首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The AHI-FSA (Advanced Himawari Imager - Fire Surveillance Algorithm) is a recently developed algorithm designed to support wildfire surveillance and mapping using the geostationary Himawari-8 satellite. At present, the AHI-FSA algorithm has only been tested on a number of case study fires in Western Australia. Initial results demonstrate potential as a wildfire surveillance algorithm providing high frequency (every 10 minutes), multi-resolution fire-line detections. This paper intercompares AHI-FSA across the Northern Territory of Australia (1.4 million km2) over a ten-day period with the well-established fire products from LEO (Low Earth Orbiting) satellites: MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite). This paper also discusses the difficulties and solutions when comparing high temporal frequency fire products with existing low temporal resolution LEO satellite products. The results indicate that the multi-resolution approach developed for AHI-FSA is successful in mapping fire activity at 500?m. When compared to the MODIS, daily AHI-FSA omission error was only 7%. High temporal frequency data also results in AHI-FSA observing fires, at times, three hours before the MODIS overpass with much-enhanced detail on fire movement.  相似文献   

2.
陈洁  郑伟  刘诚  唐世浩 《遥感学报》2021,25(10):2095-2102
随着新一代静止气象卫星的发射,高频次和高时效的观测特性对于火点探测具有独特优势。本文基于Himawari-8新一代静止气象卫星高频次观测特点,提出有利于火情初期火点判识的时序探测方法。与传统的极轨气象卫星遥感火情监测采用的上下文法不同,时序探测法判识火点的方法依据为探测像元亮温在观测时间上的差异。研究结果显示,在无云及无异常热源条件下,相邻时次中红外亮温差异较小,当前后时次亮温差达到3K时,可判识出火点,而上下文法的阈值均在6 K以上,时序法的火点判识阈值较上下文法明显降低,探测相应的亚像元火点面积减小一倍以上,从而提高了火情判识的灵敏度,实现火点早期发现。本文介绍了时序法火点判识方法,并以黑龙江桦川县的星地同步观测实验进行验证,研究表明,时序法较上下文法在初发火点探测灵敏度方面有明显优势,时序法和上下文法的结合可提高气象卫星对火情发展过程的监测能力。  相似文献   

3.
饶月明  王川  黄华国 《遥感学报》2020,24(5):559-570
森林火灾既严重影响森林生态系统的稳定,还威胁到人类生命财产安全。传统监测森林火灾方法,覆盖范围小,难以及时监测小面积火灾。遥感卫星能大范围精确监测火情,提高了监测方法的时效性,但使用单一卫星数据源很容易受到云雨等客观环境因素影响,降低监测的时效性。本文以四川木里藏族自治县"330森林火灾"区域为对象,开展多源卫星遥感数据对小范围火灾联合监测的研究。首先,充分挖掘高分四号高时空分辨率和中红外火烧敏感波段优势,联合烟幕、温度和植被指数时序变化确定火烧时间与位置;然后,使用Sentinel-2数据监测不同火烧区域光谱信息;接着,使用Sentinel-2数据提取dNBR(differenced Normalized Burn Ratio),提出了基于最大类间方差算法(OTSU)分步骤确定不同程度火烧迹地与面积的方法;最后,建立Sentinel-1A极化比值PR (Polarization Ratio)和NDVI之间关系,利用微波雷达突破云雨限制。结果表明:(1)高分四号联合IRS(InfraRed Scanner)和PMS(Panchromatic Multispectral Sensor)能够实时监测小范围火灾;(2)根据火点位置,确定火灾蔓延期间NDVI下降(由0.7降低至0.25),确定起火时间(3月30日);(3)火灾区域与未受灾区,以及不同类型火烧迹地之间的光谱在490—2200 nm范围存在差异;(4)基于OTSU算法自动确定阈值,确定林地损失面积41.56公顷(dNBR=0.35),精度达94.67%,提取林地过火未损失面积66.56公顷(dNBR=0.10),精度达90.94%,林地损失区域基本符合实际调查结果;(5)火灾前后极化比值由6.6 dB升高至10.8 dB,NDVI与PR经线性回归,R2=0.58,验证R2=0.50。联合多源卫星监测森林火灾,能提高森林火灾监测的时效性,避免了云雨等复杂环境的影响。研究成果能为小火点的及时识别和灾害评估提供参考,其应用可为林火应急响应提供技术支撑。  相似文献   

