首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
汪建军  许才军 《地球物理学报》2009,52(11):2721-2728
本文建立了顾及地球扁率和局部切标架随点变化特性的椭球坐标系下的刚体运动模型和块体运动与应变模型,以及球坐标系下顾及局部切标架随点变化特性的严密的块体运动与应变模型,分析了球坐标系下块体运动与应变模型及椭球坐标系下的块体运动与应变模型间的差异;通过计算具体讨论了地球扁率和曲线坐标系的局部切标架随点变化特性对欧拉矢量与应变张量的影响.结果表明:地球扁率对刚体欧拉矢量和应变参数的影响甚小,具体计算时可以不予考虑,但曲线坐标系的局部切标架随点变化特性对两者的影响较大,在建模过程中需要顾及,常用的Savage模型需要修正.  相似文献   

2.
Laboratory and field data indicate that rocks subjected to sufficiently high loads clearly deviate from linear behavior. Non-linear stress–strain relations can be approximated by including third and higher-order terms of the strain tensor in the elastic energy expression (e.g., the Murnaghan model). Such classical non-linear models are successful for calculating deformation of soft materials, for example graphite, but cannot explain with the same elastic moduli small and large non-linear deformation of stiff rocks, such as granite. The values of the third (higher-order) Murnaghan moduli estimated from acoustic experiments are one to two orders of magnitude above the values estimated from stress–strain relations in quasi-static rock-mechanics experiments. The Murnaghan model also fails to reproduce an abrupt change in the elastic moduli upon stress reversal from compression to tension, observed in laboratory experiments with rocks, concrete, and composite brittle material samples, and it predicts macroscopic failure at stress levels lower than observations associated with granite. An alternative energy function based on second-order dependency on the strain tensor, as in the Hookean framework, but with an additional non-analytical term, can account for the abrupt change in the effective elastic moduli upon stress reversal, and extended pre-yielding deformation regime with one set of elastic moduli. We show that the non-analytical second-order model is a generalization of other non-classical non-linear models, for example “bi-linear”, “clapping non-linearity”, and “unilateral damage” models. These models were designed to explain the abrupt changes of elastic moduli and non-linearity of stiff rocks under small strains. The present model produces dilation under shear loading and other non-linear deformation features of the stiff rocks mentioned above, and extends the results to account for gradual closure of an arbitrary distribution of initial cracks. The results provide a quantitative framework that can be used to model simultaneously, with a small number of coefficients, multiple observed aspects of non-linear deformation of stiff rocks. These include, in addition to the features mentioned above, stress-induced anisotropy and non-linear effects in resonance experiments with damaged materials.  相似文献   

3.
We evaluated fault activity in northeast–central Japan based on fault orientation, regional stress field, and slip tendency analysis for active and non‐active faults (i.e. faults for which Quaternary activity has not been identified). Slip tendency is generally higher along active faults than non‐active faults, although a high slip tendency was observed along some non‐active faults, indicating their potential to become active. The potential for fault activity along non‐active faults can be modeled using the temporal evolution from non‐active to active during long‐term crustal deformation. The density of potentially active faults varies spatially across the study areas and reflects the temporal evolution of crustal deformation in northeast–central Japan.  相似文献   

4.
Horizontal bidirectional loading tests are conducted for real-sized high-damping rubber (HDR) bearings with diameters of 700 mm (HDR700) and 1300 mm (HDR1300). The hysteresis loops of these bearings under bidirectional horizontal loadings are compared with those under unidirectional loadings. The results show that the bearing force measurement in the primary direction of loading increases when there is displacement in the orthogonal direction. Unusually, the maximum restoring force in the orthogonal direction to the primary loading direction occurs near zero displacement. On the basis of the observations of the restoring forces, a rate-independent model is proposed. This model simulates well the test results under both bidirectional loading and unidirectional loading. It can reproduce the irregular restoring forces characteristics around zero displacement as described above. Bidirectional loading induced twist deformation in the HDR bearings that increased local shear strains. This phenomenon results in an early failure as observed in HDR700. The additional shear strain is estimated based on the twist deformation measured by video image analysis. The comparison of the nominal total shear stress demonstrates that the increase of shear stress because of bidirectional loading occurs when the average shear strain is larger than about 200%. The larger the shear strain, the greater the bidirectional effect. It is shown that the nominal total shear stress of average strain of 350% under bidirectional circular loading pattern is approximately the same as the average shear strain of 400% under unidirectional loading. This means that the average shear strain of 350% under a bidirectional circular loading corresponds to a local shear strain of 400%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
利用地形变观测量求解地壳水平应变场的方法   总被引:10,自引:0,他引:10  
江在森  张希  王双绪  祝意青 《地震》1999,19(1):41-48
在前人工作基础上,初步研究建立了利用多种地形变资料联合求解地壳应变连续分布的方法途径和数学模型。包括利用多种地形变观测资料整体解算测区分单元的应变张量的最小二乘平差模型,以及借助最小二乘配置进行应变空间连续分布估计的方法,并给出了对临潼水平形变网监测资料的试算结果。  相似文献   

