首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This paper studies the impact of sensor measurement error on designing a water quality monitoring network for a river system, and shows that robust sensor locations can be obtained when an optimization algorithm is combined with a statistical process control (SPC) method. Specifically, we develop a possible probabilistic model of sensor measurement error and the measurement error model is embedded into a simulation model of a river system. An optimization algorithm is used to find the optimal sensor locations that minimize the expected time until a spill detection in the presence of a constraint on the probability of detecting a spill. The experimental results show that the optimal sensor locations are highly sensitive to the variability of measurement error and false alarm rates are often unacceptably high. An SPC method is useful in finding thresholds that guarantee a false alarm rate no more than a pre-specified target level, and an optimization algorithm combined with the thresholds finds a robust sensor network.  相似文献   

2.
地震散射波的高精度数值模拟与振幅分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘铁华 《地球物理学报》2012,55(4):1318-1324
随着地震勘探要求和技术的不断提高,散射波地震勘探方法逐渐引起人们的重视,尤其在构造复杂地区的高精度勘探中,散射波理论具有广泛的应用前景.本文在讨论了现阶段几种散射波数值模拟方法的利弊后,设计了一种基于微扰论的FK域积分法,在散射场的二次震源和空间能量衰减处理两方面做了改进,其计算精度和效率均得到了提高.此外,采用该算法针对散射波动力学进行了正演模拟试算,从扰动介质空间分布和扰动量两个角度定量地分析了散射波振幅动力学方面的特征.在此基础上得到了五个经验常数,并给出了对应的计算公式和物理意义,通过这五个常数可以划分散射波不同形态的动力学特征.  相似文献   

3.
Prony filtering is a method of seismic data processing which can be used to solve various geological and production tasks, involving an analysis of target horizons characteristics and a prediction of possible productive zones. This method is based on decomposing the observed seismic signals by exponentially damped cosines at short-time intervals. As a result, a discrete Prony spectrum including values of four parameters (amplitude, damping factor, frequency, phase) can be created. This decomposition occurs at many short-time intervals moving along an observed trace. The combined Prony spectrum of the trace can be used to create images of the trace through a selection of some values of the parameters. These images created for all traces of a seismic section provide an opportunity for locating zones of frequency-dependent anomalous scattering and absorption of seismic energy. Subsequently, the zones can be correlated with target seismic horizons. Analysis and interpretation of these zones may promote understanding of the target horizons features and help to connect these features with the presence of possible reservoirs.  相似文献   

4.
This paper presents an application of the normalized surface magnetic charge (NSMC) model to discriminate objects of interest, such as unexploded ordnance (UXO), from innocuous items in cases when UXO electromagnetic induction (EMI) responses are contaminated by signals from other objects. Over the entire EMI spectrum considered here (tens of Hertz up to several hundreds of kHz), the scattered magnetic field outside the object can be produced mathematically by equivalent magnetic charges. The amplitudes of these charges are determined from measurement data and normalized by the excitation field. The model takes into account the scatterer's heterogeneity and near- and far-field effects. For classification algorithms, the frequency spectrum of the total NSMC is proposed and investigated as a discriminant. The NSMC is combined with the differential evolution (DE) algorithm in a two-step inversion procedure. To illustrate the applicability of the DE–NSMC algorithm, blind test data are processed and analyzed for cases in which signals from nearby objects frequently overlap. The method was highly successful in distinguishing UXO from accompanying clutter.  相似文献   

5.
This paper presents an active control algorithm using the probability density function of structural energy. It is assumed that structural energy under excitation has a Rayleigh probability distribution. This assumption is based on the fact that the Rayleigh distribution satisfies the condition that the structural energy is always positive and the occurrence probability of minimum energy is zero. The magnitude of the control force is determined by the probability that the structural energy exceeds the specified target critical energy, and the sign of the control force is determined by the Lyapunov controller design method. The proposed control algorithm shows much reduction of peak responses under seismic excitation compared with the LQR controller, and it can consider the control force limit in the controller design. Also, the chattering problem which sometimes occurs in the Lyapunov controller can be avoided. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
A generalized diffraction tomography algorithm is developed, which in principle can handle irregularly spaced data, curved acquisition lines and non-uniform background models. By direct comparison with medical diffraction tomography, it is shown that the generalized method involves the same two processing steps: data filtering and back-propagation. The filter handles the irregular sampling of the model space and the uneven energy coverage, while the back-propagation operator removes the wave propagation effects. Paraxial ray-tracing techniques are employed to compute both these quantities. In medical diffraction tomography, the resolution vector (i.e. the Fourier vector of the model space) is defined by the incident and scattered plane-wave directions. It is shown here that a similar relationship exists for a non-uniform background, where the resolution vector at a particular image point is defined by the incident and scattered ray directions. Consequently, the impulse response of the generalized algorithm becomes space variant. Finally, a general processing procedure for transmission mode seismic data, based on this generalized algorithm, is proposed. The potential of the method is demonstrated using synthetic cross-hole data.  相似文献   