4.
Fires threaten human lives, property and natural resources in Southern African savannas. Due to warming climate, fire occurrence may increase and fires become more intense. It is crucial, therefore, to understand the complexity of spatiotemporal and probabilistic characteristics of fires. This study scrutinizes spatiotemporal characteristics of fires and the role played by abiotic, biotic and anthropogenic factors for fire probability modelling in a semiarid Southern African savanna environment. The MODIS fire products: fire hot spots (MOD14A2 and MYD14A2) and burned area product MODIS (MCD45A1), and GIS derived data were used in analysis. Fire hot spots occurrence was first analysed, and spatial autocorrelation for fires investigated, using Moran's I correlograms. Fire probability models were created using generalized linear models (GLMs). Separate models were produced for abiotic, biotic, anthropogenic and combined factors and an autocovariate variable was tested for model improvement. The hierarchical partitioning method was used to determine independent effects of explanatory variables. The discriminating ability of models was evaluated using area under the curve (AUC) from the receiver operating characteristic (ROC) plot. The results showed that 19.2–24.4% of East Caprivi burned when detected using MODIS hot spots fire data and these fires were strongly spatially autocorrelated. Therefore, the autocovariate variable significantly improved fire probability models when added to them. For autologistic models, i.e. models accounting for spatial autocorrelation, discrimination was good to excellent (AUC 0.858–0.942). For models not counting spatial autocorrelation, prediction success was poor to moderate (AUC 0.542–0.745). The results of this study clearly showed that spatial autocorrelation has to be taken in to account in the fire probability model building process when using remotely sensed and GIS derived data. This study also showed that fire probability models accounting for spatial autocorrelation proved to be superior in regional scale burned area estimation when compared with MODIS burned area product (MCD45A1).  相似文献   

5.
Radiant temperature images from thermal remote sensing sensors are used to delineate surface coal fires, by deriving a cut-off temperature to separate coal-fire from non-fire pixels. Temperature contrast of coal fire and background elements (rocks and vegetation etc.) controls this cut-off temperature. This contrast varies across the coal field, as it is influenced by variability of associated rock types, proportion of vegetation cover and intensity of coal fires etc. We have delineated coal fires from background, based on separation in data clusters in maximum v/s mean radiant temperature (13th band of ASTER and 10th band of Landsat-8) scatter-plot, derived using randomly distributed homogeneous pixel-blocks (9 × 9 pixels for ASTER and 27 × 27 pixels for Landsat-8), covering the entire coal bearing geological formation. It is seen that, for both the datasets, overall temperature variability of background and fires can be addressed using this regional cut-off. However, the summer time ASTER data could not delineate fire pixels for one specific mine (Bhulanbararee) as opposed to the winter time Landsat-8 data. The contrast of radiant temperature of fire and background terrain elements, specific to this mine, is different from the regional contrast of fire and background, during summer. This is due to the higher solar heating of background rocky outcrops, thus, reducing their temperature contrast with fire. The specific cut-off temperature determined for this mine, to extract this fire, differs from the regional cut-off. This is derived by reducing the pixel-block size of the temperature data. It is seen that, summer-time ASTER image is useful for fire detection but required additional processing to determine a local threshold, along with the regional threshold to capture all the fires. However, the winter Landsat-8 data was better for fire detection with a regional threshold.  相似文献   

6.
ABSTRACT

A vital component of fire detection from remote sensors is the accurate estimation of the background temperature of an area in fire's absence, assisting in identification and attribution of fire activity. New geostationary sensors increase the data available to describe background temperature in the temporal domain. Broad area methods to extract the expected diurnal cycle of a pixel using this temporally rich data have shown potential for use in fire detection. This paper describes an application of a method for priming diurnal temperature fitting of imagery from the Advanced Himawari Imager. The BAT method is used to provide training data for temperature fitting of target pixels, to which thresholds are applied to detect thermal anomalies in 4?μm imagery over part of Australia. Results show the method detects positive thermal anomalies with respect to the diurnal model in up to 99% of cases where fires are also detected by Low Earth Orbiting (LEO) satellite active fire products. In absence of LEO active fire detection, but where a burned area product recorded fire-induced change, this method also detected anomalous activity in up to 75% of cases. Potential improvements in detection time of up to 6?h over LEO products are also demonstrated.  相似文献   

