首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract— The nature and isotopic composition of carbonaceous components in a variety of ordinary chondrites have been studied using stepped combustion. The samples were chosen to include falls, finds and Antarctic meteorites; specimens from all three chemical groups (H, L and LL) have been analysed. Effort was concentrated mostly on the low petrologic type meteorites (i.e., type 3); however, types 4–6 were also included in the study. Apart from terrestrial contaminants and weathering products, some of the unequilibrated ordinary chondrites appear to contain an indigenous organic component. In addition, most of the samples studied show evidence for an amorphous/graphitic component. This exists as C-rich aggregates or as carbon associated with “Huss” matrix. There does not appear to be any difference in δ13C for this carbon between Antarctic and non-Antarctic meteorites. In contrast, low temperature carbon in Antarctic samples is characterized by a 13C-enrichment. This is thought to be due to the influence of terrestrial weathering products introduced in the Antarctic. Curiously, the low temperature carbon in non-Antarctic finds appears to be intermediate in δ13C between Antarctic finds and non-Antarctic falls. This suggests that the weathering processes which are so obviously apparent from Antarctic samples may also extend, albeit in a more limited way, to non-Antarctic meteorites.  相似文献   

2.
Abstract— A preliminary investigation into the carbon isotopic composition of deep-sea spherules has been undertaken. A variety of particles have been analysed including both melted and unmelted samples of type S (stony) and type I (iron) spherules, emphasis being placed on surveying the carbon in different sorts of particles rather than analysing large numbers of samples. Some general observations can be made: there appear to be four different sorts of carbonaceous materials in the spherules. Melted and unmelted spherules of either type I or S, apparently contain two forms of low temperature combustible carbon distinguished, not by combustion temperature, but by isotopic composition. The low temperature of combustion is commensurate with these forms of carbon being organic in nature. The most likely explanation for this carbon is terrestrial biogenic contamination although there exists the possibility that there are some indigenous organic materials. Unmelted type S spherules contain a high temperature carbon component, characterised by a very minor 13C-enrichment, which is considered to be indigenous to the sample. All melted samples contain only small amounts of high temperature carbon with an isotopic composition suggestive of handling blank.  相似文献   

3.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   

4.
CM carbonaceous chondrites can be used to constrain the abundance and H isotopic composition of water and OH in C-complex asteroids. Previous measurements of the water/OH content of the CMs are at the higher end of the compositional range of asteroids as determined by remote sensing. One possible explanation is that the indigenous water/OH content of meteorites has been overestimated due to contamination during their time on Earth. Here we have sought to better understand the magnitude and rate of terrestrial contamination through quantifying the concentration and H isotopic composition of telluric and indigenous water in CM falls by stepwise pyrolysis. These measurements have been integrated with published pyrolysis data from CM falls and finds. Once exposed to Earth's atmosphere CM falls are contaminated rapidly, with some acquiring weight percent concentrations of water within days. The amount of water added does not progressively increase with time because CM falls have a similar range of adsorbed water contents to finds. Instead, the petrologic types of CMs strongly influence the amount of terrestrial water that they can acquire. This relationship is probably controlled by mineralogical and/or petrophysical properties of the meteorites that affect their hygroscopicity. Irrespective of the quantity of water that a sample adsorbs or its terrestrial age, there is minimal exchange of H in indigenous phyllosilicates with the terrestrial environment. The falls and finds discussed here contain 1.9–10.5 wt% indigenous water (average 7.0 wt%) that is consistent with recent measurements of C-complex asteroids including Bennu.  相似文献   

