首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Gamma rays at rest frame energies as high as 90 GeV have been reported from gamma-ray bursts (GRBs) by the Fermi Large Area Telescope (LAT). There is considerable hope that a confirmed GRB detection will be possible with the upcoming Cherenkov Telescope Array (CTA), which will have a larger effective area and better low-energy sensitivity than current-generation imaging atmospheric Cherenkov telescopes (IACTs). To estimate the likelihood of such a detection, we have developed a phenomenological model for GRB emission between 1 GeV and 1 TeV that is motivated by the high-energy GRB detections of Fermi-LAT, and allows us to extrapolate the statistics of GRBs seen by lower energy instruments such as the Swift-BAT and BATSE on the Compton Gamma-ray Observatory. We show a number of statistics for detected GRBs, and describe how the detectability of GRBs with CTA could vary based on a number of parameters, such as the typical observation delay between the burst onset and the start of ground observations. We also consider the possibility of using GBM on Fermi as a finder of GRBs for rapid ground follow-up. While the uncertainty of GBM localization is problematic, the small field-of-view for IACTs can potentially be overcome by scanning over the GBM error region. Overall, our results indicate that CTA should be able to detect one GRB every 20–30 months with our baseline instrument model, assuming consistently rapid pursuit of GRB alerts, and provided that spectral breaks below ~100 GeV are not a common feature of the bright GRB population. With a more optimistic instrument model, the detection rate can be as high as 1 to 2 GRBs per year.  相似文献   

2.
3.
The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV–TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2–3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10°. In the following study, we investigate the prospects for CTA to study several science questions that can profoundly influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations currently under discussion, we employ a Monte Carlo based approach to evaluate the prospects for detection and characterisation of new physics with the array.First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, which are virtually void of astrophysical background and have a relatively well known dark matter density; in the region close to the Galactic Centre, where the dark matter density is expected to be large while the astrophysical background due to the Galactic Centre can be excluded; and in clusters of galaxies, where the intrinsic flux may be boosted significantly by the large number of halo substructures. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma-rays from very distant blazars. We establish the axion mass range CTA could probe through observation of long-lasting flares in distant sources. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.  相似文献   

4.
The blast-wave model for gamma-ray bursts (GRBs) has been called into question by observations of spectra from GRBs that are harder than can be produced through optically thin synchrotron emission. If GRBs originate from the collapse of massive stars, then circumstellar clouds near burst sources will be illuminated by intense gamma radiation, and the electrons in these clouds will be rapidly scattered to energies as large as several hundred keV. Low-energy photons that subsequently pass through the hot plasma will be scattered to higher energies, hardening the intrinsic spectrum. This effect resolves the "line-of-death" objection to the synchrotron shock model. Illuminated clouds near GRBs will form relativistic plasmas containing large numbers of electron-positron pairs that can be detected within approximately 1-2 days of the explosion before expanding and dissipating. Localized regions of pair annihilation radiation in the Galaxy would reveal past GRB explosions.  相似文献   

5.
The mechanism for gamma-ray bursters and the detection of gravitational waves (GWs) are two outstanding problems facing modern physics. Many models of gamma-ray bursters predict copious GW emission, so the assumption of an association between GWs and gamma-ray bursts (GRBs) may be testable with existing bar GW detector data. We consider Weber bar data streams in the vicinity of known GRB times and present calculations of the expected signal after co-addition of 1000 GW/GRBs that have been shifted to a common zero time. Our calculations are based on assumptions concerning the GW spectrum and the redshift distribution of GW/GRB sources that are consistent with current GW/GRB models. We discuss further possibilities of GW detection associated with GRBs in light of future bar detector improvements and suggest that co-addition of data from several improved bar detectors may result in detection of GWs (if the GW/GRB assumption is correct) on a time-scale comparable to the LIGO projects.  相似文献   

