首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Ecuadorian Andes, episodic slope movements comprising shallow rotational and translational slides and rapid flows of debris and soil material are common. Consequently, not only considerable financial costs are experienced, but also major ecological and environmental problems arise in a larger geographical area. Sediment production by slope movement on hillslopes directly affects sediment transport and deposition in downstream rivers and dams and morphological changes in the stream channels. In developing countries world-wide, slope movement hazards are growing: increasing population pressure and economic development force more people to move to potentially hazardous areas, which are less suitable for agriculture and rangelands.This paper describes the methods used to determine the controlling factors of slope failure and to build upon the results of the statistical analysis a process-based slope stability model, which includes a dynamic soil wetness index using a simple subsurface flow model. The model provides a time-varying estimate of slope movement susceptibility, by linking land-use data with spatially varying hydrologic (soil conductivity, evapotranspiration, soil wetness) and soil strength properties. The slope stability model was applied to a high Andean watershed (Gordeleg Catchment, 250 ha, southern Ecuadorian Andes) and was validated by calculating the association coefficients between the slope movement susceptibility map of 2000 and the spatial pattern of active slope movements, as measured in the field with GPS. The proposed methodology allows assessment of the effects of past and future land-use change on slope stability. A realistic deforestation scenario was presented: past land-use change includes a gradual fragmentation and clear cut of the secondary forests, as observed over the last four decades (1963–2000), future land-use change is simulated based on a binary logistic deforestation model, whereby it was assumed that future land-use change would continue at the same rate and style as over the last 37 years (1963–2000).  相似文献   

2.
Despite more than 40 yr of research attributing temporal changes in streambank erosion rates to subaerial processes, little quantitative information is available on the relationships between streambank erodibility (kd) and critical shear stress (τc) and the environmental conditions and processes that enhance streambank erosion potential. The study goal was to evaluate temporal changes in kd and τc from soil desiccation and freeze–thaw cycling. Soil erodibility and τc were measured monthly in situ using a multiangle, submerged jet test device. Soil moisture, temperature, and bulk density as well as precipitation, air temperature, and stream stage were measured continuously to determine changes in soil moisture content and state. Pairwise Mann–Whitney tests indicted kd was 2.9 and 2.1 times higher (p < 0.0065) during the winter (December–March) than in the spring/fall (April–May, October–November) and the summer (June–September), respectively. Regression analysis showed 80% of the variability in kd was explained by freeze–thaw cycling alone. Study results also indicated soil bulk density was highly influenced by winter weather conditions (r2 = 0.86): bulk density was inversely related to both soil water content and freeze–thaw cycling. Results showed that significant changes in the resistance of streambank soils to fluvial erosion can be attributed to subaerial processes. Water resource professionals should consider the implications of increased soil erodibility during the winter in the development of channel erosion models and stream restoration designs.  相似文献   

3.
Bouteloua gracilis (Kunth) Lag. ex Griffiths (blue grama), Bouteloua eriopoda (Torr.) Torr. (black grama), and Larrea tridentata Coville (creosotebush) are dominant plants on the McKenzie Flats portion of the Llano de Manzano landform within Sevilleta National Wildlife Refuge in central New Mexico, part of the biome ecotone from the Colorado Shortgrass Steppe to the Chihuahuan Desert. In this study, we examine the hypothesis that soil heterogeneity, determined by variation in surface soil depth, carbonate accumulation, and fine-textured fraction, controls relative dominance of the three species. The area is flat, generally <1% slope; however, abrupt soil differences exist even within the flattest parts of the landscape that correspond to the pattern of buried channels incised in a petrocalcic horizon (caliche) formed in a 0.5–1.2 million year-old paleosol beneath the current surface soil. Multivariate analyses of soil-moisture-related variables suggest that B. gracilis, a Colorado Shortgrass Steppe indicator, dominates the buried paleochannels where Holocene surface deposits are deepest and the argillic (clay-rich) B-horizon is thickest. B. eriopoda, dominant in Chihuahuan Desert grasslands, is most abundant where the buried petrocalcic horizon lies within 40–60 cm of the surface and the argillic horizon is thinner and weakly developed. L. tridentata, an indicator of desertified Chihuahuan Desert shrubland, is dominant where the petrocalcic horizon is exposed or near the surface. This study illustrates the strong relationship between geomorphology, soil development and vegetation patterns in arid and semi-arid environments.  相似文献   

