise,in the westerlies,it reduces the steering of the west flow,causing the vortex moving eastward slower.These results explain theoretically that“cyclones in the easterliesmove to the right of,and faster than the basic flow;conversely,cyclones in the westerlies move to the left of,andslower than the basic flow.”  相似文献   

11.
A three-dimensional cloud-scale model has been designed.The governing equations of the model arecomposed of two groups of equations:one group includes compressible motion equations,continuity equation,pressure equation and thermodynamic equation,which are of Eulerian type,and the other consists of cloud-precipitation microphysics equations which are of Lagrangian type.Since the degree of influence of sound waveon the air motion is quite different from that on the temperature or hydrometeors,the time splitting procedureis used in solving governing equations.Both unstaggered and staggered meshes have been utilized.Integra-tion schemes adopted are the Eulerian backward difference method for the unstaggered mesh and semi-implicitmethod for staggered mesh.Several experiments of modelling have been conducted and a reasonable three-dimensional image of deep convection is obtained.With this model the horizontal and vertical vortex circula-tions are simulated.Furthermore,the effects of horizontal vortex on the formation and development ofdowndraft within cloud have also been studied.  相似文献   

12.
In this paper, the adaptation process in low latitude atmosphere is discussed by means of a two-layer baroclinic model on the equator β plane, showing that the adaptation process in low latitude is mainly dominated by the internal inertial gravity waves. The initial ageostrophic energy is dispersed by the internal inertial gravity waves, and as a result, the geostrophic motion is obtained in zonal direction while the ageostro-phic motion maintains in meridional direction, which can be called semi-geostrophic balance in barotropic model as well as semi-thermal-wind balance in baroclinic model. The vertical motion is determined both by the distribution of the initial vertical motion and that of the initial vertical motion tendency, but it is unrelated to the initial potential vorticity. Finally, the motion tends to be horizontal. The discussion of the physical mechanism of the semi-thermal-wind balance in low latitude atmosphere shows that the achievement of the semi-thermal-wind balance is due to the adjustment between the stream field and the temperature field through the horizontal convergence and divergence which is related to the vertical motion excited by the internal inertial gravity waves. The terminal adaptation state obtained shows that the adaptation direction between the mean temperature field and the shear flow field is determined by the ratio of the scale of the initial ageostrophic disturbance to the scale of one character scale related to the baroclinic Rossby radius of deformation. The shear stream field adapts to the mean temperature field when the ratio is greater than 1, and the mean temperature field adapts to the shear stream field when the ratio is smaller than 1.  相似文献   

13.
赵彩萍  赵桂香 《气象科技》2012,40(5):807-813
利用常规资料、自动站资料、卫星产品和雷达资料,对2010年9月19日发生在山西省中部的暴雨天气过程进行了综合分析,结果表明:①500 hPa副高强盛,由块状转为带状以及对应200 hPa图上东西向反气旋的稳定存在是低空横切变线形成和维持的背景因素,而低空低涡横切变线是暴雨的主要影响系统.②降水表现出典型的β中尺度特征,对流云团首先在低涡西侧形成,随着涡前西南气流的加强,迅速发展东移;横切变线上激发出的β中尺度强对流云团是暴雨的直接影响系统.TBB大小与未来1h降水量成反相关关系.700 hPa水汽输送的变化和500 hPa引导气流风向的变化对6h后对流云团的增强或减弱有指示意义.③此次强降水过程,与低空横切变线相对应,雷达强度回波上表现为线状回波带,其上大于45 dBz的区域即是暴雨区.④850 hPa上低涡西北侧冷平流的侵入使得低涡发展,500 hPa正涡度平流的存在是横切变线维持和发展从而导致强降水的动力因子.  相似文献   

14.
An ensemble of random-phase internal gravity waves is considered in the dynamical framework of the Euler–Boussinesq equations. For flows with zero mean potential vorticity, a kinetic equation for the mean spectral energy density of the waves is obtained under hypothesis of Gaussian statistics with zero correlation length. Stationary scaling solutions of this equation are found for almost vertically propagating waves. The resulting spectra are anisotropic in vertical and horizontal wave numbers. For flows with small but non-zero mean potential vorticity, under the same statistical hypothesis applied to the wave part of the flow, it is shown that the vortex part and the wave part decouple. The vortex part obeys a limiting slow dynamics equation exhibiting vertical collapse and layering which may contaminate the wave-part spectra. Relation of these results to the in situ atmospheric measurements and previous work on oceanic gravity waves is discussed.  相似文献   

15.
By utilizing the barotropic vorticity equation including effects of orography and horizontal diffusion,the linearized equations describing symmetric and antisymmetric motions and their analytic solutions are pre-sented.It can be found from the solutions that no matter what kind of motion may be,each solution consistsof three waves,namely,Rossby wave related to initial values,marching wave propagating at Rossby wavevelocity and stationary wave.The latter two are closely related to orography and horizontal diffusion.However,if the motion is symmetric at the initial instant,then the antisymmetric components of orographyand of horizontal diffusion are likely to lead to the generation of antisymmetric motion.In the steady state,the symmetric flow is connected with symmetric orography and horizontal diffusion and the antisymmetricflow with antisymmetric orography and horizontal diffusion.Further,in order to verify the above analysis,three numerical experiments have been made.The results show that antisymmetric orography can produceantisymmetric motion.Finally,the atmospheric interactions between Northern and Southern Hemispheresare discussed.  相似文献   