7.
In applications such as oil and gas production, deep geothermal energy production, underground storage, and mining, it is common practice to implement local seismic networks to monitor and to mitigate induced seismicity. For this purpose, it is crucial to determine the capability of the network to detect a seismic event of predefined magnitude in the target area. The determination of the magnitude of completeness of a network is particularly required to properly interpret seismic monitoring results. We propose a method to compute the detection probability for existing local seismic networks, which (i) strictly follows the applied detection sequence; (ii) estimates the detection capability where seismicity has not yet occurred; and (iii) delivers the results in terms of probabilities. The procedure includes a calibration of a local magnitude scale using regional earthquakes recorded by the network and located outside the monitored area. It involves pre‐processing of the seismograms recorded at each station as performed during the triggering sequence, which is assumed based on amplitude thresholds. Then, the calibrated magnitude–distance–amplitude relations are extrapolated at short distances and combined to reproduce the network detection sequence. This generates a probability to detect a seismic event of a given magnitude at a specified location. This observation‐based approach is an alternative to a fully theoretical detection capability modelling and includes field conditions. Seismic wave attenuation by geometrical spreading and intrinsic attenuation, site effect, and instrumental responses are partly accounted for by the calibration. We apply this procedure on the seismic network deployed in the Bruchsal geothermal field (Germany). Although the system was in good working order, no induced seismicity was identified in the area between June 2010, when monitoring started, and November 2012. The recording of distant seismicity during this time period, however, allowed the application of the proposed procedure. According to the applied network detection parameters, the results indicate that the absence of seismicity can be interpreted as a 95% probability that no seismic event with ML ≥ 0.7 occurred below the network at 2.4‐km depth, i.e., in the geothermal reservoir.  相似文献   

8.
利用高频天波返回散射反演电离层水平不均匀结构   总被引:2,自引:0,他引:2       下载免费PDF全文
高频天波返回散射探测作为重要的电离层探测手段,能够实现遥远区域电离层空间上的连续监测,探测获取的返回散射扫频电离图显示了探测频率-群路径-回波能量三者之间的关系.由于电离图包含了探测路径上的电离层状态信息,通过对其反演可以实时获取大面积范围的电离层参数.本文提出了一种基于解空间约束的返回散射前沿反演算法,能够重构电离层水平不均匀结构.针对反演非线性问题,采用Newton-Kontorovich方法进行求解,同时又引入了求解不适定问题的Tikhonov正则化方法,有益于解的稳定性和唯一性.利用模拟数据和实测数据分别对本文建立的算法进行了验证,并与Fridman和Fridman于1994年提出的反演方法进行了对比.结果表明,本文算法反演结果稳定,对返回散射前沿判读误差不敏感,与Fridman和Fridman 1994年方法相比,本文方法对电离层局部精细结构反演更加准确,具有较高的反演精度.本文提出的算法不但能够反演白天和夜间这种电离层较平稳时期的电离层状态,而且对于日出/日落时段等电子浓度分布变化较快情形下的电离层,也有很好的反演效果,表明了该算法在处理复杂多变的实际探测的返回散射电离图中的应用价值.  相似文献   

9.
针对当前炮弹引信检测手段的效率低,而且还需要检测人员具备丰富的专业知识的缺点,本文以榴-5引信为研究对象,给出了一种基于ICT的扫描图像的自动检测算法。该算法根据榴-5引信解脱保险前后相关断面中的圆形凹槽发生的一个显著变化,分别在两个截面的重建图像找到圆形凹槽图像区域,计算出区域重心值,进而比较两组区域的重心值是否相等,从而判断该引信是否处于安全状态。实验结果表明,本文提出的算法不仅较好地解决了传统检测手段的缺陷,而且检测准确率也较高。  相似文献   