5.
Abstract— High-purity separates of presolar diamond were prepared from 14 primitive chondrites from 7 compositional groups. Their noble gases were measured using stepped pyrolysis. Three distinct noble gas components are present in diamonds, HL, P3, and P6, each of which is found to consist of five noble gases. P3 , released between 200 °C and 900 °C, has a “planetary” elemental abundance pattern and roughly “normal” isotopic ratios. HL , consisting of isotopically anomalous Xe-HL and Kr-H, Ar with high 38Ar/36Ar, and most of the gas making up Ne-A2 and He-A, is released between 1100 °C and 1600 °C. HL has “planetary” elemental ratios, except that it has much more He and Ne than other known “planetary” components. HL gases are carried in the bulk diamonds, not in some trace phase. P6 has a slightly higher median release temperature than HL and is not cleanly separated from HL by stepped pyrolysis. Our data suggest that P6 has roughly “normal” isotopic compositions and “planetary” elemental ratios. Both P3 and P6 seem to be isotopically distinct from P1, the dominant “planetary” noble-gas component in primitive chondrites. Release characteristics suggest that HL and P6 are sited in different carriers within the diamond fractions, while P3 may be sited near the surfaces of the diamonds. We find no evidence of separability of Xe-H and Xe-L or other isotopic variations in the HL component. However, because ~1010 diamonds are required to measure a Xe composition, a lack of isotopic variability does not constrain diamonds to come from a single source. In fact, the high abundance of diamonds in primitive chondrites and the presence of at least three distinct noble-gas components strongly suggest that diamonds originated in many sources. Relative abundances of noble-gas components in diamonds correlate with degree of thermal processing (see companion paper), indicating that all meteorites sampled essentially the same mixture of diamonds. That mixture was probably inherited from the Sun's parent molecular cloud.  相似文献   

6.
The present study has shown that the dependence of the isotopic composition of nitrogen on the N/C ratio, revealed from the data for bulk samples of meteoritic nanodiamond, can be obtained within the framework of the following model of the composition of populations of nanodiamond grains: (a) initial nanodiamond, i.e., the nanodiamond in the protoplanetary cloud before the accretion of the meteorite parent bodies, was composed mainly of grains of two populations (denoted as CN and CF), the ratio of which changed in meteorites depending on the degree of hydrothermal metamorphism; (b) only the grains of one of these populations (CN) contain volume-bound nitrogen with δ15N = ?350‰; (c) the grains of both populations contain surface-bound nitrogen (δ15N ≡ 0). The calculations revealed the following properties of population grains in this model. (1) The grains of the CN and CF populations are most likely the same in isotopic composition of carbon and heterogeneous in distribution of its isotopes: the central part of grains is enriched with the δ12C isotope relative to the remainder of the grain. While the value of δ13C is ?37.3 ± 1.1‰ for carbon in the central part, it is ?32.8 ± 1.5‰ for the whole volume of the grains. (2) The noble gases of the HL component, specifically Xe-HL, are anomalous in isotopic composition and are most likely contained in the third population of nanodiamond grains (denoted as CHL), the mass fraction of which is negligible relative to that for other grain populations. Only the grains of the CHL population have an undoubtedly presolar origin, while the grains of the other nanodiamond populations could have formed at the early stages of the evolution of the protoplanetary cloud material before the accretion of the meteoritic parent bodies.  相似文献   

7.
Abstract— The isotopic disequilibrium of N molecules in meteorites was examined. For a large data-set, consisting of mass compositions of N molecules extracted at 1200 °C by stepped combustion of chondrites and eucrites, we find that a cosmogenic-N-enriched component and a normal air-like N component are isotopically disequilibrated with each other. The isotopic composition of the cosmogenic-N-enriched component seems to be variable, although the cause for the variation is not clear. The abundance of indigenous atomic N in silicate minerals seems to be small. Indigenous N in meteoritic silicates, if present, may be present in the form of N molecules.  相似文献   

