首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The shallow water equations are used to model flows in rivers and coastal areas, and have wide applications in ocean, hydraulic engineering, and atmospheric modeling. These equations have still water steady state solutions in which the flux gradients are balanced by the source term. It is desirable to develop numerical methods which preserve exactly these steady state solutions. Another main difficulty usually arising from the simulation of dam breaks and flood waves flows is the appearance of dry areas where no water is present. If no special attention is paid, standard numerical methods may fail near dry/wet front and produce non-physical negative water height. A high-order accurate finite volume weighted essentially non-oscillatory (WENO) scheme is proposed in this paper to address these difficulties and to provide an efficient and robust method for solving the shallow water equations. A simple, easy-to-implement positivity-preserving limiter is introduced. One- and two-dimensional numerical examples are provided to verify the positivity-preserving property, well-balanced property, high-order accuracy, and good resolution for smooth and discontinuous solutions.  相似文献   

2.
Sediment, nutrients and pollutants discharged from sheet and interrill erosion areas by rain‐impacted flows may influence water quality in streams and rivers. The depth of water on the soil surface influences the capacity of raindrop impacts to detach soil material underlying rain‐impacted flows, and a number of so‐called process‐based and mechanistic models erroneously use equations on the basis of the effect of water depth on splash erosion to account for this effect. Also, a number of these models require complex mathematical solutions to make them operate and can only predict sediment composition and discharges well if many of their parameters are calibrated specifically to the situations where they are being applied. Experiments with rain‐impacted flows, where flow depth and velocity over eroding surfaces have been controlled, have been reported in the literature and provide more appropriate equations to account for the drop size – flow depth interactions that affect detachment and transport of particles in rain‐impacted flows. There is a need to develop modeling approaches that rely on relevant data obtained under well‐controlled flow conditions where flow depths and velocities are known. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a substantial artificial blocking effect when using no-slip.  相似文献   

4.
Water–rock–gas system is simulated using a technique based on the fundamental principles of modern hydrogeochemistry regarding the formation parameters of natural-water chemistry to show that groundwater pollution hazard at a gold-bearing placer is acute for any site of water exchange changing from passive to active. Under passive water exchange, the products of sulfide oxidation are accumulated; whereas under active water exchange, the oxidation products are leached out to form acid drainage flows. The treatment of acid drainage water and the neutralization of acid solutions are more effective under reduction or weakly alkaline conditions.  相似文献   

5.
Dekui Yuan  Binliang Lin 《水文研究》2009,23(19):2804-2817
Beach water table fluctuations have an impact on the transport of beach sediments and the exchange of solute and mass between coastal aquifer and nearby water bodies. Details are given of the refinement of a dynamically integrated ground‐ and surface‐water model, and its application to study ground‐ and surface‐water interactions in coastal regions. The depth‐integrated shallow‐water equations are used to represent the surface‐water flow, and the extended Darcy's equation is used to represent the groundwater flow, with a hydrostatic pressure distribution being assumed to apply for both these two types of flows. At the intertidal region, the model has two layers, with the surface‐water layer being located on the top of the groundwater layer. The governing equations for these two types of flows are discretized in a similar manner and they are combined to give one set of linear algebraic equations that can be solved efficiently. The model is used to predict water level distributions across sloping beaches, where the water table in the aquifer may or may not decouple from the free water surface. Five cases are used to test the model for simulating beach water table fluctuations induced by tides, with the model predictions being compared with existing analytical solutions and laboratory and field data published in the literature. The numerical model results show that the integrated model is capable of simulating the combined ground‐ and surface‐water flows in coastal areas. Detailed analysis is undertaken to investigate the capability of the model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Heat as a ground water tracer   总被引:40,自引:0,他引:40  
Anderson MP 《Ground water》2005,43(6):951-968
Heat carried by ground water serves as a tracer to identify surface water infiltration, flow through fractures, and flow patterns in ground water basins. Temperature measurements can be analyzed for recharge and discharge rates, the effects of surface warming, interchange with surface water, hydraulic conductivity of streambed sediments, and basin-scale permeability. Temperature data are also used in formal solutions of the inverse problem to estimate ground water flow and hydraulic conductivity. The fundamentals of using heat as a ground water tracer were published in the 1960s, but recent work has significantly expanded the application to a variety of hydrogeological settings. In recent work, temperature is used to delineate flows in the hyporheic zone, estimate submarine ground water discharge and depth to the salt-water interface, and in parameter estimation with coupled ground water and heat-flow models. While short reviews of selected work on heat as a ground water tracer can be found in a number of research papers, there is no critical synthesis of the larger body of work found in the hydrogeological literature. The purpose of this review paper is to fill that void and to show that ground water temperature data and associated analytical tools are currently underused and have not yet realized their full potential.  相似文献   