10.
We present an approach based on local‐slope estimation for the separation of scattered surface waves from reflected body waves. The direct and scattered surface waves contain a significant amount of seismic energy. They present great challenges in land seismic data acquisition and processing, particularly in arid regions with complex near‐surface heterogeneities (e.g., dry river beds, wadis/large escarpments, and karst features). The near‐surface scattered body‐to‐surface waves, which have comparable amplitudes to reflections, can mask the seismic reflections. These difficulties, added to large amplitude direct and back‐scattered surface (Rayleigh) waves, create a major reduction in signal‐to‐noise ratio and degrade the final sub‐surface image quality. Removal of these waves can be difficult using conventional filtering methods, such as an filter, without distorting the reflected signal. The filtering algorithm we present is based on predicting the spatially varying slope of the noise, using steerable filters, and separating the signal and noise components by applying a directional nonlinear filter oriented toward the noise direction to predict the noise and then subtract it from the data. The slope estimation step using steerable filters is very efficient. It requires only a linear combination of a set of basis filters at fixed orientation to synthesize an image filtered at an arbitrary orientation. We apply our filtering approach to simulated data as well as to seismic data recorded in the field to suppress the scattered surface waves from reflected body waves, and we demonstrate its superiority over conventional techniques in signal preservation and noise suppression.  相似文献   

11.
采用弹性波全波形反演方法精确重建深部金属矿多参数模型,建模过程采用基于地震照明的反演策略.首先给出基于照明理论的观测系统可视性定义,利用可视性分析构建新的目标函数,对反演目标可视性较高的炮检对接收到的地震记录在波场匹配时占有更高的权重,确保了参与反演计算中的地震数据的有效性;其次将给定观测系统对地下介质的弹性波场照明强度作为优化因子,根据地震波在波阻抗界面处的能量分配特点,自适应补偿波场能量分布和优化速度梯度,以提高弹性波全波形反演过程的稳定性和反演结果的精度.理论模型和金属矿模型反演试验结果表明,基于可视性分析和能量补偿的反演策略可以使弹性波全波形反演更快地收敛到目标函数的全局极小值,获得适用于金属矿高分辨率地震偏移成像的多参数模型.  相似文献   

12.
煤层陷落柱散射波数值模拟与成像   总被引:1,自引:1,他引:0       下载免费PDF全文
曹志勇  王伟  王赟 《地球物理学报》2012,55(5):1749-1756
煤层陷落柱是煤田勘探开发中常见的一种典型的非均匀地质体.由于来自陷落柱的反射信号少、反射能量弱,使得基于反射波原理的常规地震成像方法难以有效识别陷落柱.本文以散射波理论为基础,采用数值模拟方法,研究了陷落柱的散射波场特征,研究表明地面接收的波场中含有来自陷落柱陡倾角界面的散射波场.通过共散射点道集波场的模拟,可以清晰地识别散射波,获得地下散射点和非均匀地质体的信息,判断散射点的位置,从而勾画出不均匀地质体的形态.采用等效偏移距假设抽取共散射点道集,在此基础上进行叠前偏移,对陷落柱成像;模拟与实际数据成像结果对比表明此方法能够合理地提取散射点的散射波场信息,对陷落柱形态及内部结构准确成像,是一种有效的煤田陷落柱成像方法.  相似文献   

13.
基于辛算法模拟探地雷达在复杂地电模型中的传播   总被引:2,自引:2,他引:0       下载免费PDF全文
近年来,探地雷达(GPR)凭借其快速、高效、无破损等特点,已经广泛应用于浅地层目标探测中.数值模拟是研究探地雷达电磁波在地下结构中传播规律的有效手段.辛算法是一种保持Hamilton系统总能量不变的时域数值计算方法.本文提出了基于一阶显式辛分块龙格库塔方法的探地雷达数值模拟方法.通过对比本文算法与时域有限差分方法计算结果可知,在同等计算精度下,本文算法可以节省25%的计算时间.并基于本文算法对两个复杂GPR模型进行正演模拟,得到模拟GPR探测wiggle图,这有助于更好的理解和分析实测雷达数据.  相似文献   

14.
An efficient Auto-Regressive Moving–Average (ARMA) approximation method is presented for simulating stationary random processes with specified (target) power spectra in conjunction with structural dynamics applications. It involves an iterative algorithm developed for minimizing a physically motivated ‘energy’ measure, in the frequency domain, of the ARMA approximation of an AR representation of the target spectrum. The iterative algorithm can be used to adjust, for better spectral matching, the parameters of an arbitrary ARMA approximation of the random process determined by any other method; this is accomplished without increasing the requisite order of the ARMA approximation. The efficiency of the proposed method is demonstrated by considering spectra which are commonly used in earthquake engineering and ocean engineering.  相似文献   

