首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Interpretation of a single geophysical data set is not sufficient to get complete subsurface information. Cooperative or joint inversion of geophysical data sets is the preferred method for most case studies. In the present study, we present the results of the cooperative inversion approach of direct current resistivity and gravity data. The algorithm uses fuzzy c-means clustering to determine the petrophysical relationship between density and resistivity to obtain the similarity. Synthetic data set has demonstrated that the cooperative inversion approach can produce more reliable and better resistivity and density models of the subsurface as compared to those obtained through individual inversions. To utilize the presented cooperative inversion algorithm, the number of geologic units (number of clusters) in the study region must be known a priori. As a field study, the cooperative inversion approach was used to identify the extension of uranium-bearing target rock around the Beldih open cast mine. We noted the inconsistencies in both resistivity and density models obtained from the individual inversions. However, the presented cooperative inversion approach was able to produce similar resistivity and density models while maintaining the same error level of the respective individual inversions. We have considered four geologic units in the presented cooperative inversion as a field case study. We have also compared our cooperative results with drilled borehole and found to be a reliable tool to differentiate between the target rocks (kaolinite and quartz–magnetite–apatite rocks) and the ultramafic rock (host rock quartzite/alkaline granite). However, this study is subject to certain limitations such as the inability to differentiate between closely spaced kaolinite and quartz–magnetite–apatite rocks.  相似文献   

2.
Igneous intrusions, notably carbonatitic–alkalic intrusions, peralkaline intrusions, and pegmatites, represent significant sources of rare‐earth metals. Geophysical exploration for and of such intrusions has met with considerable success. Examples of the application of the gravity, magnetic, and radiometric methods in the search for rare metals are presented and described. Ground gravity surveys defining small positive gravity anomalies helped outline the shape and depth of the Nechalacho (formerly Lake) deposit within the Blatchford Lake alkaline complex, Northwest Territories, and of spodumene‐rich mineralization associated with the Tanco deposit, Manitoba, within the hosting Tanco pegmatite. Based on density considerations, the bastnaesite‐bearing main ore body within the Mountain Pass carbonatite, California, should produce a gravity high similar in amplitude to those associated with the Nechalacho and Tanco deposits. Gravity also has utility in modelling hosting carbonatite intrusions, such as the Mount Weld intrusion, Western Australia, and Elk Creek intrusion, Nebraska. The magnetic method is probably the most successful geophysical technique for locating carbonatitic–alkalic host intrusions, which are typically characterized by intense positive, circular to sub‐circular, crescentic, or annular anomalies. Intrusions found by this technique include the Mount Weld carbonatite and the Misery Lake alkali complex, Quebec. Two potential carbonatitic–alkalic intrusions are proposed in the Grenville Province of Eastern Quebec, where application of an automatic technique to locate circular magnetic anomalies identified several examples. Two in particular displayed strong similarities in magnetic pattern to anomalies accompanying known carbonatitic or alkalic intrusions hosting rare‐metal mineralization and are proposed to have a similar origin. Discovery of carbonatitic–alkalic hosts of rare metals has also been achieved by the radiometric method. The Thor Lake group of rare‐earth metal deposits, which includes the Nechalacho deposit, were found by follow‐up investigations of strong equivalent thorium and uranium peaks defined by an airborne survey. Prominent linear radiometric anomalies associated with glacial till in the Canadian Shield have provided vectors based on ice flow directions to source intrusions. The Allan Lake carbonatite in the Grenville Province of Ontario is one such intrusion found by this method. Although not discovered by its radiometric characteristics, the Strange Lake alkali intrusion on the Quebec–Labrador border is associated with prominent linear thorium and uranium anomalies extending at least 50 km down ice from the intrusion. Radiometric exploration of rare metals hosted by pegmatites is evaluated through examination of radiometric signatures of peraluminous pegmatitic granites in the area of the Tanco pegmatite.  相似文献   

