首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared nekton densities over a range of measured flooding conditions and locations withinPhragmites australis andSpartina alterniflora (salt marsh cordgrass) at the Charles Wheeler Salt Marsh, located on the lower Housatonic River estuary in southwestern Connecticut. Nekton were sampled on nine spring high tide events from May to October 2000 using bottomless lift nets positioned between 0–5 and 10–20 m from the creek edge. Flooding depth, duration, and frequency were measured from each vegetation type during each sampling month. Benthic macroinvertebrate density was also measured within each vegetation type in May, July, and September. Frequency of flooding was 52% lower and flooding depth and duration were also significantly reduced inP. australis relative toS. alterniflora. A total of 4,197 individuals representing 7 species, mostlyPalaemonetes pugio (dagger-blade grass shrimp) andFundulus heteroclitus (common mummichog), were captured.P. pugio densities were significantly greater inS. alterniflora as were benthic macroinvertebrate density and taxa richness during May, but not during June or October. Total fish density was not significantly different betweenP. australis andS. alterniflora and was independent of location on the marsh. Significantly more juvenileF. heteroclitus were collected withinS. alterniflora relative toP. australis in June and July, suggesting that recruitment of this species may be lower inP. australis habitat. Fish density generally did not vary predictably across the range of flooding depth and duration; there was a positive relationship between flooding depth and fish density inS. alterniflora. The measured reduction in flooding frequency (52%) withinP. australis at the Housatonic site would result in an average total monthly fish use, expressed as density, of 447 ind m−2 forP. australis and 947 ind m−2 forS. alterniflora. WhenP. australis expansion results in reduction of flooding frequency and duration, nekton community composition can change, access to the marsh surface is reduced twofold, and nursery habitat function may be impaired.  相似文献   

2.
Through their physiological effects on ion, oxygen, and carbon balance, respectively, salinity, sulfide, and prolonged flooding combine to constrain the invasion and spread ofPhragmites in tidal wetlands. Initial sites of vigorous invasion by seed germination and growth from rhizome fragments appear limited to sections of marsh where salinity is <10‰, sulfide concentrations are less than 0.1 mM, and flooding frequency is less than 10%. In polyhaline tidal wetlands the invasion sites include the upland fringe and some high marsh creek banks. The zones of potential invasion tend to be larger in marshes occupying lower-salinity portions of estuaries and in marshes that have been altered hydrologically. Owing to clonal integration and a positive feedback loop of growth-induced modification of edaphic soil conditions, however, a greater total area of wetland is susceptible toPhragmites expansion away from sites of establishment. Mature clones have been reported growing in different marshes with salinity up to 45‰, sulfide concentration up to 1.75 mM, and flooding frequency up to 100%. ForPhragmites establishment and expansion in tidal marshes, windows of opportunity open with microtopographic enhancement of subsurface drainage patterns, marsh-wide depression of flooding and salinity regimes, and variation in sea level driven by global warming and lunar nodal cycles. To avoidPhragmites monocultures, tidal wetland creation, restoration, and management must be considered within the context of these different scales of plant-environment interaction.  相似文献   

3.
We measured the amount of arsenic, chromium, copper, lead, nickel, vanadium, and zinc accumulated over a five-year period from 1997 to 2002 in surface sediments of seven salt marshes along the New Brunswick coast of the Bay of Fundy, Canada. Study sites extended from outer to inner Bay, spanning a gradient in tidal range (6–12 m) and mean sediment deposition rate (0.27–1.76 cm yr−1). In each study site, metal concentrations were measured in low and high marsh areas. Concentrations of chromium, nickel, and zinc appear to be within their natural range, while arsenic, lead, and vanadium are enriched in some sites. Calculated sediment metal loadings rates showed variability among marsh sites that closely followed sediment deposition patterns, suggesting sediment deposition rate is the driving factor of short-term metal accumulation in Fundy marshes. The value of salt marshes as a sink for metals may be enhanced by high sedimentation rates.  相似文献   