7.
ABSTRACT

The Brazilian Tropical Moist Forest Biome (BTMFB) spans almost 4 million km2 and is subject to extensive annual fires that have been categorized into deforestation, maintenance, and forest fire types. Information on fire types is important as they have different atmospheric emissions and ecological impacts. A supervised classification methodology is presented to classify the fire type of MODerate resolution Imaging Spectroradiometer (MODIS) active fire detections using training data defined by consideration of Brazilian government forest monitoring program annual land cover maps, and using predictor variables concerned with fuel flammability, fuel load, fire behavior, fire seasonality, fire annual frequency, proximity to surface transportation, and local temperature. The fire seasonality, local temperature, and fuel flammability were the most influential on the classification. Classified fire type results for all 1.6 million MODIS Terra and Aqua BTMFB active fire detections over eight years (2003–2010) are presented with an overall fire type classification accuracy of 90.9% (kappa 0.824). The fire type user’s and producer’s classification accuracies were respectively 92.4% and 94.4% (maintenance fires), 88.4% and 87.5% (forest fires), and, 88.7% and 75.0% (deforestation fires). The spatial and temporal distribution of the classified fire types are presented and are similar to patterns reported in the available recent literature.  相似文献   

8.
Detecting fires, which are at their early stages is the first component of effective fire fighting. To date, several algorithms have been proposed to detect fire spots using remote sensing data. Nevertheless, in order to be able to accurately detect small and cool fires, which are very important at the regional scale, most of these algorithms need to be adjusted and improved. In this paper, an agent-based algorithm is presented for regional forest fire detection using bi-temporal MODIS data. The algorithm is designed to be so self-adaptive and consistent that it could be applied to the different pairs of consecutive images taken by the same satellite platform and at the same daytime. The results clearly show that compared with the MODIS contextual algorithm (version 4), the proposed method is more sensitive to small and cool forest fires in Iran.  相似文献   

9.
基于MODIS的重庆森林火灾监测与应用   总被引:1,自引:0,他引:1  
利用MODIS近红外、中红外及热红外的4个波段监测森林火灾,并提出了以MODIS 7波段为主的高温火点直接判别法和非高温火点综合阈值判别法。2006年重庆市森林火灾监测实践证明,该方法在城市森林火灾监测中是可用的。  相似文献   

10.
Active fire detection using satellite thermal sensors usually involves thresholding the detected brightness temperature in several bands. Most frequently used features for fire detection are the brightness temperature in the 4-/spl mu/m wavelength band (T/sub 4/) and the brightness temperature difference between 4- and 11-/spl mu/m bands (/spl Delta/T=T/sub 4/-T/sub 11/). In this letter, the task of active fire detection is examined in the context of a stochastic model for target detection. The proposed fire detection method consists of applying a decorrelation transform in the (T/sub 4/,/spl Delta/T) space. Probability density functions for the fire and background pixels are then computed in the transformed variable space using simulated Moderate Resolution Imaging Spectroradiometer (MODIS) thermal data under different atmospheric humidity conditions and for cases of flaming and smoldering fires. The Pareto curve for each detection case is constructed. Optimal thresholds are derived by minimizing a cost function, which is a weighted sum of the omission and commission errors. The method has also been tested on a MODIS reference dataset validated using high-resolution SPOT images. The results show that the detection errors are comparable with the expected values, and the proposed method performs slightly better than the standard MODIS absolute detection method in terms of the lower cost function.  相似文献   

11.
In India, Jharia Coalfield (JCF) has one of the densest congregations of surface-subsurface coal fires known worldwide. Systematic investigation and quantification of actual scenario of coal fires in JCF is always necessary to plan sustainable mining, industrial growth and environmental remediation on a long term basis. The present approach involves evaluation and mapping of coal fire using ASTER (Advanced Spaceborne Thermal Emission and Reflection) data. Mapping reveals that the area located around western, eastern and south-eastern parts of JCF covering territories of Shatabdi opencast, Barora; Sijua opencast; Godhar colliery; Kusunda; Bokapahari; Kujama and Lodna are under intense fire with cumulative coverage of 6.23 km2. The ASTER derived Land Surface Temperature (LST) of the anomalous areas have been subsequently validated by the field observations, carried out in JCF in February, 2010. The methodology adopted in the present study would provide precise evaluation and monitoring of coal fire in Jharia.  相似文献   

12.
The hills of Uttarakhand witness forest fire every year during the summer season and the number of these fire events is reported to have increased due to increased anthropogenic disturbances as well as changes in climate. These fires cause significant damage to the natural resources which can be mapped and monitored using satellite images by virtue of its synoptic coverage of the landscape and near real time monitoring. This study presents burnt area assessment caused by the fire episode of April 2016 to the forest vegetation. Digital classification of satellite images was done to extract the burnt area which was found to be 3774.14 km2, representing 15.28% of the total forest area of the state. It also gives an account of cumulative progression of forest fire in Uttarakhand using satellite images of three dates viz. 23rd, 27th May and 2nd June, 2016. Results were analyzed at district, administrative and forest division level using overlay analysis. Separate area statistics were given for different categories of biological richness, forest types and protected areas affected by forest fire. The burnt area assessment can be used in mitigation planning to prevent drastic ecological impacts of the forest fire on the landscape.  相似文献   