3.
A fault zone, inferred as a major linear structure from aerial photographs of the University of Ife Campus, has been investigated. Results of a multi-method geophysical survey indicate that the zone is characterized by relatively low resistivity and high magnetic effect. They are characteristic of a sheared and perhaps saturated fault zone with magnetic mineral infillings along its plane. The near symmetry of the magnetic anomalies over the fault zone may not be indicative of a step faulting. The geoelectric sections show no indication of any significant displacement. The above supports results of a previous study that the fault is a strike-slip fault.  相似文献   

4.
天水地震区综合地球物理剖面的建立与壳幔结构   总被引:2,自引:0,他引:2       下载免费PDF全文
根据人工地震、重力、大地电磁和地热资料,在天水地震区建立了二个综合地球物理剖面.对这两个剖面进行了分析,研究了该地区的壳幔结构.结果表明,沿西秦岭北缘断裂带,地壳变薄,低速层、低密层和低阻层同步出现,同时在断裂带附近形成了宽几十到上百公里的相变过渡带,其影响深度可达上地幔.  相似文献   

5.
乌溪矿区介于长江中下游多金属成矿带与华南成矿带之间,是江南造山带上的一个找矿新区.本文在这一找矿新区开展了有效的电磁方法综合勘探,试图对该区深部成矿机制进行研究.我们收集了该区的地质地球化学资料,从地质地球化学资料中分析了区域成矿背景;我们还采集了区域出露的主要岩石类型,在实验室开展物性测定,在此基础上选择了三种电磁方法开展研究区的野外测量.通过地面高精度磁测、激发极化法和可控源音频大地电磁法(CSAMT)三种地球物理方法,开展了研究区的磁化率、极化率和电阻率的分布特征研究.深入分析了地质、地球化学和地球物理三种资料与成矿的关系,相互约束,探讨成矿模型、成矿机制和成矿的可能性,推测可能的矿体赋存位置和深度范围.在地球物理研究结果基础上,结合地质和地球化学背景资料,构建了研究区的成矿动力学模型,推测了研究区成矿机制,揭示了矿区的成矿潜力.综合所得结果布设了钻孔,钻探结果揭示了研究区深部存在强烈矿化蚀变和强蚀变斑岩,初步确认为斑岩型矿床,与CSAMT剖面的解释结果基本一致,也与推测的测区内深部成矿机制相吻合.钻孔结果和地球物理结果的一致性以及对已构建的成矿动力学模型的支持,充分证明了综合电磁方法在斑岩型多金属矿床的发现和预测中的重要作用,同时斑岩型矿床的确认进一步印证了华南成矿带与俯冲作用形成的成矿带的相似性,从而推动整个华南地区的成矿地质研究.  相似文献   

6.
The results of an aeromagnetic survey of the Hawaiian Islands are studied in terms of the local magnetic anomalies defined and their relation to known centers of vulcanism. A quantitative analysis as to the depth of origin of the anomalies indicates that in nearly all cases they can be attributed to sub-surface intrusive rock masses at depths of the order of 2 to 6 kilometers. That the intrusive rocks defined are probably related to intrusions of magma derived from the underlying mantle is indicated by both quantitative studies of associated gravity anomalies and seismic refraction crustal measurements. On the basis of these integrated geophysical studies, it appears that there has been extensive intrusion of mantle-derived magma into the crust along the East-West trending submarine Molokai Fracture Zone and that where this fracture system intersected a Northwest-Southeast zone of tectonic weakness or fracture there was vulcanism that led to the formation of the Hawaiian Islands. Although magnetic data are lacking as yet over the entire Hawaiian Ridge from Hawaii to Midway Island, it is not an unreasonable hypothesis that the Ridge as a whole developed in a similar manner over its entire length as a progressive feature with time, in response to a secular shift in crustal stress pattern at the intersection of two major translational fault systems.  相似文献   

7.
Multi-scale geophysical studies were conducted in the central Skellefte district (CSD) in order to delineate the geometry of the upper crust (down to maximum ~ 4.5 km depth) for prospecting volcanic massive sulphide (VMS) mineralization. These geophysical investigations include potential field, resistivity/induced polarization (IP), reflection seismic and magnetotelluric (MT) data which were collected between 2009 and 2010. The interpretations were divided in two scales: (i) shallow (~ 1.5 km) and (ii) deep (~4.5 km). Physical properties of the rocks, including density, magnetic susceptibility, resistivity and chargeability, were also used to improve interpretations. The study result delineates the geometry of the upper crust in the CSD and new models were suggested based on new and joint geophysical interpretation which can benefit VMS prospecting in the area. The result also indicates that a strongly conductive zone detected by resistivity/IP data may have been missed using other geophysical data.  相似文献   

