首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The land use information collected for Dehlon block of Ludhiana district, Punjab from the analysis of the IRS-1B LISS-II data for the year 1993 and IRS PAN data for the year 1997 and SOI topographical maps for 1964 revealed a large change in the area of different land use categories during the period from 1964 to 1997. The agricultural land covering an area of about 94.14 per cent in 1964 reduced to 90.26 per cent in 1997. while the area under rural settlements increased from 312 ha in 1964 to 1162 ha in 1997. An extra area of about 169 ha under waste land was added during the period under study making total waste land area to about 400 ha in 1997. However, the block lacks the forest cover of the required limit. Considerable change in living environment was observed in the block. Number of persons per unit settlement area (ha) being 213.3 in 1964 reduced to 97.1 in 1991; it indicate that the living standard of the people of the block has improved with the changed cropping pattern and increased agricultural production during the period from 1964 to 1991.  相似文献   

2.
A study was conducted in the Bathinda district of Punjab state for mapping the cropping pattern and crop rotation, monitoring long term changes in cropping pattern by using the satellite based remote sensing data along other spatial and non-spatial collateral data. Multi-date IRS LISS I and IRS WiFS sensor data have been used for this study. Cropping pattern maps and crop rotation maps were generated for the years 1988-89 and 1998-99. The present study has shown the increase of cropping intensity significantly, mainly due to increase in rice area. However, crop diversity has decreased mainly due to decline in the area under the minor crops like pearl millet, gram, rapeseed/ mustard. There is increase in area coverage of cotton-wheat and rice-wheat rotation, at the expense of the minor crops.  相似文献   

3.
Large scale adoption of input intensive rice–wheat cropping system in the centrally located Jalandhar district of Indian Punjab has led to over-exploitation of ground water resources, intensive use of chemical fertilizers and deterioration of soil health. To overcome these shortfalls, in the present study, agricultural area diversification plan has been generated from agricultural area and crop rotation maps derived from remote sensing data (IRS P6-AWiFS and RADARSAT ScanSAR) along with few agro-physical parameters in GIS environment. Cropping system indices (area diversity, multiple cropping and cultivated land utilization) were also worked out from remote sensing data .Analysis of remote sensing data (2004–05) revealed that rice and wheat individually remained the dominant crops, occupy 57.8% and 64.9% of total agricultural area (TAA), respectively. Therefore, in the diversified plan, it is suggested that at least 39% of the current 40% TAA under rice–wheat rotation should be replaced by other low water requiring, high value and soil enriching crops, particularly in coarse textured alluvial plain having good quality ground water zones with low annual rainfall(<700 mm). This will reduce water requirement to the tune of 15,660 cm depth while stabilizing the production and profitability by crop area diversification without further degradation of natural resources.  相似文献   

4.
In this study, an attempt has been made to suggest crop diversification based on soil and weather requirements of different crops. State level spatial databases of various agro-physical parameters such as rainfall, soil texture, physiography and problem soil along with the agricultural area derived from remote sensing data were integrated using GIS. A raster based modelling approach was followed to arrive at suitable zones for practicing different cropping systems. The results showed that the south-western Punjab is suitable for low water requiring crops such as desi cotton, pearl millet, gram etc., where as north-eastern Punjab with high rainfall and excess drainage should practice maize based cropping system. Rice can be substituted by maize and other crops in Central Punjab, where water table is going down fast. Using this approach the area of rice based cropping system can be reduced from present 24.7 lakh ha to 19.6 lakh ha, thereby reducing the degradation of valuable land and water resources.  相似文献   