4.
Interrelated, biotic (flora and fauna) and abiotic (pedogenesis and hydrology) processes were examined at four sites (30, and approximately 1000–3000, 7000–12 000, and 125 000 years before present) in the northern Mojave Desert. Data collected at each included floral and faunal surveys; soil texture, structure, and morphology; and soil hydraulic properties. Separate measurements were made in shrub undercanopy and intercanopy microsites. At all sites, shrubs made up greater than 86 percent of total perennial cover, being least on the youngest site (4 percent) and most on the 7000–12 000-year-old site (31 percent). In the intercanopy, winter annual density was highest on the 1000- to 3000-year-old site (249 plants/m2) and lowest on the oldest site (4 plants/m2). Faunal activity, measured by burrow density, was highest on the 1000–3000- and 7000–12 000-year-old sites (0.21 burrows/m2) and density was twice as high in the undercanopy versus the intercanopy. Burrow density was lower at the two oldest sites, although density was not statistically greater in the undercanopy than intercanopy. At the older sites, the soil water balance was increasingly controlled by Av horizons in intercanopy soils in which saturated hydraulic conductivity (Ksat) decreased 95 percent from the youngest to the oldest site. No significant reduction in Ksat in undercanopy soils was observed. Decreases in the intercanopy sites correlated with decreases in annual plant density and bioturbation, suggesting these processes are interrelated with surface age.  相似文献   

5.
Slope failures cause billions of dollars of damage annually and put human lives at risk. This study employed field measurements and observations to provide the framework for laboratory simulations to investigate the effects of environmental characteristics on slope stability in the highly fractured bedrock region of the Boston Mountains, northwest Arkansas. Field measurements, to determine characteristics and possible controls of 10 shallow slope failures along an interstate highway, revealed that slope failures occurred within a relatively narrow range of slope angles (17–36°) and in loamy soils. Based on field observations, flume experiments were conducted to investigate the relationships between soil texture, slope angle, bedrock fractures, soil compaction, and slope instability. Time to failure differed (p < 0.05) among treatment combinations. Generally, slopes composed of loam were more stable than slopes composed of sand. Time to failure decreased more on slopes of 15–20° than on slopes of 20–25°. Flume slopes with sod cover never failed. This study provided a methodology for using field analyses of slope failures to guide laboratory experiments and demonstrated that complex interactions among environmental factors work to stabilize or compromise steep (>20°) slopes.  相似文献   

6.
Landslides can cause the formation of dams, but these dams often fail soon after lake formation. Thus, rapidly evaluating the stability of a landslide dam is crucial for effective hazard mitigation. This study utilizes discriminant analysis based on a Japanese dataset consisting of 43 well documented landslide dams to determine the significant variables, including log-transformed peak flow (or catchment area), and log-transformed dam height, width and length in hierarchical order, which affect the stability of a landslide dam. The high overall prediction power (88.4% of the 43 training cases are correctly classified) and the high cross-validation accuracy (86%) demonstrate the robustness of the proposed discriminant models PHWL (with variables including log-transformed peak flow, and log-transformed dam height, width and length) and AHWL (with variables including log-transformed catchment area, and log-transformed dam height, width and length). Compared to a previously proposed “DBI” index-based graphic approach, the discriminant model AHV – which uses the log-transformed catchment area, dam height, and dam volume as relevant variables – shows better ability to evaluate the stability of landslide dams. Although these discriminant models are established using a Japanese dataset only, the present multivariate statistical approach can be applied for an expanded dataset without any difficulty when more completely documented worldwide landslide-dam data are available.  相似文献   