7.
Debris flows are gravity-driven mass movements that are common natural hazards in mountain regions worldwide. Previous work has shown that measurements of ground vibrations are capable of detecting the timing, speed, and location of debris flows. A remaining question is to what extent additional flow properties, such as grain-size distribution and flow depth can be inferred reliably from seismic data. Here, we experimentally explore the relation of seismic vibrations and normal-force fluctuations with debris-flow composition and dynamics. We use a 5.4 m long and 0.3 m wide channel inclined at 20°, equipped with a geophone plate and force plate. We show that seismic vibrations and normal-force fluctuations induced by debris flows are strongly correlated, and that both are affected by debris-flow composition. We find that the effects of the large-particle distribution on seismic vibrations and normal-force fluctuations are substantially more pronounced than the effects of water fraction, clay fraction, and flow volume, especially when normalized by flow depth. We further show that for flows with similar coarse-particle distributions seismic vibrations and normal-force fluctuations can be reasonably well related to flow depth, even if total flow volume, water fraction, and the size distribution of fines varies. Our experimental results shed light on how changes in large-particle, clay, and water fractions affect the seismic and force-fluctuation signatures of debris flows, and provide important guidelines for their interpretation.  相似文献   

8.
Shallow water equations with a non-flat bottom topography have been widely used to model flows in rivers and coastal areas. An important difficulty arising in these simulations is the appearance of dry areas where no water is present, as standard numerical methods may fail in the presence of these areas. These equations also have still water steady state solutions in which the flux gradients are nonzero but exactly balanced by the source term. In this paper we propose a high order discontinuous Galerkin method which can maintain the still water steady state exactly, and at the same time can preserve the non-negativity of the water height without loss of mass conservation. A simple positivity-preserving limiter, valid under suitable CFL condition, will be introduced in one dimension and then extended to two dimensions with rectangular meshes. Numerical tests are performed to verify the positivity-preserving property, well-balanced property, high order accuracy, and good resolution for smooth and discontinuous solutions.  相似文献   

9.
Macro-pores such as crab burrows are found commonly distributed in salt marsh sediments. Their disturbance on the soil structure is likely to influence both pore water flows and solute transport in salt marshes; however, the effects of crab burrows are not well understood. Here, a three-dimensional model simulated tidally driven pore water flows subject to the influence of crab burrows in a marsh system. The model, based on Richards’ equation, considered variably saturated flow in the marsh with a two-layer soil configuration, as observed at the Chongming Dongtan wetland (Shanghai, China). The simulation results showed that crab burrows distributed in the upper low-permeability soil layer, acting as preferential flow paths, affected pore water flows in the marsh particularly when the contrast of hydraulic conductivity between the lower high-permeability soil layer and the overlying low-permeability soils was high. The burrows were found to increase the volume of tidally driven water exchange between the marsh soil and the tidal creek. The simulations also showed improvement of soil aeration conditions in the presence of crab burrows. These effects may lead to increased productivity of the marsh ecosystem and enhancement of its material exchange with coastal waters.  相似文献   

10.
11.
试论地震在泥石流形成中的作用   总被引:8,自引:0,他引:8       下载免费PDF全文
地震和泥石流是自然界常见的灾种。对地震在泥石流形成中的作用以及地震泥石流的特征进行了初步探讨后认为,强烈地震区和新构造运动活跃区往往也是泥石流高发区;地震通过为泥石流提供固体物质来源、水源、动力条件和激发条件等影响泥石流的形成和发展;地震引发的泥石流具有滞后性、周期性、区域性和多沟同时暴发的特点  相似文献   