8.
庐枞盆地砖桥科学钻探ZK01孔为深部探测技术与实验研究专项在庐枞盆地施工的钻探验证孔,全井段实施了连续取心和地球物理测井工作.测井工作分三次完成,测井总深度1994.02m.测井项目包括视电阻率、极化率、磁化率、纵波速度、超声成像、自然伽马、密度、井斜、井径、井温、泥浆电阻率、井中三分量磁测等10多种方法,获得了钻孔剖面原位物性参数、钻孔几何形态及井壁超声图像.通过对地球物理测井和钻孔岩心编录等资料的研究,完成了岩性的人工识别与支持向量机判别,建立了钻孔测井解释岩性剖面;通过对矿化地层的测井响应分析,将电阻率和磁化率作为粗安岩矿化的识别标识;根据超声成像测井资料推断本地区深部地层最大水平主应力方向为南北走向.在ZK01孔1500~1900m发现放射性异常,对铀当量大于万分之一的21处异常进行了定量解释,铀矿化段累积厚度93.02m,为庐枞地区深部找铀矿提供了重大线索.  相似文献   

9.
重、磁勘探具有效率高、成本低、工作范围广等优点,已在地球物理勘探中得到了广泛应用.前人大多在不考虑重、磁勘探观测精度的条件下进行了垂向识别能力的研究,但在考虑重、磁观测精度条件下,重力(重力异常、重力张量)与磁力(磁力异常、磁力三分量、磁力张量)对孤立异常的垂向识别能力如何则需要进行深入的理论研究.本文从重、磁场正演理论出发,以球体(点源模型)和无限延伸水平圆柱体(线源模型)为例,考虑给定观测精度条件下,以重力和磁力幅值大小与观测精度的关系来研究垂向识别能力,从而消除了背景场的影响,提高了研究结果的可靠度.通过研究表明,对于孤立异常,重力张量在浅部一定深度内比重力异常的垂向识别能力强,该深度与重力异常和重力张量观测精度的比值成正比;垂直磁化磁力张量在浅部一定深度内比化极磁力异常的垂向识别能力强,该深度与磁力异常与磁力张量观测精度的比值成正比;磁力在浅部一定深度内比重力的垂向识别能力强,该深度与地质体的磁化强度和剩余密度比值、重力观测精度和磁力观测精度比值成正比.通过重力和磁力垂向识别能力的研究将为重、磁勘探的实际应用起到指导作用.  相似文献   

10.
长期以来,对内蒙古贺根山缝合带中的镁铁-超镁铁岩,有着"蛇绿岩"、"岩浆岩"、"幔源熔-流体"等不同认识.近年来在铬铁矿中发现了金刚石等深部地幔矿物,如何认识携带这些物质的幔源熔-流体的上涌?缝合带在镁铁-超镁铁岩的形成过程中起到什么作用?解决问题的关键之一是弄清镁铁-超镁铁岩的深部产状,这需要来自地球物理观测数据的依据.本文基于航磁和重力数据的研究表明,贺根山地区的蛇绿岩块均呈现高磁异常特征,其中贺根山岩块埋深明显大于其他岩块,表现为高磁异常与低重力异常,与地表出露的蛇纹石化的镁铁-超镁铁岩带对应.对航磁化极异常与布格重力异常数据做了向上延拓处理,进行了磁源形态及底界深度的估算,并利用基于相异度算子的边缘增强方法辅助识别断裂.结果表明,贺根山岩块贯穿地壳,且附近存在超壳断裂.地表至中地壳主要由蛇纹石化的镁铁-超镁铁岩组成,下地壳主要为超镁铁质岩组成,它们充填在一组宽约30km的NEE向断裂带中,大地电磁测深剖面揭示的壳-幔电性结构进一步证实控制缝合带的是岩石圈断裂,贺根山缝合带具有明显的根部.由此推测,在地幔底辟上涌的背景下,幔源熔-流体沿着岩石圈断裂持续上升到达浅表,暗示该区板块的拼合可能是通过深部幔源物质的侵入而成的.  相似文献   