7.
Cactus seedlings often establish under nurse plants which modify environmental conditions by increasing moisture and decreasing solar radiation, which may cause beneficial and detrimental effects, respectively, on seedling growth. Three soil moisture treatments (5%, 25% and 60%) and two solar radiation levels (100% exposure=243 μmol m−2 s−1, and 40%=102 μmol m−2 s−1) were used in a factorial design to analyze seedling growth response of three rare cactus species (Mammillaria pectinifera, Obregonia denegrii and Coryphantha werdermannii). The variables evaluated were relative growth rate (RGR), root/shoot ratio (R/S), and K (RGRroots/RGRshoot), obtained from an initial seedling harvest (6-month-old seedlings) and a final harvest 6 months after treatment application. All three species had slow RGRs (0.002–0.012 g g−1 day−1). O. denegrii had the lowest RGR values, but was the only species for which R/S and K varied with soil moisture. While all seedlings responded markedly to soil moisture, no response was observed to radiation treatments. The latter might have been related to the relatively low solar radiation levels present in the greenhouse. Yet, our results suggest that the main benefit nurse plants offer to seedlings is the increase in soil moisture.  相似文献   

8.
Through field rainfall simulation experiments in an upland mountainous watershed of northern Thailand, we have identified two phenomena that increase the potential for Horton overland flow (HOF) generation on agricultural lands. First, there appears to be a transition period of 12–18 months, extending from the time of abandonment until the formation of a dense vegetation layer capable of intercepting rainfall and ponding surface water, during which HOF generation is accelerated. Simulation data indicate these recently abandoned fields may have runoff coefficients (ROCs) as high as 40% during large seasonal storms with wet antecedent soil moisture conditions. In comparison, actively cultivated lands and advanced (>16–18 months) fallow fields, the land surfaces existing before and after the threshold period, have ROCs≤4%. Secondly, compacted path surfaces initiate HOF within agricultural fields, which have saturated hydraulic conductivity (Ks) values that are 100–200 mm h−1 higher. In the study area, path/furrow networks, comprising 8–24% of field surface areas, are designed to provide walking access within fields and channel excess surface flow from the fields. Compared with hoed surfaces, path/furrows reduce the time to HOF generation by about 85% and have ROCs that are six times higher. Access paths have the lowest Ks values of all watershed surfaces, but conveyance efficiency of HOF generated on these surfaces is low. Even recently created field paths are capable of reducing runoff generation time by 40–90% and producing sixfold increases in ROCs. Collectively, the data suggest that agricultural erosion rates are accelerated during the 12–18-month threshold period following abandonment and during storms where path-generated HOF interacts with adjacent planting surfaces. Despite having periods of increased HOF generation, the total HOF contribution from agricultural fields to the basin stream hydrograph is similar in magnitude to that of unpaved roads, which occupy 95% less land area.  相似文献   

9.
Piñon (Pinus edulis)-juniper (Juniperus monosperma)-ecosystems increased substantially in the western USA during the 20th century. Sustainability of these ecosystems primarily depends on soil quality and water availability. This study was undertaken with the objective of assessing the effect of tree species on soil physical quality in a semi-arid region in the western part of Sugarite Canyon, northeast of Raton, Colfax County, NM (37°56′32″N and 104°23′00″W) USA. Three cores and three bulk soil samples were obtained from the site under the canopy of three juniper, Gambel oak (Quercus gambelii) and piñon trees for 0–10 and 10–20 cm depths. These samples were analyzed for particle size distribution, soil bulk density (ρb), water stable aggregation (WSA), mean weight diameter (MWD) of aggregates, pH, electrical conductivity (EC) and soil organic carbon (SOC) and total nitrogen (TN) concentrations and stocks. Sand content was greater under juniper (48%) than oak (32%), whereas clay content followed the opposite trend. The ρb, WSA, MWD, pH and EC were similar under juniper, piñon, oak canopies for both depths. Estimated (from Philip and Green and Ampt infiltration models) and measured water infiltration parameters did not vary among these sites and were in accord with the values for ρb, WSA and MWD. The SOC concentrations and stocks were greater under oak (43.1 Mg ha−1 for 0–10 and 37.5 Mg ha−1 for 10–20 cm depths) than piñon (23.3 Mg ha−1 for 0–10 and 18.5 Mg ha−1 for 10–20 cm depths). The TN concentrations were greater under oak (3.4 g kg−1) than piñon (1.7 g kg−1) for the 0–10 cm depth only. Accumulation of detritus material under tree canopies reduced soil compaction and crusting caused by raindrop impact and increased SOC, and TN concentrations, and water infiltration. Coefficients of variation ranged from low to moderate for most soil properties except infiltration rate at 2.5 h, which was highly variable. Overall, soil quality for each site was good and soil aggregation, water infiltration and SOC concentrations were high, and soil ρb was low.  相似文献   