5.
Accurate information on the extent of waterlogging is required for flood prediction, monitoring, relief and preventive measures. The rule-based classification algorithms were used for differentiating waterlogged areas from other ground features using Resourcesat-2 AWiFS satellite imagery (Indian Remote Sensing Satellite with spatial resolution of 56 m). Two spectral indices normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) were used for extracting waterlogged areas in Sri Muktsar Sahib district of Punjab, India. These indices extracted the waterlogged areas (cropped areas inundated with water) but the water features were less enhanced in the NDWI-derived image (when compared with MNDWI-derived image) due to negative values of NDWI and, mixing of water with built up features. The water features were more enhanced with MNDWI and the values of MNDWI were positive for water features mixed with vegetation. The overall accuracy of waterlogged areas extracted from the MNDWI image was 96.9% with the Kappa coefficient of 0.89. The digital elevation model (DEM) was extracted from ASTER-GDEM. The relationships among depth to the water table recorded before the incessant rain in the region, DEM and classified MNDWI images explained the differences in the extent of waterlogging in various directions of the study area. These results suggest that MNDWI can be used to better delineate water features mixed with vegetation compared to NDWI.  相似文献   

6.
Cropping system study is not only useful to understand the overall sustainability of agricultural system, but also it helps in generating many important parameters which are useful in climate change impact assessment. Considering its importance, Space Applications Centre, took up a project for mapping and characterizing major cropping systems of Indo-Gangetic Plains of India. The study area included the five states of Indo-Gangetic Plains (IGP) of India, i.e. Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal. There were two aspects of the study. The first aspect included state and district level cropping system mapping using multi-date remote sensing (IRS-AWiFS and Radarsat ScanSAR) data. The second part was to characterize the cropping system using moderate spatial resolution multi-date remote sensing data (SPOT VGT NDVI) and ground survey. The remote sensing data was used to compute three cropping system performance indices (Multiple Cropping Index, Area Diversity Index and Cultivated Land Utilization Index). Ground survey was conducted using questionnaires filled up by 1,000 farmers selected from 103 villages based on the cropping systems map. Apart from ground survey, soil and water sampling and quality analysis were carried out to understand the effect of different cropping systems and their management practices. The results showed that, rice-wheat was the major cropping system of the IGP, followed by Rice-Fallow-Fallow and Maize-Wheat. Other major cropping systems of IGP included Sugarcane based, Pearl millet-Wheat, Rice-Fallow-Rice, Cotton-Wheat. The ground survey could identify 77 cropping systems, out of which 38 are rice-based systems. Out of these 77 cropping systems, there were 5 single crop systems, occupying 6.5% coverage (of all cropping system area), 56 double crop systems with 72.7% coverage, and 16 triple crop systems with 20.8% coverage. The cropping system performance analysis showed that the crop diversity was found to be highest in Haryana, while the cropping intensity was highest in Punjab state.  相似文献   

7.
The present study has analyzed the variability in depth to water level below ground level (bgl) vis-à-vis groundwater development and rainfall from 1987 to 2007 in agriculture dominated Kaithal district of Haryana state in India. Spatial distribution of groundwater depth was mapped and classified into different zones using ILWIS 3.6 GIS tools. Change detection maps were prepared for 1987–1997 and 1997–2007. Groundwater depletion rates during successive decades were compared and critical areas with substantial fall in groundwater levels were identified. Further, block wise trends of change in groundwater levels were also analyzed. The water table in fresh belt areas of the district (Gulha, Pundri and Kaithal blocks) was observed to decline by a magnitude ranging from 10 m to 23 m. In Kalayat and Rajaund blocks, the levels were found fluctuating in a relatively narrow range of 4–9 m. During 1997–2007, the depletion has been faster compared to the preceding decade. Excessive groundwater depletion in major part of the district may be attributed to indiscriminate abstraction for irrigation and decrease in rainfall experienced since 1998. Changes in cropping pattern and irrigation methods are needed in the study area for sustainable management of the resource.  相似文献   