7.
Concrete‐filled steel columns have been widely used in civil and architectural constructions throughout the world in recent years. This study is concerned with the cyclic elastoplastic analysis and capacity prediction of concrete‐filled steel columns having thick‐ and thin‐walled stiffened box‐shaped sections. An analytical procedure for determining the ultimate state of the concrete‐filled steel column is proposed based on the fiber analysis technique. Strength and ductility predictions are made by means of a new failure criterion. This is proposed based on the average failure strain of concrete and steel at critical regions. A recently developed monotonic stress–strain relation for confined concrete is modified so that it can be used in the analysis of thin‐ or thick‐walled section columns with stiffeners. A simple cyclic rule is introduced into this model in order to be used in cyclic analysis. Material non‐linearity of steel is represented by the modified two surface model developed at Nagoya University. The predictions are then compared with the existing experimental results and found to exhibit satisfactory agreement. Both small‐ and large‐scaled columns are considered in the comparisons. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The study is focusing on the stress and strain inversions from focal mechanisms in a revised seismotectonic zonation of northeastern Italy and western Slovenia. The recent increase of monitoring capability of the local seismic network, the updated geological-structural model of the area, and the novelties emerged from studies on the spatial organization of the seismicity allowed a redefinition of the seismotectonic zones. The stress and strain tensors inversion is inferred from 203 focal mechanisms, corresponding to earthquakes occurred between 1984 and 2016 with coda-duration magnitude range from 2.0 to 5.6. The inverted stress domains reveal an articulated picture of the interaction of the Adria microplate with the Eurasian plate. A dominant strike-slip stress field characterizes the eastern part of the area, while the seismotectonic zones of the central part are undergoing to thrusting regime. The stress pattern inferred in the western part of the study area outlines a complex picture with prevailing strike-slip regime and dominant compression only in a seismotectonic zone. The comparison of stress and strain tensor orientations evidences a relative uniformity of the crustal strength in the eastern and northwestern zones of the study area. The central and western zones appear to be characterized by planes of mechanical weakness not favorably oriented for failure with respect to the stress tensor.  相似文献   

9.
Improved Monte Carlo inversion of surface wave data   总被引:2,自引:0,他引:2  
Inversion of surface wave data suffers from solution non‐uniqueness and is hence strongly biased by the initial model. The Monte Carlo approach can handle this non‐uniqueness by evidencing the local minima but it is inefficient for high dimensionality problems and makes use of subjective criteria, such as misfit thresholds, to interpret the results. If a smart sampling of the model parameter space, which exploits scale properties of the modal curves, is introduced the method becomes more efficient and with respect to traditional global search methods it avoids the subjective use of control parameters that are barely related to the physical problem. The results are interpreted drawing inference by means of a statistical test that selects an ensemble of feasible shear wave velocity models according to data quality and model parameterization. Tests on synthetic data demonstrate that the application of scale properties concentrates the sampling of model parameter space in high probability density zones and makes it poorly sensitive to the initial boundary of the model parameters. Tests on synthetic and field data, where boreholes are available, prove that the statistical test selects final results that are consistent with the true model and which are sensitive to data quality. The implemented strategies make the Monte Carlo inversion efficient for practical applications and able to effectively retrieve subsoil models even in complex and challenging situations such as velocity inversions.  相似文献   