10.
Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2–1.3-fold higher daily C fixation in Canyonlands and 2.4–2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3–7.5-fold higher daily N fixation in Canyonlands and 1.3–25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.  相似文献   

11.
The diversity and abundance of epigaeic ant species were determined across three habitats (riverine areas, gently sloping grassland areas and steep slope areas) in summer (November–December) and winter (May–June) of 1998 at Tussen die Riviere Nature Reserve in the Karoo, to determine temporal and spatial variations in the availability of potential prey species of the aardvark (Orycteropus afer). Pitfall trapping, dig sampling and quadrat sampling were used to ensure as complete a sampling effort as possible. Forty-five ant species of five sub-families and 17 genera were recorded. The grassland habitat yielded the highest abundance and diversity, followed by the steep slope and riverine areas. Ant abundance and diversity were higher during summer than winter in all three habitats. Anoplolepis custodiens was the most abundant species in summer, whilst Monomorium albopilosum was the most abundant species in winter. Pitfall trapping was responsible for recording more species than dig sampling or quadrat sampling. No method recorded all of the species present.  相似文献   

12.
Matteo Tosi   《Geomorphology》2007,87(4):268-283
The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25–40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick. S. junceum (L.) colonizes not only fan/cone/taluses but also headwalls and cliffs and, for a 0.6 m thick soil, it stabilises these areas up to 45°. The effectiveness of this reinforcement, however, depends strongly on the frequency of soil and seasonal grass vegetation removal due to shallow landsliding before the entrance of the shrub species.  相似文献   

13.
Variation in growth, physiology and ionic relations patterns of Allenrolfea occidentalis, a perennial halophyte of dry habitats, was studied under field conditions from May 1996 to November 1997. An A. occidentalis community has a characteristic soil pH of 7·3–8·3. During the two years, the population was exposed to great variations in soil salinity, from 29 to 146 dS m−1, and soil moisture, ranging from drought (9·2%) to wet (19%). The salt concentrations were significantly higher in the surface soil layers than in the subsurface layers. Seasonal changes in dry weight are directly related to soil salinity stress. Allenrolfea occidentalis had greater growth and biomass production under saline conditions. Na+and Clions were accumulated in plant tissues in much greater amounts than K+, Ca2+, and Mg2+. Soil salinities were significantly reduced at the end of the growing season. Water potentials of the shoots decreased significantly with increasing salinity. The plant (Fv/Fmratio) was more affected by salinity and irradiation levels during the summer period.  相似文献   