11.
分析了南海北部陆架西区盆地的地质、地球物理场特征,计算了研究海域重、磁资料的1阶小波细节、4阶小波逼近变换。根据分析与计算可知,研究区的布格重力异常以北西低的负值,东南高的正值为特征。在东部及东南部异常等值线走向为北东;西部异常等值线以北西走向为特征;西北地区异常以北东东、北东走向的局部等值线圈闭为特征。磁场的展布十分复杂,按磁异常的变化程度可分为三个变化区,即磁异常平静区、剧变区及缓变区。磁异常的平静区位于研究区的西部,即莺歌海盆地所在位置,这一带磁异常等值线极为稀疏,异常值为负背景异常。剧变区位于海南岛,该地区的磁异常变化极为剧烈,异常特征以局部小圈闭为特征,等值线分布密集。磁异常的平缓区位于平静区及剧变区之外的其它地区。琼东南盆地、北部湾盆地的磁异常具有此特征。根据重、磁场资料以及南海北部盆地钻井取样的测试结果、同时参考穿越南海地学断面的结果,对研究区的地壳结构进行了反演计算,计算表明南海陆架盆地区域地壳结构较为复杂,研究区的地壳厚度在22-33km之间,总的趋势由陆向洋地壳厚度逐渐减薄,反映出该区域地壳具有陆壳、拉伸陆壳、过渡壳的性质,同时存在有上地幔隆起区及凹陷区。磁性底界面厚度在17-24km之间变化,其中在莺歌海盆地较深,在海南岛地区磁性界面较浅。  相似文献   

12.
A constrained 3D density model of the upper crust along a part of the Deccan Syneclise is carried out based on the complete Bouguer anomaly data. Spectral analysis of the complete Bouguer gravity anomaly map of the study region suggests two major sources: short wavelength anomalies (<100 km) caused primarily due to the density inhomogeneities at shallow crustal level and long wavelength anomalies (>100 km) produced due to the sources deeper than the upper crust. A residual map of the short wavelength anomalies is prepared from the complete Bouguer anomaly using Butterworth high‐pass filter (100 km cut‐off wavelength). Utilizing the constraints from deep resistivity sounding, magnetotellurics and deep seismic sounding studies, 2.5D density models have been generated along 39 profiles of this region. The mismatch between the calculated response of the a priori 2.5D model with the residual (short wavelength) gravity anomalies is minimized by introducing high‐density intrusive bodies (≥2.81 g/cm3) in the basement. With these 2.5D density models, the initial geometry of our 3D density model, which includes alluvium, Deccan trap, Mesozoic sediment and high‐density intrusive bodies in the basement up to a depth of 7 km (upper crust), is generated. In the final 3D model, Deccan trap extends from 200 m to nearly 1700 m below the 90–150 m thick Quaternary sediment. Further down, the sub‐trappean Mesozoic sediment is present at a depth range of 600–3000 m followed by the basement. The derived 3D density model also indicates six intrusive bodies of density 2.83 g/cm3 in the basement at an average depth of about 4–7 km that best fits the residual gravity anomaly of the study area.  相似文献   