10.
The Alborz is one of the most important seismotectonic provinces in Iran. Furthermore, emplacement of Tehran as a mega city in southern part of the Alborz intensifies the seismic vulnerability in this area. In this study, the focal mechanism data from teleseismic and local seismic networks are used for stress tensor inversion. The earthquake focal mechanisms in the Central Alborz are divided into several groups with respect to their location. Two different stress tensor inversions, linear and nonlinear, are used for obtaining the principal stress orientations. The results show spatial variations in tectonic stress field, consistent with fault orientations and faulting mechanisms. The maximum compressional stress directions obtained in this study are confirmed by fast S-wave polarization axes reported by a previous shear wave splitting study. The maximum horizontal stress directions are also compared with GPS strain rates. The results indicate a partitioning of deformation in the area due to regional stresses along preexisting faults.  相似文献   

11.
This paper aims to study the cyclic inelastic behaviour of stiffened steel box columns failed by local and overall interaction instability under a constant compressive axial force and cyclic lateral loading. Such columns find broad application in steel bridge piers. The columns are of box sections with longitudinal stiffeners. In the analysis, a modified two‐surface plasticity model developed at Nagoya University is employed to model material non‐linearity. For comparison, analyses using classical isotropic‐ and kinematic‐hardening models are also carried out. Hysteretic curves and buckling modes obtained from analysis using the two‐surface model and classical models are compared with experimental results. Moreover, the progression of deformation from occurrence of local buckling to structural failure is discussed in detail. The comparisons show that the use of an accurate plasticity model is quite important in the prediction of both the cyclic inelastic behaviour and failure characteristic of steel box columns failed by coupled local and overall instability. It is found that the modified two‐surface model is a satisfactory model in predicting the cyclic hysteretic behaviour of both the thin‐ and thick‐walled steel box columns. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This work criticizes the entrenched views according to which the orientation of the principal tectonic stress axes can be determined from local (in time and space) observations of the kinematic indicators which jointly allow estimating the strain rate of a crustal block under study. The criticized approach ignores or replaces by subjective assumptions the following factors: (1) The block’s interaction with a hosting medium expressed in terms of the equilibrium conditions of the block; (2) The stress rate which (in addition to stresses) can affect the strain rate; (3)The specific macroscopic mechanical properties of the block’s material under the unknown sought stresses, including the ratio of the stress relaxation time to the period of observations. This approach, which is developed in some Solid Earth sciences and mainly in tectonophysics, is referred to in our paper as the method of local kinematic reconstruction (MLKR) of stresses. After briefly surveying the concept of forces and stresses and discussing the importance of studying the tectonic stresses, this paper refutes the MLKR notions based on general arguments and by the example of certain thought experiments. It is shown that the use of the MLKR for the conditions of the Earth’s interior does not guarantee against obtaining the results that fundamentally and drastically differ from the true tectonic stresses. In the studied rock block, depending on the factors ignored in the MLKR, the principal axes of the strain rate tensor, on one hand, and the principal stress axes, on the other hand, can be oriented discordantly in any arbitrary given fashion. In particular, in the processes accompanied by the release of elastic energy, the maximal rate of elongation can be oriented along the axis of maximal compression, whereas the maximal rate of shortening can be aligned with the axis of the maximal tension. In this paper, the deformation processes that are most detrimental to the results of stress reconstruction by the MLKR are revealed. We introduce the notion of the inherited stress-state regime in which the orientation of the axes of principal stresses during the observation period does not depend on the deformation process and, hence, cannot be in principle determined by the MLKR. An attempt to directly locally recover the stress axes from the kinematic data is a false objective because neither the physical meaning of the stress tensor nor the way it is introduced has anything to do with strains. It is concluded that the MLKR is physically inadequate and that the tectonophysical concept of locality should be abandoned in favor of returning to the notions of classical physics, namely, to using the conservation laws. By the example of several guides on tectonophysics, this paper exposes typical errors in understanding the stress reconstruction problem.  相似文献   