8.
Sodicland reclamation in the Indo-Gangetic plains is being done on a large scale in the states of Uttar Pradesh, Punjab and Haryana in India. However, in certain areas, the reclamation has been reported to be unsustainable and the soils are reverting back to sodicity condition. A study was conducted in one of the reclamation sites of Etawah district for sustainability assessment of sodic land reclamation using remote sensing, Geographic Information system (GIS) and ancillary ground information. Multitemporal satellite data were used for delineation of reclaimed sodiclands and reverted sodic land. Field survey was conducted to find out the various causative factors. Groundwater level information and detailed field survey data were analysed in GIS environment. Results showed that in the reclamation site covering 3,905 ha. in 57 villages of the district, about 27 per cent of reclaimed lands were reverted to sodicity. High water table condition, improper drainage, nearness to canal (within 500 m), and hard pan in the sub-soil were found to be the reasons for unsustainability of reclamation.  相似文献   

9.
This study reveals the temporal changes in the land use/land cover of district Ludhiana from the years 1970 to 2001 and reports on the change that has occurred in land use/land cover as a result of change in cropping pattern. The changes were analysed through the data obtained from statistical abstract 1969–70, False Colour Composite (FCC) of IRS-IC LISS-III satellite data of March 2001 and ground truth. There has been a decrease in agricultural land by 2100 ha. but still it occupies 83.76% of the total geographical area (TGA). The wasteland shows a declining trend whereas forest cover has increased from 1.07 to 2.71% of TGA. Area under non-agricultural uses has increased from 10.13 to 12.50% of TGA. There has also been a great change in the cropping pattern of the district. Crops such as groundnut, gram and cotton have nearly disappeared and wheat and rice dominate the region. This change has substantially resulted in the decrease of area under wastelands.  相似文献   

10.
Wheat yield prediction using different agrometeorological indices, spectral index (NDVI, Normalized Difference Vegetation Index) and trend predicted yield (TPY) were developed in Hoshiarpur and Rupnagar districts of Punjab. On the basis of examination of Correlation Coefficients (R), Standard Error of Estimate (SEOE) and Relative Deviation (RD) values resulted from different agromet models, the best agromet subset were selected as Minimum Temperature (Tmin), Maximum Temperature (Tmax) and accumulated Heliothermal Units (HTU) in case of Hoshiarpur district and Minimum Temperature (T--min), accumulated Temperature Difference (TD) and accumulated Pan Evaporation (E) for Rupnagar district at reproductive stage (2nd week of March) of wheat. It was found that Agromet-Spectral-Trend-Yield model could explain 96 % (SEOE = 87 kg/ha) and 91 % (SEOE = 146 kg/ha) of wheat yield variations for Hoshiarpur and Rupnagar districts, respectively.  相似文献   

11.
The paper presents the results of hydrogeomorphological mapping using IRS-IB LISS II data and evaluation of ground water prospects of each hydrogeomorphological unit in the Lehra Gaga block of Sangrur district, Punjab. The major geomorphic units identified in the area are, alluvial plain, sand dunes, palaeo channels and the Ghagar flood plain. The study area being part of alluvial plain has good to excellent ground water prospects. Field observations showed that ground water occurs under both confined and unconfined conditions with water table at shallow depth. The area on either side of the Ghagar river and along the major canals (about 46% of the total geographical area in the block) have good quality of ground water and is suitable for irrigation, whereas the water quality is marginal (sodic) in 52 per cent area of the block..  相似文献   

12.
Various geomorph.ological features associated with fluvial processes of the river Satluj are mapped using photo-interpretation techniques with a view to assess the environmental status of the area in the north-east of Ludhiana (Punjab State). Features mapped include braided river channels, oxbow lakes and meander scrolls. The younger alluvium supports good vegetation and cultivation because of -shallow depth of water level; though prone to annual floods in the lower levels and major floods in the higher levels. It is saved from these hazards by providing bunding on both sides of river isolated sand deposit patches have been demarcated in the older alluvium. Shifting of the main river channel towards north is noticed as it has gradually shifted from its earlier course which lies towards south.  相似文献   