8.
Abstract– We report concentrations and isotopic compositions of He, Ne, and Ar measured with high spatial resolution along a radial traverse of a silicon carbide (SiC) quadrant of the Genesis mission concentrator target. The Ne isotopic composition maps instrumental fractionation as a function of radial position in the target: the maximum observed isotopic fractionation is approximately 33‰ per mass unit between the center and periphery. The Ne fluence is enhanced by a factor of 43 at the target center and decreases to 5.5 times at the periphery relative to the bulk solar wind fluence. Neon isotopic profiles measured along all four arms of the “gold cross” mount which held the quadrants in the concentrator target demonstrate that the concentrator target was symmetrically irradiated during operation as designed. We used implantation experiments of Ne into SiC and gold to quantify backscatter loss and isotopic fractionation and compared measurements with numerical simulations from the code “stopping and range of ions in matter.” The 20Ne fluence curve as a function of radial distance on the target may be used to construct concentration factors relative to bulk solar wind for accurate corrections for solar wind fluences of other light elements to be measured in the concentrator target. The Ne isotopic composition as a function of the radial distance in the SiC quadrant provides a correction for the instrumental mass‐dependent isotopic fractionation by the concentrator and can be used to correct measured solar wind oxygen and nitrogen isotopic compositions to obtain bulk solar wind isotopic compositions.  相似文献   

9.
Abstract— The Sahara Desert is a region of high diurnal temperature variation and sporadic rainfall that has recently yielded over 450 meteorites. Eighteen of these Saharan samples are carbonaceous chondrites, of which we have analysed 17 for C content and isotopic composition. Ten of the 18 are paired CR chondrites, of which four have also had N and H contents and compositions determined. A primitive ordinary chondrite (L/LL3.2) found in the region has also been analysed for C, N and H contents and isotopic composition. Saharan samples contain between 21% and 45% of the light elements of their non-Saharan counterparts. Paired Saharan samples show a greater heterogeneity in both C content and isotopic composition than multiple analyses of non-Saharan samples. The cause of the observed isotopic and abundance effects is due to the hot desert weathering processes experienced by these samples. Peak temperatures of meteorites on the desert floor may be in excess of 100 °C, leading to low-temperature hydrous pyrolysis and oxidation reactions, liberating volatile organics and CO2. This may also cause the remaining material to become partially solubilised and ultimately lost during rainfall. The low δD of the CR and ordinary chondrites can be attributed to the destruction and loss of organic material through dehydrogenation and exchange reactions on the desert surface. The increased 13C abundance suggests that the less tightly bound C from the macromolecular organic material is isotopically lighter than the remaining C. Carbon contents and isotopic compositions are also affected by the addition of terrestrial calcitic evaporite deposits, up to 10,000 ppm carbonate has been measured, with a δ13C of between 0 and ?10%0.  相似文献   

10.
Abstract— The L/LL5 chondrite Knyahinya had an approximately spherical shape, and as it experienced a single stage exposure history, it represents a very interesting object to study depth profiles of cosmic-ray-produced nuclide concentrations. Such data are required to improve and to validate model calculations of production rates. We report Ne, Ar, Kr and Xe isotopic abundances in five bulk samples. The adopted procedure of noble gas extraction included two pyrolysis steps at 450 °C and 650 °C, respectively, followed by a combustion step in pure O2 at 650 °C before melting the sample. This procedure allows for the separation of a significant fraction of the trapped Kr and Xe, leading to an enrichment of the cosmic-ray produced component, which is released in the melting step. The isotopic composition of the trapped Xe component measured in the combustion step is found to be identical with the OC-Xe composition (Lavielle and Marti, 1992) and supports the suggestion that ordinary chondrites formed in a homogeneous trapped noble gas reservoir. Cosmic-ray produced Kr and Xe components and depth profiles were measured, including for the first time a 81Kr profile. The calculated exposure age of 39.5 ± 1.0 Ma, based on the 81Kr-Kr method, is found to be in excellent agreement with previous determinations. The concentrations of trapped and fissiogenic noble gas components are clearly lower than those generally observed in type 5 ordinary chondrites and may suggest diffusion losses before a meter-sized object was exposed to the cosmic radiation.  相似文献   