4.
We assess the status of channel networks and pools of two tidal salt marshes recovering from more than a century of agricultural reclamation on the Bay of Fundy, Canada. A process of largely unmanaged restoration occurred at these sites since abandonment of agricultural activities during the first half of the twentieth century. Each recovering marsh was compared to a reference marsh that was never drained or ditched. We field mapped channel networks at all marshes and used aerial photographs to map the pre-abandonment channel network at one of the sites. The recovering marshes have hybrid channel networks that feature highly variable channel morphologies, loss of original channels, and incorporation of drainage ditches. Although channel networks in recovering marshes integrate agricultural ditches, the recovering marsh networks may not be substantially increased in length or density. Our aerial photograph analysis shows that channel density at one of the recovering marshes is comparable to the pre-abandonment density, but with reduced sinuosity. Field mapping of permanent tidal pools on the lower Bay marshes revealed that pools cover 13% of the recovering marsh, compared to ∼5% of the reference marsh. This study demonstrates that these essential marsh features can be regained through restoration or simple abandonment of drainage infrastructure.  相似文献   

5.
The salt marsh surface is not a homogeneous environment. Rather, it contains a mix of different microhabitats, which vary in elevation, microtopography, and location within the estuarine system. These attributes act in concert with astronomical tides and meteorological and climatological events and result in pulses of tidal flooding. Marsh hydroperiod, the pattern of flooding events, not only controls nekton access to marsh surface habitats directly but may also mediate habitat exploitation through its influence on other factors, such as prey abundance or vegetation stem density. The relative importance of factors affecting marsh hydroperiod differ between the southeast Atlantic and northern Gulf of Mexico coasts. Astronomical tidal forcing is the primary determinant of hydroperiod in Atlantic Coast marshes, whereas predictable tides are often overridden by meteorological events in Gulf Coast marshes. In addition, other factors influencing coastal water levels have a proportionately greater effect on the Gulf Coast. The relatively unpredictable timing of marsh flooding along the Gulf Coast does not seem to limit habitat utilization. Some of the highest densities of nekton reported from salt marshes are from Gulf Coast marshes that are undergoing gradual submergence and fragmentation caused by an accelerated rise in relative sea level. Additional studies of habitat utilization are needed, especially on the Pacific and Atlantic coasts. Investigations should include regional comparisons of similar microhabitats using identical quantitative sampling methods. Controlled field experiments are also needed to elucidate the mechanisms that affect the habitat function of salt marshes.  相似文献   

6.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

7.
To assess the potential for habitat isolation effects on estuarine nekton, we used two species with different dispersal abilities and life history strategies, mummichog (Fundulus heteroclitus) and pinfish (Lagodon rhomboides) to examine: (1) distribution trends among estuarine shallow-water flat and various intertidal salt marsh habitats and (2) the influence of salt marsh habitat size and isolation. Collections were conducted using baited minnow traps set within nonisolated interior marshes (interior), nonisolated fringing marshes (nonisolated), isolated island marshes (isolated), and shallow-water flat habitats (flat) that were adjacent to isolated and nonisolated marshes. Size range of individuals collected included juvenile and adult F. heteroclitus (20–82-mm standard length) and L. rhomboides (22–151-mm standard length). During high tide, F. heteroclitus exclusively used marsh habitats, particularly high marsh, whereas L. rhomboides used marshes and flats. F. heteroclitus abundance followed an interior > nonisolated > isolated pattern. L. rhomboides abundance patterns were less consistent but followed a nonisolated > isolated > interior pattern. A size-dependent water depth relationship was observed for both species and suggests size class partitioning of marsh and flat habitats during high tide. Minimum water depth (~31 cm) restricted L. rhomboides populations in marshes, while maximum water depth (~69 cm) restricted F. heteroclitus population use of marshes and movement between marsh habitats. Disparities in F. heteroclitus young of year contribution between isolated compared to nonisolated and interior marsh types suggests isolated marshes acted as population sinks and were dependent on adult emigrants. Resident and transient salt marsh nekton species utilize estuarine habitats in different ways and these fundamental differences can translate into how estuarine landscape might affect nekton.  相似文献   

8.
Southern flounder Paralichthys lethostigma populations have been declining in Texas during the past 25 years. Despite their economic importance, little is known about their juvenile habitat requirements. We examined habitat use patterns of newly settled southern flounder in three zones at varying distances from the Aransas Pass inlet in Aransas–Copano Bay by measuring densities using a beam trawl in replicate estuarine habitat types in each zone. Highest abundance occurred near the inlet in vegetated sandy areas and was lowest in nonvegetated muddy bottom in regions furthest from the inlet. We also examined a 25-year fisheries data set from Texas Parks and Wildlife Department to evaluate long-term spatiotemporal recruitment patterns in Aransas–Copano Bay. These data showed generally low recruitment during the past 25 years with highest abundance near the inlets. Our results support the importance of vegetated habitat types, especially those near tidal passes, and suggest a long-term decline in recruitment densities of southern flounder.  相似文献   