6.
In this paper, we review the prospects for studies of active galactic nuclei (AGN) using the envisioned future Cherenkov Telescope Array (CTA). This review focuses on jetted AGN, which constitute the vast majority of AGN detected at gamma-ray energies. Future progress will be driven by the planned lower energy threshold for very high energy (VHE) gamma-ray detections to ∼10 GeV and improved flux sensitivity compared to current-generation Cherenkov Telescope facilities. We argue that CTA will enable substantial progress on gamma-ray population studies by deepening existing surveys both through increased flux sensitivity and by improving the chances of detecting a larger number of low-frequency peaked blazars because of the lower energy threshold. More detailed studies of the VHE gamma-ray spectral shape and variability might furthermore yield insight into unsolved questions concerning jet formation and composition, the acceleration of particles within relativistic jets, and the microphysics of the radiation mechanisms leading to the observable high-energy emission. The broad energy range covered by CTA includes energies where gamma-rays are unaffected from absorption while propagating in the extragalactic background light (EBL), and extends to an energy regime where VHE spectra are strongly distorted. This will help to reduce systematic effects in the spectra from different instruments, leading to a more reliable EBL determination, and hence will make it possible to constrain blazar models up to the highest energies with less ambiguity.  相似文献   

7.
Long gamma-ray bursts (GRBs) are important for the study of the Universe near and beyond the epoch of reionization. In this paper, we describe the characteristics of an 'ideal' instrument that can be used to search for GRBs at z ≥ 6–10. We find that the detection of these objects requires soft-band detectors with high sensitivity and a moderately large field of view. In light of these results, we compare available and planned GRB missions, deriving conservative predictions of the number of high-redshift GRBs detectable by these instruments along with the maximum accessible redshift. We show that the Swift satellite will be able to detect various GRBs at z ≥ 6, and likely at z ≥ 10 if the trigger threshold is decreased by a factor of ∼2. Furthermore, we find that INTEGRAL and GLAST are not the best tools to detect bursts at z ≥ 6, the former being limited by the small field of view, and the latter by its hard energy band and relatively low sensitivity. Finally, future missions ( SVOM , EDGE and, in particular, EXIST ) will provide a good sample of GRBs at z ≥ 6 within a few years of operation.  相似文献   

8.
The constancy of light speed is a basic assumption in Einstein’s special relativity, and consequently the Lorentz invariance is a fundamental symmetry of space–time in modern physics. However, it is speculated that the speed of light becomes energy-dependent due to the Lorentz invariance violation (LV) in various new physics theories. We analyse the data of the energetic photons from the gamma-ray bursts (GRBs) by the Fermi Gamma-Ray Space Telescope, and find more events to support the energy dependence in the light speed with both linear and quadratic form corrections. We provide two scenarios to understand all the new-released Pass 8 data of bright GRBs by the Fermi-LAT Collaboration, with predictions from such scenarios being testable by future detected GRBs.  相似文献   

9.
林一清 《天文学报》2007,48(4):428-432
Swift卫星的X射线望远镜观测揭示部分伽玛暴的早期余辉光变曲线有一个缓慢衰减的成分,而相当一部分却没有这样的成分.研究比较这两种暴的观测性质发现两类暴的持续时间、伽玛辐射总流量、谱指数、谱硬度比峰值能量等物理量均没有显著差异.然而有该成分的那些伽玛暴谱比较软、早期X射线余辉比较弱、伽玛射线辐射效率显著高于没有这个成分的那些暴.结果表明两类暴的前身星和中心机制一致,是否呈现这个缓慢衰减成分可能取决于外部介质.  相似文献   

10.
Lorentz invariance is such an important principle of fundamental physics that it should constantly be subjected to experimental scrutiny as well as theoretical questioning. Distant astrophysical sources of energetic photons with rapid time variations, such as active galactic nuclei (AGNs) and gamma-ray bursters (GRBs), provide ideal experimental opportunities for testing Lorentz invariance. The Čerenkov Telescope Array (CTA) is an excellent experimental tool for making such tests with sensitivities exceeding those possible using other detectors.  相似文献   

11.
We analyzed the data obtained by the SPI telescope onboard the INTEGRAL observatory to search for short transient events with a duration from 1 ms to a few tens of seconds. An algorithm for identifying gamma-ray events against the background of a large number of charged particle interactions with the detector has been developed. The classification of events was made. Apart from the events associated with cosmic gamma-ray bursts (GRBs) confirmed by other space experiments and the activity of known soft gamma repeaters (for example, SGR 1806-20), previously unreported GRBs have been found. GRB candidates and short gamma-ray events probably associated with the activity of known SGRs and AXPs have been selected. The spectral evolution of 28 bright GRBs from the catalog has been studied extensively. A new method for investigating the spectral evolution is proposed. The energy dependence of the spectral lag for bursts with a simple structure of their light curves and for individual pulses of multipulse events is shown to be described by a logarithmic function, lagAlog(E). It has been established that the parameter A depends on the pulse duration, with the dependence being universal for all of the investigated GRBs. No negative spectral lags have been detected for bursts with a simple structure of their light curves.  相似文献   