13.
The extent of salt-affected soils in Punjab based on the 1984 Landsat-MSS data (FCC) has been investigated. The area of salt-affected soils has decreased from 0.699 million ha in 1972 to 0.488 million ha in 1984. The 1972 extent of salt-affected soils is based on the available maps and interpretation of ERTS pictures. The morphological, physical, chemical and minerological characteristics of salt-affected soils in Punjab are described. These soils are charaterised by high pH, ESP and EC but lack columnar or prismatic structure. The highest salt accumulation is observed at the surface and decreases with depth. The only sodium containing silicate mineral identified in these soils is albite. The development of salt-affected soils in Punjab is intimately connected with fluctuation of ground water. These soils have been formed by a combination of topographic, climatic, hydrological and geochemical conditions conducive for the accumulation of brackish waters at or near soil surface.  相似文献   

14.
To predict the crop yield from spectral parameters, a field experiment was conducted on cotton crop during 1997-98 Kharif season on a sandy loam soil at the Punjab Agricultural Unjversity, Ludhiana. India. Spectral reflectance and agronomic measurements were made for cotton species (American and Desi cotton), sown on two dates (May 1 and May 29) under five nitrogen levels (0, 40, 80, 120 and 160 kg/ha). Regression analysis showed that growth variables had poor correlation with seed cotton yield for all three models, however, yield attributes were significantly and highly correlated for second degree model with seed cotton yield. The integrated Radiance Ratio (RR) and Normalized Difference Vegetation Index (NDVI) measured over time were significantly correlated quadratically with seed cotton yield on three time segment periods viz., 81–110, 111–140 and 141–200 DAS, but highest correlation values were obtained during 81–110 DAS, In American cotton, the highest correlation coefficient for RR and NDVI were 0.91 and 0.81, respectively; whereas for Desi cotton these values were 0.88 and 0.84, respectively.  相似文献   

15.
Water Utilisation Index (WUI) defined as area irrigated per unit volume is a measure of water delivery performance and constitutes one of the important spatial performance indicators of an irrigation system. WUI also forms basis for evaluating the adequacy of seasonal irrigation supplies in an irrigation system (inverse of WUI is delta, i.e. depth of water supplied to a given irrigation unit). In the present study WUI and adequacy indicators were used in benchmarking the performance of Nagarjunasagar Left Canal Command (NSLC) in Andhra Pradesh. Optimised temporal satellite data of rabi season during the years 1990–91 and 1998–99 was used in deriving irrigated crop areas adopting hierarchical classification approach. Paddy is the predominant crop grown and cotton, chillies, sugarcane etc. are the other crops grown in the study area. Equivalent wet area (paddy crop area) was estimated using the operationally used project specific conversion factors. WUI was estimated at disaggregated level viz., distributary, irrigation block, irrigation zone level using the canal discharge data. At project level, WUI estimated to be 65 ha/MCM and 92 ha/MCM during rabi season of 1990–91 and 1998–99 years respectively. A comparison of total irrigated area and discharges corresponding to both the years indicate that irrigation service is extensive and sub optimal during 1998–99 and it is intensive and optimal in 1990–91. It was also observed that WUI is lesser in blocks of with higher Culturable Command Area (CCA) compared to the blocks of lower CCA. All the disaggregated units were ranked into various groups of different levels of water distribution performance. The study demonstrates the utility of WUI as spatial performance indicator and thus useful for benchmarking studies of irrigation command areas. The WUI together with satellite data derived spatial irrigation intensity, crop productivity constitutes important benchmarking indices in irrigation command areas.  相似文献   