13.
The Millennium uranium deposit is located within the Athabasca Basin of northern Saskatchewan. The basement rocks, comprised primarily of paleo‐Proterozoic gneisses, are electrically resistive. However, the deposit is associated with highly conductive graphitic metasediments that are intercalated with the gneisses. An unconformity separates the basement rocks from the overlying, horizontally stratified, Proterozoic sandstones of the Athabasca Group (which are also highly resistive). The strike extents of the graphitic metasedimenary packages are extensive and therefore electromagnetic (EM) survey techniques are successful at identifying these zones but do not identify the specific locations where they are enriched in uranium. Through drilling it has been noted that hydrothermal processes associated with mineralization has altered the rocks in the vicinity of the deposits, which should in theory result in a resistivity low. A significant resistivity low has been mapped coincident with the Millennium deposit using ground resistivity survey techniques. However, a comparison of the airborne EM and ground resistivity results reveals that the two data sets have imaged different features. The resistive‐limit (on‐time) windows of the MEGATEM data show conductive features corresponding to lakes located to the west and south of the deposit. The late‐time windows show a feature to the east of the deposit, interpreted as being associated with the east‐dipping graphitic basement conductors (similar to that observed in historical ground EM data collected in this area). The early‐time TEMPEST windows (delay times less than 0.2 ms) show a broad resistivity low located at approximately the same location as where the alteration has been identified through drilling. Modelling the data is not easy but a response that decays prior to 0.3 ms is consistent with 500 Ωm material in the sandstone, a resistivity value close to the lower limit with respect to the hydrothermally altered Athabasca group sediments in this area. The MEGATEM system does not see a conductive zone over the alteration as clearly but the high signal‐to‐noise ratio in the late‐time MEGATEM data means that the conductive material at a greater depth is more coherently imaged.  相似文献   

14.
黑水─泉州地学断面的重磁解释   总被引:9,自引:1,他引:9       下载免费PDF全文
讨论华南黑水─泉州地学断面的重磁解释。在解释中除应用常规的2.5维重磁异常反演外,还采用等密度线算法构制梯度层密度模型,用于分辨地壳密度细结构,以及计算自由地幔而深度用于分析上地幔密度的横向不均匀性。重磁模拟结果揭示了10km深度内的上地壳构造以及地壳与上地幔密度的分布。提出华南造山带以低密度上地幔为特征,它可能与上地幔的改造有关;四川盆地具有较高的上地幔密度,为未经改造的原始地幔。扬子克拉通与华南造山带的分界线与上地幔密度的分界线一致。根据布格异常、地表岩石密度和地形资料的综合分析,圈定出反映内生成矿作用深部标志的密度倒转区,可作为进一步找矿的远景区。  相似文献   

15.
Interlayer slipping breccia‐type gold deposit – a new type of gold deposit, defined recently in the northern margin of the Jiaolai Basin, Shandong Province, China – occurs in interlayer slip faults distributed along the basin margin. It has the features of large orebody thickness (ranging from 14 m to 46 m, with an average thickness of 30 m), shallow embedding (0–50 m thickness of cover), low tenor of gold ore (ranging from 3 g/t to 5 g/t), easy mining and ore dressing. This type of gold deposit has promising metallogenic forecasting and potential for economic exploitation. A ground gamma‐ray survey in the Pengjiakuang gold‐ore district indicates that the potassium/thorium ratio is closely related to the mineralization intensity, i.e. the larger the potassium/thorium ratio, the higher the mineralization. The gold mineralized alteration zone was defined by a potassium/thorium ratio of 0.35. A seismic survey confirms the location of the top and bottom boundaries and images various features within the Pengjiakuang gold mineralization belt. The gold‐bearing shovel slipped belt dips to the south at an angle of 50–55° at the surface and 15–20° at depth. The seismic profile is interpreted in terms of a structural band on the seismic section characterized by a three‐layered model. The upper layer is represented by weakly discontinuous reflections that represent the overlying conglomerates. A zone of stronger reflections representing the interlayer slip fault (gold‐bearing mineralized zone) is imaged within the middle of the section, while the strongest reflections are in the lower part of the section and represent metamorphic rocks at depth. At the same time, the seismic reflection survey confirms the existence of a granite body at depth, indicating that ore‐forming fluids may be related to the granite. A CSAMT survey showed that the gold‐bearing mineralized zone is a conductive layer and contains a low‐resistivity anomaly ranging from 2 Ωm to 200 Ωm.  相似文献   