13.
The study of microseismicity in mines provides an ideal method for remote volumetric sampling of rock masses. The nature and uniqueness of microseismic monitoring is outlined in the context of acquisition hardware and software requirements. Several topics are used to highlight the potential for novel applications of microseismicity and to outline areas where further study is required. These topics reflect some of the current interest areas in seismology, namelyb values and source parameters, fault-plane solutions, modes of failure and moment tensor inversion, imaging and seismicityvelocity correlations. These studies suggest potential correlations between zones of high seismic velocity, high microseismic activity and maximal stress drops, which can be interpreted spatially to be the locations of highly stressed ground with a potential for rock bursting. Fault-plane solutions are shown to be useful in determining the slip potential of various joint sets in a rock mass. Source parameter studies and moment tensor analysis clearly show the importance of non-shear components of failure, andb values for microseismicity appear to be magnitude-limited and related to spatial rather than temporal variations in effective stress levels.  相似文献   

14.
We studied the problem of local‐ and field‐scale infiltration over a particular class of heterogeneous soils. At the local scale, the soils are described as being vertically non‐uniform, with the saturated hydraulic conductivity continuously decreasing with depth according to a power law function. Analogous to the Green–Ampt model, analytical expressions are first developed for local‐scale infiltration using a sharp front approximation, and model results are compared with numerical solutions of the Richards equation. These results show that saturation does not occur from below in soils with such vertical non‐uniformity, thereby allowing for the use of a sharp front approximation. Because of vertical non‐uniformity, ponding conditions are achieved locally even for rainfall rates less than the surface saturated hydraulic conductivity. Furthermore, infiltration rates asymptotically approach zero at long times. To determine field‐scale infiltration properties, the spatial variability in the surface saturated hydraulic conductivity is represented by a log‐normal random field. Using cumulative infiltration as the independent variable, expressions are developed for the ensemble mean of field‐scale infiltration and the expected time for a given depth of water to infiltrate over the field. Surface horizontal heterogeneity is found to control field‐scale infiltration at small times, whereas local vertical non‐uniformity exerts a strong control at long times. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Reinforced concrete (R/C) frame buildings designed according to older seismic codes represent a large part of the existing building stock worldwide. Their structural elements are often vulnerable to shear or flexure‐shear failure, which can eventually lead to loss of axial load resistance of vertical elements and initiate vertical progressive collapse of a building. In this study, a hysteretic model capturing the local shear response of shear‐deficient R/C elements is described in detail, with emphasis on post‐peak behaviour; it differs from existing models in that it considers the localisation of shear strains after the onset of shear failure in a critical length defined by the diagonal failure planes. Additionally, an effort is made to improve the state of the art in post‐peak shear response modelling, by compiling the largest database of experimental results for shear and flexure‐shear critical R/C columns cycled well beyond the onset of shear failure and/or up to the onset of axial failure, and developing empirical relationships for the key parameters defining the local backbone post‐peak shear response of such elements. The implementation of the derived local hysteretic shear model in a computationally efficient beam‐column finite element model with distributed shear flexibility, which accounts for all deformation types, will be presented in a companion paper.  相似文献   

16.
Earthquake‐induced slope displacement is an important parameter for safety evaluation and earthquake design of slope systems. Traditional probabilistic seismic hazard analysis usually focuses on evaluating slope displacement at a particular location, and it is not suitable for spatially distributed slopes over a large region. This study proposes a computationally efficient framework for fully probabilistic seismic displacement analysis of spatially distributed slope systems using spatially correlated vector intensity measures (IMs). First, a spatial cross‐correlation model for three key ground motion IMs, that is, peak ground acceleration (PGA), Arias intensity, and peak ground velocity, is developed using 2686 ground motion recordings from 11 recent earthquakes. To reduce the computational cost, Monte Carlo simulation and data reduction techniques are utilized to generate spatially correlated random fields for the vector IMs. The slope displacement hazards over the region are further quantified using empirical predictive equations. Finally, an illustrative example is presented to highlight the importance of the spatial correlation and the advantage of using spatially correlated vector IMs in seismic hazard analysis of spatially distributed slopes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Finding an operational parameter vector is always challenging in the application of hydrologic models, with over‐parameterization and limited information from observations leading to uncertainty about the best parameter vectors. Thus, it is beneficial to find every possible behavioural parameter vector. This paper presents a new methodology, called the patient rule induction method for parameter estimation (PRIM‐PE), to define where the behavioural parameter vectors are located in the parameter space. The PRIM‐PE was used to discover all regions of the parameter space containing an acceptable model behaviour. This algorithm consists of an initial sampling procedure to generate a parameter sample that sufficiently represents the response surface with a uniform distribution within the “good‐enough” region (i.e., performance better than a predefined threshold) and a rule induction component (PRIM), which is then used to define regions in the parameter space in which the acceptable parameter vectors are located. To investigate its ability in different situations, the methodology is evaluated using four test problems. The PRIM‐PE sampling procedure was also compared against a Markov chain Monte Carlo sampler known as the differential evolution adaptive Metropolis (DREAMZS) algorithm. Finally, a spatially distributed hydrological model calibration problem with two settings (a three‐parameter calibration problem and a 23‐parameter calibration problem) was solved using the PRIM‐PE algorithm. The results show that the PRIM‐PE method captured the good‐enough region in the parameter space successfully using 8 and 107 boxes for the three‐parameter and 23‐parameter problems, respectively. This good‐enough region can be used in a global sensitivity analysis to provide a broad range of parameter vectors that produce acceptable model performance. Moreover, for a specific objective function and model structure, the size of the boxes can be used as a measure of equifinality.  相似文献   