16.
Secondary salinisation is the most harmful and extended phenomenon of the unfavourable effects of irrigation on the soil and environment. An attempt was made to study the impact of poor quality ground water on soils in terms of secondary salinisation and availability of soil nutrients in Faridkot district of Punjab of northern India. Based on physiographic analysis of IRS 1C LISS-III data and semi-detailed soil survey, the soil map was finalized on a 1:50,000 scale and digitized using Arc Info GIS. Georeferenced surface soil samples (0–0.15 m) from 231 sites were collected and analyzed for available phosphorus (P) and potassium (K). Interpolation by kriging produced digital spatial maps of available P and K. Ground water quality map was generated in GIS domain on the basis of EC (electrical conductivity) and RSC (residual sodium carbonate) of ground water samples collected from 374 georeferenced tube wells. Integration of soil and ground water quality maps enabled generating a map showing degree (high, moderate and low) and type (salinity, sodicity and both) of vulnerability to secondary salinization. Fine-textured soils have been found to be highly sensitive to secondary salinisation, whereas medium-textured soils as moderately sensitive to secondary salinisation. The resultant map was integrated with available P and K maps to show the combined influence of soil texture and ground water quality on available soil nutrients. The results show that available P and K in the soils of different physiographic units were found in the order of Ap1 < Ap2 < Ap3. The soils of all physiographic units had sizeable area having high content of P (>22.5 kg / ha) and medium available K (135–335 kg ha−1) in most of the test sites when irrigated with saline, sodic or poor quality water.  相似文献   

17.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers.  相似文献   

18.
Degraded lands in Vidarbha region of Maharashtra were assessed using remote sensing technique. District wise land degradation maps were generated on 1:25,0000 scale through visual interpretation of lRS 1A data supported by limited ground survey. It was observed that degraded lands occupy nearly 2.1 million ha or 21.5 per cent of the total geographical area. The analysis of district wise land degradation statistics indicate that. Yavatmal and Akola districts are graded as having most problematic lands in the region. Nagpur, Amravati, Buldana and Wardha districts are categorised as moderately problematic, whereas Gadchiroli, Chandrapur and Bhandara are districts having least problem of degradation. Among the major land forms, the largest degraded area is associated with undifferentiated plain accounting for 1.1 million ha or 12 per cent of the total area of region, which is mostly under cultivation. It thus follows that problem of degradation is more rampant in agricultural land than forest/waste lands.  相似文献   

19.
Over the last four decades exploitation of natural resources to meet increasing societal demands for land based products has caused significant changes in land use and land cover not only in nature’s best gifted regions but also environmentally sensitive arid regions. Through digital interpretation of IRS LISS-III data of 2004 supported with field survey, the present land use map of Jhunjhunun district of arid Rajasthan has been prepared. Agriculture is the dominant land use constituting 84% (including 38% irrigated cropland) area. The land use changes over time and space are worked out by comparing with Landsat 2 MSS data of 1975 and Land use/land cover map of 1988–89. These changes are correlated by analyzing historical land use and cropping pattern data from 1957–58 to 2004–05. The region witnessed record increase in irrigated area but sharply depleted ground water and rendered hectares of irrigated double cropland into dry land agriculture. Strategies and technologies are suggested for sustainable use and management of different category of land.  相似文献   

20.
In the present study, soil loss in Nagpur district of Maharashtra is predicted employing USLE method and adopting integrated analysis in GIS to prioritise the tahsils for soil conservation and for delineation of suitable conservation units. Remote sensing techniques are applied to delineate the land cover of the district and to arrive at annual cover factors. Results indicate that potential soil loss of very slight to slight (>5–10 tons/ha/year) exist in the valleys in north western, northern and in the plains of central and eastern parts of the district. Moderate to moderately severe erosion rates (10 to 20 tones/ha/year) is noticed in the southeastern and some central parts. Severe, very severe and extremely severe erosion types (20 to 80 tons/ha/year) are noticed in the northern, western, southwestern and southern parts of the district. The average soil loss is estimated to be 23.1 and 15.5 tons/ha/yr under potential and actual conditions respectively. Slight, moderate, moderately severe and extremely severe potential erosion covering about 41 per cent area of the district is reduced to negligible and very slight rates of actual erosion under the influence of present land cover leading to a reduction of 7421.2 tones of potential soil loss. Priority rating of the tahsils is evaluated from the area weighted mean quantum of soil loss. Multi-criteria overlay analysis with the parameters of soil erosion, slope, soil depth, land cover and surface texture with rating for the constituent classes has resulted in delineation of nine conservation units. Appropriate agronomic and mechanical practices are suggested in the identified units for minimizing the erosion hazard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号