9.
In recent decades, marshes naturally dominated bySpartina spp. have been replaced byPhragmites australis throughout the northeastern United States. We suggest that early in this invasion there was little effect on the fish fauna. As the invasion proceeds, the marsh surface habitat became more altered (i.e., elevated, flattened, reduced water-filled depressions, and reduced standing water), which resulted in a reduction of feeding, reproduction, and nursery function for fishes, especiallyFundulus spp. These potential changes in marsh habitat and function have resulted in numerous attempts to removePhragmites and restoreSpartina spp. To evaluate the response of marsh surface fishes toPhragmites treatment, we examined fish use in the brackish water reaches of Alloway Creek in the Delaware Bay estuary. ReferencePhragmites habitats were compared with referenceSpartina alterniflora-dominated habitats and sites treated (1996–1998) to removePhragmites to restore former vegetation (i.e., restored, now comprised of 100%Spartina). Fish were sampled with an array (n=9 at each site) of shallow pit traps (rectangular glass dishes, 27.5×17.5×3.7 cm). Small individuals (mean=17.5, 5–45 mm TL) dominated all pit trap collections. Fish abundance was highest at the restored (catch per unit effort [CPUE]=2.16) andSpartina (CPUE=0.81) sites with significantly lower values atPhragmites (CPUE=0.05) habitats. Samples were dominated by young-of-the-year mummichog,Fundulus heteroclitus (98% of total fish, n=631). The only other fish species collected was spotfin killifish,Fundulus luciae (2% of total catch, n=14), which was only present in restored andSpartina habitats. These observations suggest that the restored marsh is providing habitat (water-filled depressions on the marsh surface) for young-of-the-yearFundulus spp. These marshes are responding favorably to the restoration based on the much greater abundance of fish in restored versusPhragmites habitats and the overall similarity between restored andSpartina habitats.  相似文献   

10.
The invasion ofSpartina marshes by the common reed,Phragmites australis, along the east coast of the United States over the last several decades has been well documented, although we know little about the impact of this invasion on the fish fauna and the few published papers seem contradictory. During 1999–2000 (May–September) we evaluated the fish response to vegetation type (Phragmites australis veersusSpartina alterniflora) by monitoring several aspects of fish early life history (egg deposition, embryonic development, hatching success, and larval and juvenile abundance) in low salinity marshes in the Mullica River in southern New Jersey. The dominant fish species using the marsh surface,Fundulus heteroclitus (93% of total catch, n=996 individuals), reproduced in both vegetation types with eggs deposited in leaf axils near the base of the plant inSpartina and in broken stems ofPhragmites during both years. These eggs also undergo successful embryonic development to hatching in both vegetation types. Larval and juvenile (5–75 mm total length, but 95% < 34 mm TL) abundance of this species is much reduced onPhragmites-dominated (mean CUPE=0.02, n=7 ind) marsh surface relative toSpartina (mean CPUE=2.31). These findings, and similar results for fish abundance in 1997 and 1998, indicate that theSpartima marsh surface is likely essential fish habitat for this species because it provides habitat for larvae and small juveniles, whilePhragmites does not. ThePhragmites invasion in brackish marshes may be having deleterious effects on fish populations and possibly on predators that prey uponF. heteroclitus, and as a result, marsh secondary production.  相似文献   