14.
Soil beneath shrubs form ‘fertile islands’ in fallow sites and millet fields in semi-arid Niger. To gain more information about this phenomena different shrub species in fallow sites following a gradient from 350–650 mm precipitation were examined. For each shrub two different areas were distinguished: an area under the canopy of the shrubs and an area in the nearby open land. Soil samples were taken from a depth of 0–10 cm and analysed for Corg, Ntotal, PBray, pH(H2O), exchangeable cations, effective cation exchange capacity (ECEC) and soil texture. Significantly higher concentrations between 38–51% for C, N, P and 22% on ECEC for K+were found in the soil under the shrubs. The pH showed only slight but significant differences, whereas Al3+and H+rates on ECEC under the shrubs were increased by 44–55%. For Guiera senegalensis, the most common shrub of the studied area, enrichment ratios of most soil properties increased relatively more with increasing aridity. In general, enrichment ratios decreased with the age of the fallows, whereas concentrations showed no clear evolution. The chemical composition of the shrub litter seems to influence the degree of soil enrichment. The main step of fertile island formation takes place during the cultivation period by trapping wind-blown sediment. This work shows that shrubs are of vital importance for the accumulation of nutrients and maintenance of soil fertility within agro-ecosystems of Niger.  相似文献   

15.
Luoto Miska  Hjort Jan 《Geomorphology》2005,67(3-4):299-315
Predictive models are increasingly used in geomorphology, but systematic evaluations of novel statistical techniques are still limited. The aim of this study was to compare the accuracy of generalized linear models (GLM), generalized additive models (GAM), classification tree analysis (CTA), neural networks (ANN) and multiple adaptive regression splines (MARS) in predictive geomorphological modelling. Five different distribution models both for non-sorted and sorted patterned ground were constructed on the basis of four terrain parameters and four soil variables. To evaluate the models, the original data set of 9997 squares of 1 ha in size was randomly divided into model training (70%, n=6998) and model evaluation sets (30%, n=2999).In general, active sorted patterned ground is clearly defined in upper fell areas with high slope angle and till soils. Active non-sorted patterned ground is more common in valleys with higher soil moisture and fine-scale concave topography. The predictive performance of each model was evaluated using the area under the receiver operating characteristic curve (AUC) and the Kappa value. The relatively high discrimination capacity of all models, AUC=0.85–0.88 and Kappa=0.49–0.56, implies that the model's predictions provide an acceptable index of sorted and non-sorted patterned ground occurrence. The best performance for model calibration data for both data sets was achieved by the CTA. However, when the predictive mapping ability was explored through the evaluation data set, the model accuracies of CTA decreased clearly compared to the other modelling techniques. For model evaluation data MARS performed marginally best.Our results show that the digital elevation model and soil data can be used to predict relatively robustly the activity of patterned ground in fine scale in a subarctic landscape. This indicates that predictive geomorphological modelling has the advantage of providing relevant and useful information on earth surface processes over extensive areas, such data being unavailable through more conventional survey methods.  相似文献   

16.
Cultivation, overgrazing, and overharvesting are seriously degrading forest and grassland ecosystems in the Taurus Mountains of the southern Mediterranean region of Turkey. This study investigated the effects of changes on soil organic carbon (SOC) content and other physical soil properties over a 12-year period in three adjacent ecosystems in a Mediterranean plateau. The ecosystems were cropland (converted from grasslands in 1990), open forest, and grassland. Soil samples from two depths, 0–10 and 10–20 cm, were collected for chemical and physical analyses at each of cropland, open forest, and grassland ecosystems. SOC pools at the 0–20 cm depth of cropland, forest, and grassland ecosystems were estimated at 32,636, 56,480, and 57,317 kg ha−1, respectively. Conversion of grassland into cropland during the 12-year period increased the bulk density by 10.5% and soil erodibility by 46.2%; it decreased SOM by 48.8%, SOC content by 43%, available water capacity (AWC) by 30.5%, and total porosity by 9.1% for the 0–20 cm soil depth (p<0.001). The correlation matrix revealed that SOC content was positively correlated with AWC, total porosity, mean weight diameter (MWD), forest, and grassland, and negatively with bulk density, pH, soil erodibility factor, and cropland. The multiple regression (MLR) models indicated that any two of the three ecosystems and one of the two soil depths accounted for 86.5% of variation in mean SOC values ((p<0.001).  相似文献   