12.
We show that near-infrared observations of the red side of the Lyα line from a single gamma-ray burst (GRB) afterglow cannot be used to constrain the global neutral fraction of the intergalactic medium (IGM),     , at the GRB's redshift to better than     . Some GRB sightlines will encounter more neutral hydrogen than others at fixed     owing to the patchiness of reionization. GRBs during the epoch of reionization will often bear no discernible signature of a neutral IGM in their afterglow spectra. We discuss the constraints on     from the   z = 6.3  burst, GRB050904, and quantify the probability of detecting a neutral IGM using future spectroscopic observations of high-redshift, near-infrared GRB afterglows. Assuming an observation with signal-to-noise ratio similar to the Subaru FOCAS spectrum of GRB050904 and that the column density distribution of damped Lyα absorbers is the same as measured at lower redshifts, a GRB from an epoch when     can be used to detect a partly neutral IGM at 97 per cent confidence level ≈10 per cent of the time (and, for an observation with three times the sensitivity, ≈30 per cent of the time).  相似文献   

13.
最近的研究表明:短γ射线暴(γ暴)的辐射特性和长γ暴的前两秒的辐射特征相似,这引发了对以前争论的问题,即:这两类暴是否是本质上相同的暴?本文主要对和γ暴谱形和光变曲线有关的两个量的分布进行了K—S检验。分析表明:这两类暴的分布是不同的,这和广为接受的两类γ暴事件产生于不同机制的观点是一致的。  相似文献   

14.
The High-Energy Transient Experiment (HETE) is designed for the multiwavelengths study of Gamma-Ray Bursts (GRBs) in UV, X-ray and gamma-ray range with three scientific instruments. The X-ray instrument, Wide-field X-ray Monitor (WXM), consists of four units of one-dimensional position sensitive gas proportional counters and two perpendicularly oriented one-dimensional coded apertures. The WXM has a wide FOV of 1.5 steradian together with the capability to locate GRBs with 10 arcmin accuracy, and covers photon energies of 2 to 25 keV with an energy resolution of typically 18 % at 6 keV, measuring wide band spectra together with the gamma-ray spectrometer (FREGATE). The coded X-ray image will be deconvolved on board and the GRB location will be provided to the UV camera within 1 sec . GRB locations will also be broadcast in real time to ground-based observers for follow-up observations.  相似文献   

15.
We propose a strategy for detecting and analyzing optical afterglows (OAs) of long gamma-ray bursts (GRBs) without the need to obtain their light curves. This approach is useful for the Gaia satellite, which provides sampled optical ultra-low-dispersion spectroscopic observations of the sky. For this purpose, we show that most OAs of long GRBs display specific values of some of their color indices, representing synchrotron emission of the jet. They are stable in time during the event. These indices, which can be determined from the spectra, are very similar for the ensemble of OAs with redshift z < 3.5 and display a strong clustering in some color-color diagrams. These indices also enable to constrain the properties of the local interstellar medium of GRBs. The long-lasting mapping of the sky with the Gaia instruments also gives us a hope to search for the so-called orphan afterglows, which, according to some authors, can be considerably more numerous than OAs of the observed GRBs. We also show how to resolve OAs from other transients in the Gaia data. The color indices and the properties of the quiescent sources (host galaxies of OAs detectable later by the large ground-based telescopes at the co-ordinates of the OA determined by Gaia) would tell us which one, among transients detected by Gaia, is a GRB OA.  相似文献   