11.
Abstract– Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si‐CH3 groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.  相似文献   

12.
Abstract— Primitive meteorites contain a few parts per million (ppm) of pristine interstellar grains that provide information on nuclear and chemical processes in stars. Their interstellar origin is proven by highly anomalous isotopic ratios, varying more than 1000-fold for elements such as C and N. Most grains isolated thus far are stable only under highly reducing conditions (C/O > 1), and apparently are “stardust” formed in stellar atmospheres. Microdiamonds, of median size ~ 10 Å, are most abundant (~ 400–1800 ppm) but least understood. They contain anomalous noble gases including Xe-HL, which shows the signature of the r- and p-processes and thus apparently is derived from supernovae. Silicon carbide, of grain size 0.2–10 μm and abundance ~ 6 ppm, shows the signature of the s-process and apparently comes mainly from red giant carbon (AGB) stars of 1–3 solar masses. Some grains appear to be ≥109 a older than the Solar System. Graphite spherules, of grain size 0.8–7 μm and abundance <2 ppm, contain highly anomalous C and noble gases, as well as large amounts of fossil 26Mg from the decay of extinct 26Al. They seem to come from at least three sources, probably AGB stars, novae, and Wolf-Rayet stars.  相似文献   

13.
Abstract The 244Pu-fission-136Xe retention ages of howardites, eucrites, and diogenites (HEDs) show that these meteorites have retained Xe since they were formed about 4500 Ma ago. For the Garland diogenite and the Millbillillie eucrite, we obtain fission Xe ages of 4525 ± 40 Ma and 4486 ± 40 Ma, respectively. If Xe isotope data reported by other workers are also considered, we conclude that the monomict equilibrated eucrites Camel Donga, Juvinas, and Millbillillie formed about 40 Ma later than Pasamonte, a polymict unequilibrated eucrite. Stannern, a monomict equilibrated brecciated eucrite, yields a 244Pu-136Xe age of 4442 Ma. The 40K-40Ar retention ages fall, for most HEDs, into the 1000–4000 Ma age range, indicating that 40Ar is generally not well retained. The good retentivity for Xe of HEDs allows us to study primordial trapped Xe in these meteorites. Except for Shalka, in which other authors found Kr and Xe from terrestrial atmospheric contamination only, we present for the first time Kr and Xe isotopic data for diogenites. We studied Ellemeet, Garland, Ibbenbühren, Shalka, and Tatahouine. We show that Tatahouine contains two types of trapped Xe: a terrestrial contamination acquired by an irreversible adsorption process and released at pyrolysis temperatures up to 800 °C, and indigenous primordial Xe released primarily between 800 °C and 1200 °C. The isotopic composition of this primordial Xe is identical to that proposed earlier to be present in primitive achondrites and termed U-Xe or “primitive” Xe, but it has not been directly observed in achondrites until now. This type of primitive Xe is important for understanding the evolution of other Xe reservoirs in the Solar System. Terrestrial atmospheric Xe (corrected for fission Xe and radiogenic Xe from outgassing of the Earth) is related to it by a mass dependent fractionation favoring the heavier Xe isotopes. This primitive Xe is isotopically very similar to solar Xe except for 134Xe and 136Xe. Solar Xe appears to contain an enrichment of unknown origin for these isotopes relative to the primitive Xe.  相似文献   

14.
Abstract— We have undertaken a comprehensive study of carbon and nitrogen elemental abundances and isotopic compositions of bulk carbonaceous chondrites. A strategy of multiple analyses has enabled the investigation of hitherto unconstrained small‐scale heterogeneities. No systematic differences are observed between meteorite falls and finds, suggesting that terrestrial processing has a minimal effect on bulk carbon and nitrogen chemistry. The changes in elemental abundance and isotopic composition over the petrologic range may reflect variations in primary accreted materials, but strong evidence exists of the alteration of components during secondary thermal and aqueous processing. These changes are reflected within the CM2 and CO3 groups and follow the published alteration scales for those groups. The nitrogen isotope system appears to be controlled by an organic host, which loses a 15N‐rich component with progressive alteration. This study recommends caution, however, over the use of bulk carbon and nitrogen information for classification purposes; variance in relative abundance of different components in carbonaceous chondrites is significant and reflects intrameteorite heterogeneities.  相似文献   