17.
As an approach to understand how diurnal and seasonal plant water potentials (Ψ) are related to soil water-content and evaporative demand components, the responses of six thornscrub shrubs species (Havardia pallens, Acacia rigidula, Eysenhardtia texana, Diospyros texana, Randia rhagocarpa, and Bernardia myricaefolia) of the north-eastern region of Mexico to drought stress were investigated during the course of 1 year. All study species showed the typical diurnal pattern of variation in Ψ. That is, Ψ decreased gradually from predawn (Ψpd) maximal values to reach minima at midday (Ψmd) and began to recover in the late afternoon. On a diurnal basis and with adequate soil water-content (>0.20 kg kg−1), diurnal Ψ values differed among shrub species and were negatively and significantly (p<0.001) correlated with air temperature (r=−0.741 to −0.883) and vapor pressure deficit (r=−0.750 to −0.817); in contrast, a positive and significant (p<0.001) relationship was found to exist with relative humidity (r=0.758–0.842). On a seasonal basis, during the wettest period (soil water-content>0.20 kg kg−1), higher Ψpd (−0.10 MPa) and Ψmd (−1.16 MPa) values were observed in R. rhagocarpa, whereas lower figures (−0.26 and −2.73 MPa, respectively) were detected in A. rigidula. On the other hand, during the driest period (soil water-content<0.15 kg kg−1), Ψpd and Ψmd values were below −7.3 MPa; i.e. when shrubs species faced severe water deficit. Soil water-content at different soil layers, monthly mean relative humidity and monthly precipitation were significantly correlated with both Ψpd (r=0.538–0.953; p<0.01) and Ψmd (r=0.431–0.906; p<0.05). Average soil water-content in the 0–50 cm soil depth profile explained between 70% and 87% of the variation in Ψpd. Results have shown that when gravimetric soil water-content values were above 0.15 kg kg−1, Ψpd values were high and constant; below this threshold value, Ψ declined gradually. Among all shrub species, A. rigidula appeared to be the most drought tolerant of the six species since during dry periods it tends to sustain significantly higher Ψpd in relation to B. myricaefolia. The remaining species showed an intermediate pattern. It is concluded that the ability of shrub species to cope with drought stress depends on the pattern of water uptake and the extent to control water loss through the transpirational flux.  相似文献   

18.
Although in the last decades gully erosion has been a thriving research field, few studies have specifically addressed the contribution and location of sidewall erosion processes in gullies. In this paper, sidewall erosion in some large gullies in a Mediterranean area (Anoia-Penedès, NE Spain) is mapped and assessed for two time intervals (1975–1995 and 1995–2002), using detailed digital elevation models derived from aerial photographs at a scale of 1:5000 to 1:7000. Logistic regression analysis is applied to compute the probability of occurrence of gully sidewall erosion from terrain variables. The results confirm the complex nature of sidewall processes, whose intensity is most probably related to rainfall characteristics. Prolonged wet soil conditions in the period 1995–2002, together with the large and high-intensity rainfall of an extreme event occurred on 10th June 2000, help to explain the different sediment production rates: 16±0.4 Mg ha−1 year−1 in 1975–1995 and 83±6.3 Mg ha−1 year−1 in 1995–2002. The logistic regression analysis revealed that gully-wall slope angle was the main factor controlling gully sidewall failure. In gully walls with high slope angles, tension crack development is the main process promoting wall collapse. The application of the logistic regression model showed a high overall accuracy (87%) but over 50% of commission and omission errors for the class of interest (sidewall erosion), in agreement with the variance explained by the model.  相似文献   