16.
讨论华南黑水─泉州地学断面的重磁解释。在解释中除应用常规的2.5维重磁异常反演外,还采用等密度线算法构制梯度层密度模型,用于分辨地壳密度细结构,以及计算自由地幔而深度用于分析上地幔密度的横向不均匀性。重磁模拟结果揭示了10km深度内的上地壳构造以及地壳与上地幔密度的分布。提出华南造山带以低密度上地幔为特征,它可能与上地幔的改造有关;四川盆地具有较高的上地幔密度,为未经改造的原始地幔。扬子克拉通与华南造山带的分界线与上地幔密度的分界线一致。根据布格异常、地表岩石密度和地形资料的综合分析,圈定出反映内生成矿作用深部标志的密度倒转区,可作为进一步找矿的远景区。  相似文献   

17.
南海深部构造对研究南海构造演化和油气勘探具有重要意义.本文对南海地区的自由空气重力异常进行布格校正、海水层校正和沉积层校正,得到布格重力异常,再对布格重力异常进行区域异常和局部异常分离,利用位场界面反演方法对区域布格异常进行反演计算得到研究区域的莫霍面深度分布;采用全变倾角化极方法对研究区域的卫星磁异常数据进行化极处理,并进一步对化极磁异常作向上延拓,得到延拓后化极磁异常结果.分析布格重力异常、莫霍面深度及化极磁异常特征,结合天然地震层析成像的证据,得到以下结论:推测南海北部陆缘的古俯冲带位置是从118.5°E,24°N沿北东向延伸至109°E,15°N;红河断裂入海后经过莺歌海盆地在海南岛南部转为南北向与越东断裂相接并延伸至万安盆地;推测中特提斯洋的部分闭合位置是从110°E,2°N到101°E,21°N.  相似文献   

18.
介绍了一种快速二维大地电磁自动反演方法及其在阳高-容城剖面大地电磁资料解释中的应用.二维反演结果显示,研究区浅层电性结构与地表地质有较好的对应性;在中、下地壳范围内发育着断断续续的低阻带,并沿剖面大致分为三段;上地幔低阻带由北西向南东方向逐渐变浅,上地幔低阻带深度陡变带与巨型重力异常高梯度带对应.与一此较大型的断裂带对应的区段在电性上有较清楚的显示.  相似文献   

19.
In this study, we propose a numerical modeling technique which restores the gravity anomaly of tectonic origin and identifies the gravity low of caldera origin. The identification is performed just by comparing the restored gravity anomalies with the observed gravity anomalies, thus we do not need detailed geophysical and geological information around the buried caldera. The technique has been successfully applied to distinguish the gravity low originated in the buried Shishimuta caldera from other gravity lows in the Hohi volcanic zone, central Kyushu in Japan.  相似文献   

20.
Current models for unconformity‐associated uranium deposits predict fluid flow and ore deposition along reactivated faults in >1.76 Ga basement beneath Mesoproterozoic siliciclastic basins. In frontier regions such as the Thelon Basin in the Kivalliq region of Nunavut, little is known about the sub‐basin distribution of units and structures, making exploration targeting very tenuous. We constructed a geological map of the basement beneath the unconformity by extrapolating exposed features into the subsurface. The new map is constrained by detailed geological, geophysical, and rock property observations of outcrops adjacent to the basin and by aeromagnetic and gravity data over the geophysically transparent sedimentary basin. From rock property measurements, it is clear that the diverse magnetic and density characteristics of major rock packages provide quantitative three‐dimensional constraints. Gravity profiles forward modelled in four cross sections define broad synforms of the Amer Belt and Archean volcanic rocks that are consistent with the structural style outside the basin. Major lithotectonic entities beneath the unconformity include: supracrustal rocks of the Archean Woodburn Lake group and Marjorie Hills meta sedimentary gneiss and associated mixed granitoid and amphibolitic gneiss; the Amer Mylonite Zone and inferred mafic intrusions oriented parallel and sub‐parallel; other igneous intrusions of 2.6 Ga, 1.83 Ga, and 1.75 Ga vintage; and the <2.3 Ga to >1.84 Ga Amer Group. Four main brittle regional fault arrays (040°–060°, 075°–90°, 120°, and 150°) controlled development and preservation of the basin. The reactivated intersections of such faults along fertile basement units such as the Rumble assemblage, Marjorie Hills assemblage, Nueltin igneous rocks, and Pitz formation are the best targets for uranium exploration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号