11.
Tidal freshwater sections of the Cooper River Estuary (South Carolina) include extensive wetlands, which were formerly impounded for rice culture during the 1,700s and 1,800s. Most of these former rice fields are now open to tidal exchange and have developed into productive wetlands that vary in bottom topography, tidal hydrography and vegetation dominants. The purpose of this project was to quantify nitrogen (N) transport via tidal exchange between the main estuarine channel and representative wetland types and to relate exchange patterns to the succession of vegetation dominants. We examined N concentration and mass exchange at the main tidal inlets for the three representative wetland types (submerged aquatic vegetation [SAV], floating leaf vegetation, and intertidal emergent marsh) over 18-21 tidal cycles (July 1998–August 2000). Nitrate + nitrite concentrations were significantly lower during ebb flow at all study sites, suggesting potential patterns of uptake by all wetland types. The magnitude of nitrate decline during ebb flow was negatively correlated with oxygen concentration, reflecting the potential importance of denitrification and nitrate reduction within hypoxic wetland waters and sediments. The net tidal exchange of nitrate + nitrite was particularly consistent for the intertidal emergent marsh, where flow-weighted ebb concentrations were usually 18–40% lower than during flood tides. Seasonal patterns for the emergent marsh indicated higher rates of nitrate + nitrite uptake during the spring and summer (> 400 μmol N m-2 tide-1) with an annual mean uptake of 248 ± 162 μmol m–2 tide–1. The emergent marsh also removed ammonium through most of the year (207 ± 109 μmol m–2 tide–1), and exported dissolved organic nitrogen (DON) in the fall (1,690 ± 793 μmol m–2 tide–1), suggesting an approximate annual balance between the dissolved inorganic N uptake and DON export. The other wetland types (SAV and floating leaf vegetation) were less consistent in magnitude and direction of N exchange. Since the emergent marsh site had the highest bottom elevation and the highest relative cover of intertidal habitat, these results suggest that the nature of N exchange between the estuarine waters and bordering wetlands is affected by wetland morphometry, tidal hydrography, and corresponding vegetation dominants. With the recent diversion of river discharge, water levels in the upper Cooper estuary have dropped more than 10 cm, leading to a succession of wetland communities from subtidal habitats toward more intertidal habitats. Results of this study suggest that current trends of wetland succession in the upper Cooper River may result in higher rates of system-wide inorganic N removal and DON inputs by the growing distributions of intertidal emergent marshes.  相似文献   

12.
The saltmarsh topminnow (Fundulus jenkinsi) is federally listed as a Species of Concern due to a its rarity, impacts from human activities, and lack of information on its biology and ecology. From 2007 through 2008, we used Breder traps to fish the marsh edge on a falling tide in four regions from Louisiana through the Florida panhandle during winter, spring, and summer periods. Out of 2,108 Breder traps deployed, 661 F. jenkinsi were collected as far east as Escambia Bay, Florida, with Weeks Bay, National Estuarine Research Reserve (NERR), Alabama, yielding the highest F. jenkinsi abundance. Principal component analysis (PCA) was used to ordinate physical–chemical data into two meaningful components: a geomorphic axis (water depth, bank slope, and plant stem density) and a seasonal/spatial axis of species occurrence (water temperature, salinity, and turbidity). PCA showed a higher mean catch-per-unit-effort (CPUE) in environments comprised of low to moderate stem density (<25 stems/0.25 m−2), depth (<25 cm), bank slope (<15°), turbidity (<30 NTU), and salinity (<16) coupled with spring and early summer water temperatures (>15°C). F. jenkinsi CPUE was significantly higher in Spartina cynosuroides marsh edge compared with five other habitat types, even though it was one of the least sampled habitats. This species appears to be collected more frequently and in higher CPUE in small dendritic creeks off of main channels than suggested by our previous work in main channel edge habitat. This suggests that small creeks are important vectors for marsh access and supports the value of the dendritic nature of salt marshes to marsh residents.  相似文献   

13.
The mummichog,Fundulus heteroclitus, is one of the most important macrofaunal components of salt marsh surfaces and an important link to subtidal areas of the adjacent estuary along the east coast of the U.S. We estimated growth, population size, and production of the mummichog in a restored marsh in order to improve our understanding of the role of this resident fish and to evaluate the success of the restoration. The restored marsh, covering 234 ha, was a former salt hay farm located in the mesohaline portion of Delaware Bay that was restored to tidal influence in August 1996. We separated the mummichog population into two components based on life history stage and summer habitat use patterns. One component, consisting of adults and large young-of-the-year (YOY), exhibited tidal movements to and from the marsh surface and the subtidal creeks. These were examined with an intensive mark and recapture program using coded wire tags. Another component, consisting of small YOY, remained on the marsh surface throughout the tidal cycle. Throw traps were used to sample these small YOY. The mean annual population density of adults and large YOY for the entire marsh was approximately 1.2 fish m−2 and mean monthly density peaked at 2.9 fish m−2. The mean annual density of small YOY on the marsh surface was 15.1 fish m−2 and mean monthly density peaked at 41.4 fish m−2. Size and season influenced the growth rate of individual fish and instantaneous growth rates ranged from 0.03 to 2.26 mo−1. Total annual mummichog production was estimated to be 8.37 g dw m−2 yr−1, with adults and large YOY contributing 28.4% (2.38 g dw m−2 yr−1) and small YOY on the marsh surface contributing 71.6% (5.99 g dw m−2 yr−1). The seasonal use and population densities were comparable to previous studies in natural marshes while growth and production of mummichog in this restored marsh appeared to be higher. Coupled with the results of other studies on the feeding, movement, and habitat use of this species in this restored marsh, the species has responded well to the restoration.  相似文献   