12.
A standard lower-side attainment values based inexact fuzzy two-stage programming (SLA-IFTSP) approach is proposed for supporting multi-water resources management under multi-uncertainties. The method improves upon the existing inexact two-stage stochastic programming by the introduction of a standard average lower-side attainment values based fuzzy linear programming. Multi-uncertainties such as intervals, probabilistic and/or possibilistic distributions and their combinations in water resources management can be directly communicated into the water allocation process. The risk of infeasibility caused by the random water availabilities can be analyzed by imposing economic penalties when the designed water allocations would not be satisfied after the occurrence of random seasonal flows. Based on the standard average lower-side attainment index, the fuzzy random relationships representing various subjective judgments in the model can be transformed into corresponding deterministic ones without additional constraints, and thus guarantee a higher computational efficiency. A hypothetical case regarding two-source water resources management is adopted for demonstrating its applicability. Reasonable solutions have been generated. They provide desired water allocations with maximized system benefit under different water availability levels. The solutions of intervals with different probabilities can be used for generating decision alternatives. Comparisons between the solutions from SLA-IFTSP and those from ITSP are also undertaken. They show that SLA-IFTSP can generate more reasonable water allocation patterns with higher net system benefits than ITSP.  相似文献   

13.
Debris flows are flows of water and sediment driven by gravity that initiate in the upper part of a stream, where the slope is very steep, allowing high values of solid concentration (hyperconcentrated flows), and that stop in the lower part of the basin, which is characterized by much lower slopes and reduced speeds and concentrations. Modelling these flows requires mathematical and numerical tools capable of simulating the behavior of a fluid in a wide range of concentrations of the solid phase, spanning from hyperconcentrated flows to flows in the fluvial regime. According to a two-phase approach, the depth integrated equations of mass and momentum conservation for water and sediments, under the shallow water hypothesis, are employed to solve field problems related to debris flows. These equations require suitable closure relations that in this case should be valid in a very wide range of slopes. In the hypothesis of absence of cohesive material, we derived these closure relations properly combining the relative relations valid separately in the fluvial and in the hyperconcentrated regimes. In the intermediate regime, the shear stress is due to the combined effect of the deformation of the liquid phase (grain roughness turbulence) and of inter-particle collisions. Therefore, an approach based on the sum of the effects of the two causes has been proposed, combining the Darcy–Weisbach equation and the Bagnoldian grain-inertia theory.A similar treatment has been made for the transport capacity relations, combing the Bagnold expression of the collisional regime with a transport capacity monomial formula valid in the fluvial regime.The closure relations are expressed in non-dimensional form as a function of the Froude number, of the solid concentration, of the relative submergence, and of the slope.In order to test the closure relation, a set of experiments with mixtures of non-cohesive sediments and water have been carried out in a laboratory flume under steady uniform flow conditions, with different solid and liquid discharges and different grain size distributions. The closure equations are satisfactorily tested against experimental investigation.  相似文献   

14.
Modelling dam-break flows over mobile beds using a 2D coupled approach   总被引:1,自引:0,他引:1  
Dam-break flows usually propagate along rivers and floodplains, where the processes of fluid flow, sediment transport and bed evolution are closely linked. However, the majority of existing two-dimensional (2D) models used to simulate dam-break flows are only applicable to fixed beds. Details are given in this paper of the development of a 2D morphodynamic model for predicting dam-break flows over mobile beds. In this model, the common 2D shallow water equations are modified, so that the effects of sediment concentrations and bed evolution on the flood wave propagation can be considered. These equations are used together with the non-equilibrium transport equations for graded sediments and the equation of bed evolution. The governing equations are solved using a matrix method, thus the hydrodynamic, sediment transport and morphological processes can be jointly solved. The model employs an unstructured finite volume algorithm, with an approximate Riemann solver, based on the Roe-MUSCL scheme. A predictor–corrector scheme is used in time stepping, leading to a second-order accurate solution in both time and space. In addition, the model considers the adjustment process of bed material composition during the morphological evolution process. The model was first verified against results from existing numerical models and laboratory experiments. It was then used to simulate dam-break flows over a fixed bed and a mobile bed to examine the differences in the predicted flood wave speed and depth. The effects of bed material size distributions on the flood flow and bed evolution were also investigated. The results indicate that there is a great difference between the dam-break flow predictions made over a fixed bed and a mobile bed. At the initial stage of a dam-break flow, the rate of bed evolution could be comparable to that of water depth change. Therefore, it is often necessary to employ the turbid water governing equations using a coupled approach for simulating dam-break flows.  相似文献   