15.
Abstract— We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large‐scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra‐clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. Many similarities can be found between Antarctic micrometeorites and Wild 2 samples, in terms of chemical, mineralogical, and isotopic compositions, and in the structure and composition of their carbonaceous matter. Cosmic dust in the form of CONCORDIA Antarctic micrometeorites and primitive IDPs are preferred samples to study the asteroid‐comet continuum.  相似文献   

16.
Abstract— Interior samples of three different Nakhla specimens contain an iron-rich silicate “rust” (which includes a tentatively identified smectite), Ca-carbonate (probably calcite), Ca-sulfate (possibly gypsum or bassanite), Mg-sulfate (possibly epsomite or kieserite), and NaCl (halite); the total abundance of these phases is estimated as <0.01 weight percent of the bulk meteorite. Rust veins are truncated and decrepitated by fusion crust and are preserved as faulted segments in partially healed olivine crystals, indicating that the rust is pre-terrestrial in origin. Because Ca-carbonate and Ca-sulfate are intergrown with the rust, they are also indicated to be of pre-terrestrial origin. Similar textural evidence regarding origins of the NaCl and Mg-sulfate is lacking. Impure and poorly crystallized sulfates and halides on the fusion crust of the meteorite suggest leaching of interior (pre-terrestrial) salts from the interior after Nakhla arrived on Earth but coincidental addition of these same salts by terrestrial contamination cannot be excluded. At least the clay-like silicate “rust,” Ca-carbonate, and Ca-sulfate were formed by precipitation from water-based solutions on the Nakhla parent planet although temperature and pressure conditions of aqueous precipitation are unconstrained by currently available data. It is possible that aqueous alteration on the parent body was responsible for the previously observed disturbance of the Rb-Sr geochronometer in Nakhla at or near 1.3 Ga.  相似文献   

17.
This study characterizes carbon and nitrogen abundances and isotopic compositions in ureilitic fragments of Almahata Sitta. Ureilites are carbon‐rich (containing up to 7 wt% C) and were formed early in solar system history, thus the origin of carbon in ureilites has significance for the origin of solar system carbon. These samples were collected soon after they fell, so they are among the freshest ureilite samples available and were analyzed using stepped combustion mass spectrometry. They contained 1.2–2.3 wt% carbon; most showed the major carbon release at temperatures of 600–700 °C with peak values of δ13C from ?7.3 to +0.4‰, similar to literature values for unbrecciated (“monomict”) ureilites. They also contained a minor low temperature (≤500 °C) component (δ13C = ca ?25‰). Bulk nitrogen contents (9.4–27 ppm) resemble those of unbrecciated ureilites, with major releases mostly occurring at 600–750 °C. A significant lower temperature release of nitrogen occurred in all samples. Main release δ15N values of ?53 to ?94‰ fall within the range reported for diamond separates and acid residues from ureilites, and identify an isotopically primordial nitrogen component. However, they differ from common polymict ureilites which are more nitrogen‐rich and isotopically heavier. Thus, although the parent asteroid 2008TC3 was undoubtedly a polymict ureilite breccia, this cannot be deduced from an isotopic study of individual ureilite fragments. The combined main release δ13C and δ15N values do not overlap the fields for carbonaceous or enstatite chondrites, suggesting that carbon in ureilites was not derived from these sources.  相似文献   