18.
This paper presents the multiaxial formulation of a plasticity model for sand under cyclic shearing. The model adopts a kinematic hardening circular cone as the yield surface and three non-circular conical surfaces corresponding to the deviatoric stress ratios at phase transformation, peak strength and critical state. The shape of the non-circular surfaces is formulated in accordance with the experimentally established failure criteria, while their size is related to the value of the state parameter ψ. To simulate cyclic response under small and large shear strain amplitudes without a change in model parameters, it was found necessary to introduce: (a) a non-linear hysteretic (Ramberg–Osgood type) formulation for the strain rate of elastic states and (b) an empirical index of the effect of fabric evolution during shearing which scales the plastic modulus. This index is estimated in terms of a macroscopic second-order fabric tensor, which develops as a function of the plastic volumetric strain increment and the loading direction in the deviatoric plane. Comparison of simulations to pertinent data from 27 resonant column, cyclic triaxial and cyclic direct simple shear tests provide a measure for the overall accuracy of the model.  相似文献   

19.
In this study, a constitutive model of high damping rubber bearings (HDRBs) is developed that allows the accurate representation of the force–displacement relationship including rate‐dependence for shear deformation. The proposed constitutive model consists of two hyperelastic springs and a nonlinear dashpot element and expresses the finite deformation viscoelasticity laws based on the classical Zener model. The Fletcher–Gent effect, manifested as high horizontal stiffness at small strains and caused by the carbon fillers in HDRBs, is accurately expressed through an additional stiffness correction factor α in the novel strain energy function. Several material parameters are used to simulate the responses of high damping rubber at various strain levels, and a nonlinear viscosity coefficient η is introduced to characterize the rate‐dependent property. A parameter identification scheme is applied to the results of the multi‐step relaxation tests and the cyclic shear tests, and a three‐dimensional function of the nonlinear viscosity coefficient η with respect to the strain, and strain rate is thus obtained. Finally, to investigate the accuracy and feasibility of the proposed model for application to the seismic response assessment of bridges equipped with HDRBs, an improved real‐time hybrid simulation (RTHS) test system based on the velocity loading method is developed. A single‐column bridge was used as a test bed and HDRBs was physically tested. Comparing the numerical and RTHS results, advantage of the proposed model in the accuracy of the predicted seismic response over comparable hysteretic models is demonstrated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
岩石塑性变形条件下的Mohr-Coulomb屈服准则   总被引:4,自引:0,他引:4  
传统的Mohr-Coulomb强度准则仅描述了峰值强度状态下正应力和剪应力之间的关系,作为岩石破坏的判据.本文拓展概念,提出Mohr-Coulomb屈服准则表述岩石发生塑性变形后不同应力状态下屈服面的应力应变关系.在总结实验研究的基础上建立了使用三轴压缩试验数据确定塑性参数c和φ随内变量κ变化的实验技术方法,给出了评价各向同性模型精度的参量表达以及某些测试结果.采用具有各向同性强(软)化规律的Mohr-Coulomb屈服准则,利用岩石的初始屈服、峰值屈服和残余屈服三组参数可以将全过程应力应变曲线简化表征为四直线模型,它比三线性模型有更广泛的适用性.本文的结果为工程地质数值模拟提供了理论和实验基础,具有指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号