19.
During the last decade, slope failures were reported in a 500 km2 study area in the Geba–Werei catchment, northern Ethiopia, a region where landslides were not considered an important hazard before. Field observations, however, revealed that many of the failures were actually reactivations of old deep-seated landslides after land use changes. Therefore, this study was conducted (1) to explore the importance of environmental factors controlling landslide occurrence and (2) to estimate future landslide susceptibility. A landslide inventory map of the study area derived from aerial photograph interpretation and field checks shows the location of 57 landslides and six zones with multiple landslides, mainly complex slides and debris flows. In total 14.8% of the area is affected by an old landslide. For the landslide susceptibility modelling, weights of evidence (WofE), was applied and five different models were produced. After comparison of the models and spatial validation using Receiver Operating Characteristic curves and Kappa values, a model combining data on elevation, hillslope gradient, aspect, geology and distance to faults was selected. This model confirmed our hypothesis that deep-seated landslides are located on hillslopes with a moderate slope gradient (i.e. 5°–13°). The depletion areas are expected on and along the border of plateaus where weathered basalts rich in smectite clays are found, and the landslide debris is expected to accumulate on the Amba Aradam sandstone and upper Antalo limestone. As future landslides are believed to occur on inherently unstable hillslopes similar to those where deep-seated landslides occurred, the classified landslide susceptibility map allows delineating zones where human interventions decreasing slope stability might cause slope failures. The results obtained demonstrate that the applied methodology could be used in similar areas where information on the location of landslides is essential for present-day hazard analysis.  相似文献   

20.
Translational failures, with associated downslope earthflow components and shallow slides, appear to be the primary mechanism of hillslope denudation in the humid tropical forests of the mountains of eastern Puerto Rico. In-situ weathering of quartz diorite and marine-deposited volcaniclastics produces residual soil (saprolite; up to 21 m deep) / weathered rock profiles. Discontinuous zones of contrasting density and permeability particularly in quartz-diorite slopes at 0.5 m, and between 3 and 7 m, create both pathways and impedances for water that can result in excess pore pressures and, ultimately, aid in determining the location of failure planes and magnitudes of slope failures. In combination with relict fractures which create planes of weakness within the saprolite, and the potential significance of tensile stresses in the upper zone of saprolite (hypothesized to be caused by subsurface soil creep), shear failure can then occur during or after periods of heavy rainfall.Results of in-situ shear-strength testing show negative y-intercepts on the derived Mohr-Coulomb failure envelopes (approximately 50% of all tests) that are interpreted as apparent tensile stresses. Observation of tension cracks 1–2 m deep support the test data. Subsurface soil creep can cause extension of the soil and the development of tensile stresses along upper-slope segments. Shear-strength data support this hypothesis for both geologic types. Apparent values of maximum and mean tensile stress are greatest along upper slopes (16.5 and 6.29 kPa). Previously documented maximum rates of downslope movement coincided with local minima of shear strength, and the shear-strength minimum for all tests was located near 0.5 m below land surface, the shallow zone of contrasting permeabilities. These results indicate that subsurface soil creep, a slow semi-continuous process, may exert a profound influence on rapid, shallow slope failures in saprolitic soils.Data indicate that cove slopes in quartz diorite tend to be the most unstable when saturation levels reach 75%. Deep failures (7 m deep) appear the most critical but not the most frequent because pore pressure build-up will occur more rapidly in the upper perched zone of translocated clays before reaching the lower zone between 3 and 7 m. Frequent shallow failures could reduce the probability of deeper failures by removing overburden and reducing shear stress at depth. Deep failures are more likely to result from storm events of great duration and intensity.Sixty-six ‘naturally occurring’ and more than 100 ‘road-related’ landslides were mapped. Forest elevations exceed 1000 m, but the majority of these failures were found between 600 and 800 m in elevation. This appears to be the area where there is sufficient concentration of subsurface water to result in excess pore pressures. The high percentage of slope failures in the 600–800-m range, relative to the percentage at higher elevations, suggests that differences in soil-water processes are responsible for the form of these mountain slopes. Steep linear segments are maintained at higher elevations. Slope angles are reduced in the 600–800-m range by frequent shallow slides, creating a largely concave surface. In combination, slope segments above 800 m, and those between 600 and 800 m, produce the characteristic form of the mountains of eastern Puerto Rico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号