18.
Abstract— We report the discovery of presolar silicate, oxide (hibonite), and (possibly) SiC grains in four Antarctic micrometeorites (AMMs). The oxygen isotopic compositions of the eighteen presolar silicate (and one oxide) grains found are similar those observed previously in primitive meteorites and interplanetary dust particles, and indicate origins in oxygen‐rich red giant or asymptotic giant branch stars, or in supernovae. Four grains with anomalous C isotopic compositions were also detected. 12C/13C as well as Si ratios are similar to those of mainstream SiC grains; the N isotopic composition of one grain is also consistent with a mainstream SiC classification. Presolar silicate grains were found in three of the seven AMMs studied, and are heterogeneously distributed within these micrometeorites. Fourteen of the 18 presolar silicate grains and 3 of the 4 C‐anomalous grains were found within one AMM, T98G8. Presolar silicate‐bearing micrometeorites contain crystalline silicates that give sharp X‐ray diffractions and do not contain magnesiowüstite, which forms mainly through the decomposition of phyllosilicates and carbonates. The occurrence of this mineral in AMMs without presolar silicates suggests that secondary parent body processes probably determine the presence or absence of presolar silicates in Antarctic micrometeorites.  相似文献   

19.
Abstract— Amino acid analyses of the Antarctic CM2 chondrites Allan Hills (ALH) 83100 and Lewis Cliff (LEW) 90500 using liquid chromatography‐time of flight‐mass spectrometry (LC‐ToF‐MS) coupled with UV fluorescence detection revealed that these carbonaceous meteorites contain a suite of indigenous amino acids not present in Antarctic ice. Several amino acids were detected in ALH 83100, including glycine, alanine, β‐alanine, γ‐amino‐n‐butyric acid (γ‐ABA), and α‐aminoisobutyric acid (AIB) with concentrations ranging from 250 to 340 parts per billion (ppb). In contrast to ALH 83100, the CM2 meteorites LEW 90500 and Murchison had a much higher total abundance of these amino acids (440–3200 ppb). In addition, ALH 83100 was found to have lower abundances of the α‐dialkyl amino acids AIB and isovaline than LEW 90500 and Murchison. There are three possible explanations for the depleted amino acid content in ALH 83100: 1) amino acid leaching from ALH 83100 during exposure to Antarctic ice meltwater, 2) a higher degree of aqueous alteration on the ALH 83100 parent body, or 3) ALH 83100 originated on a chemically distinct parent body from the other two CM2 meteorites. The high relative abundance of ?‐amino‐n‐caproic acid (EACA) in the ALH 83100 meteorite as well as the Antarctic ice indicates that Nylon‐6 contamination from the Antarctic sample storage bags may have occurred during collection.  相似文献   

20.
Angrites are a small group of ancient basaltic achondrites, notable for their unusual chemistry and extreme volatile depletion. No comprehensive study of indigenous light elements currently exists for the group. Measurement of the abundances and isotopic composition of carbon and nitrogen could provide information pertaining to the evolution of the angrite parent body. Bulk‐sample stepped combustion analyses of five angrites and a glass separate from D'Orbigny were combined with earlier data and acid dissolution experiments of carbonates found in D'Orbigny to compile an inventory of indigenous carbon and nitrogen. Indigenous carbon combusted between 700 °C and 1200 °C, with abundances of 10–140 ppm and a mass‐weighted δ13C of ?25 to ?20‰ with the exception of D'Orbigny (δ13C approximately ?5‰). Nitrogen was released at 850–1200 ºC, 1–20 ppm with a δ15N ?3‰ to +4‰; again, D'Orbigny (δ15N approximately +20 to +25‰) was an exception. We interpret these components as largely indigenous and decoupled; the carbon in graphitic or amorphous form, while the nitrogen is present as a dissolved component in the silicates. No relationship with the textural sub‐classification of angrites is apparent. We suggest that the angrite parent body contains a reservoir of reduced carbon and thus may have undergone a change in redox conditions, although the timing and mechanism for this remain unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号