14.
This study investigates the influence ofPhragmites australis (common reed) invasion on the habitat of the resident marsh fish,Fundulus heteroclitus (mummichog) in the Hackensack Meadowlands, New Jersey. These abundant fish play an important role in the transfer of energy from the marsh surface to adjacent subtidal waters and thus estuarine food webs. The objectives of this 2-yr study (1999 and 2000) were to compare the distribution and abundance of the eggs, larvae, juveniles, and adults of mummichog and their invertebrate prey inhabitingSpartina alterniflora-dominated marshes withPhragmites-dominated marshes, and to experimentally investigate the influence of marsh surface microtoprography on larval fish abundance withinPhragmites-dominated marshes. In 2000, we verified that egg deposition does occur inPhragmites-dominated marshes. In both years, the abundance of larvae and small juveniles (4–20 mm TL) inS. alterniflora was significantly greater than inPhragmites-dominated marshes, while larger juveniles and adults (>20 mm TL) were similarly abundant in both habitat types. The overall abundance of larvae and small juveniles was significantly greater in experimentalPhragmites plots in which microtopography was manipulated to resemble that ofSpartina marshes than inPhragmites control plots. Major groups of invertebrate taxa differed between marsh types with potential prey for larval fish being significantly more abundant inS. alterniflora marshes.Phragmites-dominated marshes may not provide the most suitable habitat for the early life-history stages of the mummichog. The low abundance of larvae and small juveniles inPhragmites marshes is likely due to inadequate larval habitat and perhaps decreased prey availability for these early life history stages.  相似文献   

15.
Primary producer (angiosperms, macroalgae, submerged aquatic vegetation), suspended particulate matter, andFundulus heteroclitus isotope values (δ13C, δ15N, δ34S) were examined to assess their use as indicators for changes in food web support functions in tidally-restored salt marshes. Study sites, located throughout the southern New England region (USA), ranged fromSpartina alterniflora-dominated reference marshes, marshes under various regimes and histories of tide restoration, and a severely tide-restrictedPhragmites australis marsh.Fundulus δ13C values were greater for fish from referenceSpartina marshes than for fish from adjacent tide-restricted or tide-restored marshes where higher percent cover of C3 plants, lower water column salinities, and more negative dissolved inorganic δ13C values were observed. The difference inFundulus δ13C values between a tide-restrictedPhragmites marsh and an adjacent referenceSpartina marsh was great compared to the difference between marshes at various stages of tide restoration and their respective reference marshes, suggesting that food web support functions are restored as the degree of tidal restriction is lessened. While a multiple isotopic approach can provide valuable information for determining specific food sources to consumers, this study demonstrates that monitoringFundulus δ13C values alone may be useful to evaluate the trajectory of ecological change for marshes undergoing tidal restoration.  相似文献   

16.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

17.
Marshes are important habitats for various life history stages of many fish and invertebrates. Much effort has been directed at restoring marshes, yet it is not clear how fish and invertebrates have responded to marsh restoration. The blue crab,Callinectes sapidus, uses marsh habitats during much of its benthic life. We investigated the response of blue crabs to marsh restoration by comparing crab abundance (catch per unit effort), mean size and size frequency distribution, sex ratio, and molt stages of crabs in recently restored marshes that were former salt hay farms to that of adjacent reference marshes with similar physical characteristics in the mesohaline portion of Delaware Bay. Field sampling occurred monthly (April–November) in 1997 and 1998 using replicate daytime otter trawls in large marsh creeks and weirs in smaller intertidal marsh creeks. Blue crabs were either equal or more abundant, the incidence of molting was in most months similar, and population sex ratios were indistinguishable in restored and reference marshes, suggesting that the restored areas attract crabs and support their growth. Site location had a greater effect on the sex ratio of crabs such that marshes closer to the mouth of the bay contained a higher percentage of adult female crabs. In each annual growing season (April–July), the monthly increase in crab size and, in some months (June–July), the incidence of molting at the restored sites was greater than the reference sites, suggesting that the restored sites may provide areas for enhanced growth of crabs. These results suggest that blue crabs have responded positively to restoration of former salt hay farms in the mesohaline portion of Delaware Bay.  相似文献   