15.
目前液体检查是地铁、机场安检工作中极为迫切的需求。本文提出了一种全新的基于全局和局部特征的高原子序数液体容器识别方法。该方法基于全局区域提取其组合矩特征,在识别初期首先迅速找到与模型库中相似的物品和差异较小的姿态,然后根据局部特征即容器壁投影特征和瓶底特征进行判断和提高识别精度。实验结果证明,该方法很好地结合了目标的整体和局部信息,能够解决容器在与高原子序数物品局部遮挡问题,同时具有较高的识别精度。  相似文献   

16.
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.  相似文献   

17.
基于小波包分解和模糊聚类的网格结构损伤诊断方法   总被引:4,自引:1,他引:3  
本文针对网格结构的特点,利用其在快速正弦扫频激励下的动力响应,基于小波包分解频带能量分析和模糊聚类法,提出了一种适合于网格结构的损伤诊断方法。利用两个传感器损伤信息的联合诊断,有效地解决了使用一个传感器无法检测出对称损伤的难题。利用有限元模拟,应用上述方法对一单层球面网壳结构进行了损伤诊断。结果表明,对网壳杆件较小程度的损伤,子频带能量成分变化敏感,用其构造诊断向量和建立损伤样本库,并进行模糊聚类和目标识别,基本可以正确地识别出网壳杆件的损伤位置和程度。同时该方法测试时间短,使用设备少,有可靠的理论基础,具有一定的工程应用参考价值。  相似文献   

18.
双能X射线骨密度仪系统具有测量精度高、时间短、剂量低等独特优势,是目前X射线骨密度测定技术的“金标准”。本文采用半导体CdZnTe探测器模块搭建半导体光子计数骨密度能谱测量平台,针对CdZnTe半导体探测器信号特点,使用移动最小二乘算法进行不同材料高低能拟合校正。移动最小二乘算法通过权函数改变目标数据点周围节点对其影响程度,可以让数据点的拟合方向更具灵活性。研究分析移动最小二乘算法对双能X射线骨密度测量数值的数据处理流程,完成基于移动最小二乘高低能拟合校正算法的骨密度测量实验。实验结果表明,本文所设计实现的基于移动最小二乘算法的骨密度双能拟合技术在实际应用中能达到较好的拟合误差精度,其中探测器像素单元在高能条件下拟合平均误差为0.032%,低能条件下拟合平均误差为0.036%。进一步数据分析表明,边缘像素单元与中心像素单元在高低能条件下的拟合误差差异仅为0.012%和0.011%。该算法能够有效提高半导体光子计数探测器的骨密度测量精度,降低探测器边缘像素单元信号不均匀性差异带来的误差影响,对目前线阵或面阵光子计数半导体探测器像素差异对骨密度诊断的影响具有良好的改善作用。   相似文献   

19.
Localization of fractured areas is of primary interest in the study of oil and gas geology in carbonate environments. Hydrocarbon reservoirs in these environments are embedded within an impenetrable rock matrix but possess a rich system of various microheterogeneities, i.e., cavities, cracks, and fractures. Cavities accumulate oil, but its flow is governed by a system of fractures. A distinctive feature of wave propagation in such media is the excitation of the scattered/diffracted waves by the microheterogeneities. This scattering could be a reliable attribute for characterization of the fine structure of reservoirs, but it has extremely low energy and any standard data processing renders them practically invisible in comparison with images produced by specular reflections. Therefore, any attempts to use these waves for image congestion of microheterogeneities should first have a preliminary separation of the scattering and specular reflections. In this paper, the approach to performing this separation is based on the asymmetric summation. It is implemented by double focusing of Gaussian beams. To do this, the special weights are computed by propagating Gaussian beams from the target area towards the acquisition system separately for sources and receivers. The different mutual positioning of beams in each pair introduces a variety of selective images that are destined to represent some selected singular primitives of the target objects such as fractures, cavities, and edges. In this way, one can construct various wave images of a target reservoir, particularly in scattered/diffracted waves. Additional removal of remnants of specular reflections is done by means of spectral analysis of the scattered/diffracted waves' images to recognize and cancel extended lineaments. Numerical experiments with Sigsbee 2A synthetic seismic data and some typical structures of the Yurubcheno‐Tokhomskoye oil field in East Siberia are presented and discussed.  相似文献   

20.
Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号