16.
两层正压流体涡旋中螺旋波的不稳定   总被引:3,自引:2,他引:3       下载免费PDF全文
利用线性化的两层正压原始方程模型,对有水平和垂直切变基流的圆形涡旋中螺旋波的不稳定作了研究。结果表明,当基流失稳时,涡旋中不稳定扰动的厚度场、速度场在上、下两层都具有明显的螺旋结构,下层的螺旋结构要较上层复杂。基流垂直切变越大则越易失稳。失稳时上、下层扰动的配置接近反位相,故该螺旋波结构相应于斜压模。此时螺旋波上的扰动中心在切向是逆基流传播的,在径向则基本没有传播,而螺旋臂的整体运动缓慢。失稳的螺旋波其散度场要较涡度场明显,物理量的配置也大体符合重力惯性波的情况,故可认为其是重力惯性波的不稳定所致。本模型中该螺旋波的形态与实际热带气旋中的螺旋云(雨)带很相象。  相似文献   

17.
Water-flume experiments are conducted to study the structure of turbulent flow within and above a sparse model canopy consisting of two rigid canopies of different heights. This difference in height specifies a two-dimensional step change from a rough to a rougher surface, as opposed to a smooth-to-rough transition. Despite the fact that the flow is in transition from a rough to a rougher surface, the thickness of the internal boundary layer scales as x 4/5, consistent with smooth-to-rough boundary layer adjustment studies, where x is the downstream distance from the step change. However, the analogy with smooth-to-rough transitions no longer holds when the flow inside the canopy and near the canopy top is considered. Results show that the step change in surface roughness significantly increases turbulence intensities and shear stress. In particular, there is an adjustment of the mean horizontal velocity and shear stress as the flow passes over the rougher canopy, so that their vertical profiles adjust to give maximum values at the top of this canopy. We also observe that the magnitude and shape of the inflection in the mean horizontal velocity profile is significantly affected by the transition. The horizontal and vertical turbulence spectra compare well with Kolmogorov’s theory, although a small deviation at high frequencies is observed in the horizontal spectrum within the canopy. Here, for relatively low leaf area index, shear is found to be a more effective mechanism for momentum transfer through the canopy structure than vortex shedding.  相似文献   

18.
热力强迫对局地环流的扰动作用   总被引:2,自引:0,他引:2       下载免费PDF全文
用积分变换法求解了包含地面加热作用的二维不可压缩流体的Boussinesq方程组,得到一组描述地面加热作用激发的局地扰动流场的解析解,主要有垂直风、水平扰动风、扰动气压、扰动温度。进而用动力学分析的观点结合图形分析,定性讨论了热力强迫作用对局地环流的扰动作用,以及加热影响下各物理扰动场的空间分布及时间演变特征。  相似文献   

19.
影响台风移动因子的数值研究   总被引:1,自引:1,他引:0  
本文采用有辐散的正压原始方程模式对影响台风涡旋移动的因子进行了数值试验,试验结果表明:(1)在无环境风条件下,台风涡旋向西北方向移动,移速与台风切向风速、台风半径和台风区f场的特征有关,台风外区(指最大风速半径以外台风区域)切向风速越大、台风半径越大,台风涡旋移速向北分量越大。(2)均一环境风场中,台风移动受基本气流的平流、β效应和指向引导气流左侧的横向加速度的作用,其中基本气流的引导作用是主要的。台风移速与引导气流速度比在东风气流中要大于西风气流中,而台风移向与基本气流之间的偏角在西风气流中要大于在东风气流中。(3)台风涡旋有沿基本气流绝对涡度梯度方向的次级运动分量。(4)台风涡旋在有切变的西风气流中比在均一西风气流中易发展加强,而它的移动更偏向引导气流的左侧。   相似文献   

20.
Based on the Lagrangian change equation of vertical vorticity deduced from the equation of threedimensional Ertel potential vorticity(PV e),the development and movement of vortex are investigated from the view of potential vorticity and diabatic heating(PV-Q).It is demonstrated that the asymmetric distribution in the vortex of the non-uniform diabatic heating in both vertical and horizontal can lead to the vortex’s development and movement.The theoretical results are used to analyze the development and movement of a Tibetan Plateau(TP) vortex(TPV),which appeared over the TP,then slid down and moved eastward in late July 2008,resulting in heavy rainfall in Sichuan Province and along the middle and lower reaches of the Yangtze River.The relative contributions to the vertical vorticity development of the TPV are decomposed into three parts:the diabatic heating,the change in horizontal component of PV e(defined as PV 2),and the change in static stability θ z.The results show that in most cases,diabatic heating plays a leading role,followed by the change in PV 2,while the change of θ z usually has a negative impact in a stable atmosphere when the atmosphere becomes more stable,and has a positive contribution when the atmosphere approaches neutral stratification.The intensification of the TPV from 0600 to 1200 UTC 22 July 2008 is mainly due to the diabatic heating associated with the precipitation on the eastern side of the TPV when it uplifted on the up-slope of the northeastern edge of the Sichuan basin.The vertical gradient of diabatic heating makes positive(negative) PV e generation below(above) the maximum of diabatic heating;the positive PV e generation not only intensifies the low-level vortex but also enhances the vertical extent of the vortex as it uplifts.The change in PV e due to the horizontal gradient of diabatic heating depends on the vertical shear of horizontal wind that passes through the center of diabatic heating.The horizontal gradient of diabatic heating makes positive(negative) PV e generation on the right(left) side of the vertical shear of horizontal wind.The positive PV e generation on the right side of the vertical shear of horizontal wind not only intensifies the local vertical vorticity but also affects direction of movement of the TPV.These diagnostic results are in good agreement with the theoretic results developed from the PV-Q view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号