15.
16.
Elevated wildfire activity in many regions in recent decades has increased concerns about the short- and long-term effects on water quantity, quality, and aquatic ecosystem health. Often, loss of canopy interception and transpiration, along with changes in soil structural properties, leads to elevated total annual water yields, peak flows, and low flows. Post-fire land management treatments are often used to promote forest regeneration and mitigate effects to terrestrial and aquatic ecosystems. However, few studies have investigated the longer-term effects of either wildfire or post-fire land management on catchment hydrology. Our objectives were to quantify and compare the short- and longer-term effects of both wildfire and post-fire forest management treatments on annual discharge, peak flows, low flows, and evapotranspiration (AET). We analyzed ten years of pre-fire data, along with post-fire data from 1 to 7 and 35 to 41 years after wildfire burned three experimental catchments in the Entiat Experimental Forest (EEF) in the Pacific Northwest, USA. After the fire, two of the catchments were salvage logged, aerially seeded, and fertilized, while the third catchment remained as a burned reference. We observed increases in annual discharge (150–202%), peak flows (234–283%), and low flows (42–81%), along with decreases in AET (34–45%), across all three study catchments in the first seven year period after the EEF wildfire. Comparatively, annual discharge, peak flows, lows flows, and AET had returned to pre-fire levels 35–41 years after the EEF fire in the two salvage logged and seeded catchments. Surprisingly, in the catchment that was burned but not actively managed, the annual discharge and runoff ratios remained elevated, while AET remained lower, during the period 35–41 years after the EEF fire. We posit that differences in long-term hydrologic recovery across catchments were driven by delayed vegetation recovery in the unmanaged catchment. Our study demonstrates that post-fire land management decisions have the potential to produce meaningful differences in the long-term recovery of catchment-scale ecohydrologic processes and streamflow.  相似文献   

17.
Contaminants that entered the streambed during previous surface water pollution events can be released to the stream, causing secondary pollution of the stream and impacting its eco-environmental condition. By means of laboratory experiments and numerical simulations, we investigated density effects on the release of solute from periodic bedforms. The results show that solute release from the upper streambed is driven by bedform-induced convection, and that density effects generally inhibit the solute release from the lower streambed. Density gradients modify the pore water flow patterns and form circulating flows in the area of lower streambed. The formation of circulating flows is affected by density gradients associated with the solute concentration and horizontal pressure gradients induced by stream slope. The circulating flows near the bottom of the streambed enhance mixing of the hyporheic zone and the ambient flow zone.  相似文献   

18.
Flow and transport simulation in karst aquifers remains a significant challenge for the ground water modeling community. Darcy's law–based models cannot simulate the inertial flows characteristic of many karst aquifers. Eddies in these flows can strongly affect solute transport. The simple two-region conduit/matrix paradigm is inadequate for many purposes because it considers only a capacitance rather than a physical domain. Relatively new lattice Boltzmann methods (LBMs) are capable of solving inertial flows and associated solute transport in geometrically complex domains involving karst conduits and heterogeneous matrix rock. LBMs for flow and transport in heterogeneous porous media, which are needed to make the models applicable to large-scale problems, are still under development. Here we explore aspects of these future LBMs, present simple examples illustrating some of the processes that can be simulated, and compare the results with available analytical solutions. Simulations are contrived to mimic simple capacitance-based two-region models involving conduit (mobile) and matrix (immobile) regions and are compared against the analytical solution. There is a high correlation between LBM simulations and the analytical solution for two different mobile region fractions. In more realistic conduit/matrix simulation, the breakthrough curve showed classic features and the two-region model fit slightly better than the advection-dispersion equation (ADE). An LBM-based anisotropic dispersion solver is applied to simulate breakthrough curves from a heterogeneous porous medium, which fit the ADE solution. Finally, breakthrough from a karst-like system consisting of a conduit with inertial regime flow in a heterogeneous aquifer is compared with the advection-dispersion and two-region analytical solutions.  相似文献   

19.
The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.  相似文献   

20.
This study is aimed at investigating the vertical velocity profile of flow passing over a vegetal area by an analytical approach. The soil ground is considered as pervious and thus non-zero velocity at the ground surface can be estimated. The soil and vegetation layers are regarded as homogeneous and isotropic porous media. Therefore the solution of the flow can be obtained by applying the theory of turbulent flow and Biot’s theory of poroelasticity after dividing the flow field into three layers: homogenous water, vegetation and pervious soil. The velocity distribution is compared with the experimental data of [Rowiński PM, Kubrak J. A mixing-length model for predicting vertical velocity distribution on flows through emergent vegetation. J Hydrol Sci 2002;47(6):893–904] to show its validity. In addition, five dimensionless parameters denoting the variation of slope, permeability of soil, Reynolds stress, density of vegetation, and relative height of vegetation are proposed to reveal their effects on the surface water flow. The analytical solutions of flow velocity can also be simplified into simpler expressions to describe the flow passing over a non-vegetated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号