18.
Delaware Bay is one of the largest estuaries on the U.S. eastern seaboard and is flanked by some of the most extensive salt marshes found in the northeastern U.S. While physicochemical and biotic gradients are known to occur along the long axis of the bay, no studies to date have investigated how the fish assemblage found in salt marsh creeks vary along this axis. The marshes of the lower portion of the bay, with higher salinity, are dominated bySpartina spp., while the marshes of the upper portion, with lower salinity, are currently composed primarily of common reed,Phragmites australis, S. alterniflora, or combinations of both. Extensive daytime sampling (n=815 tows) during May–November 1996 was conducted with otter trawls (4.9 m, 6 mm mesh) in six intertidal and subtidal marsh creek systems (upper and lower portions of each creek) where creek channel depths ranged from 1.4–2.8 m at high tide. The fish taxa of the marsh creeks was composed of 40 species that were dominated by demersal and pelagic forms including sciaenids (5 species), percichthyids (2), and clupeids (7), many of which are transients that spawn outside the bay but the early life history stages are abundant within the bay. The most abundant species wereMorone americana (24.3% of the total catch),Cynoscion regalis (15.4%),Micropogonias undulatus (15.3%),Anchoa mitchilli (12.0%), andTrinectes maculatus (10.8%). Non-metric Multi-Dimensional Scaling ordination of catch per unit effort (CPUE) data indicated two fish assemblages that were largely independent of the two major vegetation types, but generally corresponded with spatial variation in salinity. This relationship was more complex because some of the species for which we could discriminate different age classes by size had different patterns of distribution along the salinity gradient.  相似文献   

19.
This study evaluated the use by fish of restored tidal wetlands and identified links between fish species composition and habitat characteristics. We compared the attributes of natural and constructed channel habitats in Sweetwater Marsh National Wildlife Refuge, San Diego Bay, California, by using fish monitoring data to explore the relationships between channel environmental characteristics and fish species composition. Fishes were sampled annually for 8 yr (1989–1996) at eight sampling sites, four in constructed marshes and four in natural marshes, using beach seines and blocking nets. We also measured channel habitat characteristics, including channel hydrology (stream order), width and maximum depth, bank slope, water quality (DO, temperature, salinity), and sediment composition. Fish colonization was rapid in constructed channels, and there was no obvious relationship between channel age and species richness or density. Total richness and total density did not differ significantly between constructed and natural channels, although California killifish (Fundulus parvipinnis) were found in significantly higher densities in constructed channels. Multivariate analyses showed fish assemblage composition was related to channel habitat characteristics, suggesting a channel’s physical properties were more important in determining fish use than its restoration status. This relationship highlights the importance of designing restoration projects with natural hydrologic features and choosing proper assessment criteria in order to avoid misleading interpretations of constructed channel success. We recommend that future projects be designed to mimic natural marsh hydrogeomorphology and diversity more closely, the assessment process utilize better estimates of fish habitat function (e.g., individual and community-based species trends, residence time, feeding, growth) and reference site choice, and experimental research be further incorporated into the restoration process.  相似文献   

20.
We examined the 5-yr (1996–2000) response of subtidal marsh creek fishes (2,793 trawls, 47 species, 30,719 fish) to a large marsh restoration project in the upper Delaware Bay, and found that the salinity gradient covaried along with marsh surface vegetation type among two treated and one untreated reference sites, confounding direct comparison of fish utilization. Examination of environmental correlates with monthly yearly trends highlighted differences between potential mechanism driving assemblage dynamics either intrinsic or extrinsic to the marshes. Within-site and among-site differences in fish assemblage, as described by principal components analysis, correlated poorly with marsh vegetation on both seasonal and interannual scales and appeared to driven by larval supply. Assemblage dynamics could be expalined in part by the occurrence of juveniles of transient marine fishes along a salinity gradient (0–15.2%) range in monthly site mean), but were largely determined by fluctuations in the distribution of two transient species: young-of-the-year bay anchovyAnchoa mitchilli and Atlantic croakerMicropogonias undulatus. A minor mode in variance, driven by locally spawned species, was moderately correlated with environmental parameters. Analysis of marshes on an individual basis did not discern additional important gradients. Our findings are in contrast to those in systems dominated by resident species, probably because transient fishes, which often dominante the system, are more plastic to the nature of ecological services or are affected as much by environment outside of the marsh as by that in the marsh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号