16.
The Swift mission has discovered an intriguing feature of gamma-ray burst (GRBs) afterglows, a phase of shallow decline of the flux in the X-ray and optical light curves. This behaviour is typically attributed to energy injection into the burst ejecta. At some point this phase ends, resulting in a break in the light curve, which is commonly interpreted as the cessation of the energy injection. In a few cases, however, while breaks in the X-ray light curve are observed, optical emission continues its slow flux decline. This behaviour suggests a more complex scenario. In this paper, we present a model that invokes a double component outflow, in which narrowly collimated ejecta are responsible for the X-ray emission while a broad outflow is responsible for the optical emission. The narrow component can produce a jet break in the X-ray light curve at relatively early times, while the optical emission does not break due to its lower degree of collimation. In our model both components are subject to energy injection for the whole duration of the follow-up observations. We apply this model to GRBs with chromatic breaks, and we show how it might change the interpretation of the GRBs canonical light curve. We also study our model from a theoretical point of view, investigating the possible configurations of frequencies and the values of GRB physical parameters allowed in our model.  相似文献   

17.
The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray emitters, can be grouped in different subclasses depending on the nature of the binary components or the origin of the particle acceleration: the interaction of the winds of either a pulsar and a massive star or two massive stars; accretion onto a compact object and jet formation; and interaction of a relativistic outflow with the external medium. We evaluate the potentialities of an instrument like the Cherenkov telescope array (CTA) to study the non-thermal physics of gamma-ray binaries, which requires the observation of high-energy phenomena at different time and spatial scales. We analyze the capability of CTA, under different configurations, to probe the spectral, temporal and spatial behavior of gamma-ray binaries in the context of the known or expected physics of these sources. CTA will be able to probe with high spectral, temporal and spatial resolution the physical processes behind the gamma-ray emission in binaries, significantly increasing as well the number of known sources. This will allow the derivation of information on the particle acceleration and emission sites qualitatively better than what is currently available.  相似文献   

18.
We discuss the physics of the power source for gamma-ray bursts (GRBs). There is a great variety of stellar systems proposed as progenitors of long and short GRBs, but any current model for the engine ultimately involves the formation of a hyper-accreting disk around a newly-formed black hole of a few solar masses. The study of such disks can shed light onto the burst composition and energy content. We present preliminary results from disk vertical structure calculations. These include neutrino transport, a height-dependent determination of the nuclear composition, and a simplified treatment of turbulent mixing. We find that vertical mixing is rapid enough to largely erase compositional gradients, and as a consequence the upper layers of the disk reflect the neutron-rich composition of the midplane close to the black hole. We review the implications of this for the nuclear composition of outflows in GRBs. Our models suggest an increasing role for pairs in the upper regions of the disk, and we speculate that a pair-driven wind could be a significant source of cooling. Elena M. Rossi is a Chandra Fellow  相似文献   

19.
We calculate the reverse shock (RS) synchrotron emission in the optical and the radio wavelength bands from electron–positron pair-enriched gamma-ray burst ejecta with the goal of determining the pair content of gamma-ray bursts (GRBs) using early-time observations. We take into account an extensive number of physical effects that influence radiation from the RS-heated GRB ejecta. We find that optical/infrared flux depends very weakly on the number of pairs in the ejecta, and there is no unique signature of ejecta pair enrichment if observations are confined to a single wavelength band. It may be possible to determine if the number of pairs per proton in the ejecta is ≳100 by using observations in optical and radio bands; the ratio of flux in the optical and radio at the peak of each respective RS light curve is dependent on the number of pairs per proton. We also find that over a large parameter space, RS emission is expected to be very weak; GRB 990123 seems to have been an exceptional burst in that only a very small fraction of the parameter space produces optical flashes this bright. Also, it is often the case that the optical flux from the forward shock is brighter than the RS flux at deceleration. This could be another possible reason for the paucity of prompt optical flashes with a rapidly declining light curve at early times as was seen in GRBs 990123 and 021211. Some of these results are a generalization of similar results reported in Nakar & Piran.  相似文献   

20.
We argue that gamma-ray bursts (GRBs) may be the origin of the cosmic gamma-ray background radiation observed in the GeV range. It has theoretically been discussed that protons may carry a much larger amount of energy than electrons in GRBs, and this large energy can be radiated in the TeV range by synchrotron radiation of ultra-high-energy protons ( 1020 eV). The possible detection of GRBs above 10 TeV suggested by the Tibet and HEGRA groups also supports this idea. If this is the case, most of TeV gamma-rays from GRBs are absorbed in intergalactic fields and eventually form GeV gamma-ray background, whose flux is in good agreement with the recent observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号