13.
14.
Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.  相似文献   

15.
NOAA-AVHRR数据在吉林省东部林火信息提取中的应用   总被引:4,自引:0,他引:4  
概述了利用NOAA-AVHRR数据进行林火监测的原理和4种方法。针对吉林省东部的森林火灾,运用4种方法进行了火点信息提取与分析,最后对阈值法进行了改进,提取精度达到了89.2%。分析了NOAA-AVHRR应用于林火遥感监测的可行性和不足。  相似文献   

16.
Forests over Indian region are fire prone during summer season and effective means for monitoring such events is important. Satellite data with its repetitive and wide area coverage provides data sets required for monitoring such events. The advances in sensor technology and multi-satellite systems have improved capability for monitoring such events. The present study addresses forest fires monitoring using night time data sets of ENVISAT-AATSR data over Indian Region. The results of the study indicated that region specific algorithms are required for forest fire detection as soils in tropical regions have higher temperatures during night time.  相似文献   

17.
The presented work describes a methodology that employs artificial neural networks (ANN) and multi-temporal imagery from the MODIS/Terra-Aqua sensors to detect areas of high risk of forest fire in the Brazilian Amazon. The hypothesis of this work is that due to characteristic land use and land cover change dynamics in the Amazon forest, forest areas likely to be burned can be separated from other land targets. A study case was carried out in three municipalities located in northern Mato Grosso State, Brazilian Amazon. Feedforward ANNs, with different architectures, were trained with a backpropagation algorithm, taking as inputs the NDVI values calculated from MODIS imagery acquired during five different periods preceding the 2005 fire season. Selected samples were extracted from areas where forest fires were detected in 2005 and from other non-burned forest and agricultural areas. These samples were used to train, validate and test the ANN. The results achieved a mean squared error of 0.07. In addition, the model was simulated for an entire municipality and its results were compared with hotspots detected by the MODIS sensor during the year. A histogram analysis showed that the spatial distribution of the areas with fire risk were consistent with the fire events observed from June to December 2005. The ANN model allowed a fast and relatively precise method to predict forest fire events in the studied area. Hence, it offers an excellent alternative for supporting forest fire prevention policies, and in assisting the assessment of burned areas, reducing the uncertainty involved in currently used methods.  相似文献   

18.
GF-4 PMI影像着火点自适应阈值分割   总被引:1,自引:0,他引:1  
为探究具有单中波红外通道的高分四号卫星(GF-4)PMI数据在林火监测中的应用方法,通过对覆盖近年发生森林火灾的多景GF-4 PMI影像分析,采用"劈窗法"构建GF-4 PMI数据的着火点自适应阈值检测算法;在云南省玉龙纳西族自治县、俄罗斯阿穆尔州和俄罗斯外贝加尔边疆区等3个实验区进行了着火点检测应用,并以目视解译的着火点结果为参照资料,对该算法的着火点检测精度进行了评价。结果表明,该算法在这3个实验区的着火点检测准确率均高于80.0%,基于着火点检测精度验证设定的综合评价指标高于0.780,可应用于GF-4PMI影像着火点的检测。  相似文献   

19.
Fire danger assessment is a vital issue to alleviate the impacts of wildland fires. In this study, a fire danger assessment system is proposed, which extensively uses geographical databases to characterize the spatial variations of fire danger conditions in Iran. This assessment requires three steps: (i) generation of the required input variables, (ii) methods to integrate those variables for creating synthetic indices and (iii) validation of those indices versus fire occurrence data. This fire danger model is based on previous works but adapted to Iranian conditions. It includes an estimation of the fire ignition potential (both considering human and climatic factors) and fire propagation potential. The former was generated from a logistic regression approach based on a wide range of input variables. The fire propagation probability was estimated from the Flammap fire behavior model. A first stage for validation of our fire danger system was based on comparing the estimated danger values to actual fire occurrence, based on satellite detected active fires and burned areas. The logistic regression model for fire ignition probability estimated 72.7% of true ignitions. Detected hotspots occurred more frequently in areas with higher fire ignition probability (average value: 0.65) than non hotspots (average value: 0.4). Propagation probability showed higher values for areas with higher proportion of burned area (r = 0.68, p < 0.001).  相似文献   

20.
The Western Ghats constitute one of the three biodiversity hot spots in India, which is under constant threat from various quarters. Among the several anthropogenic causes, fire is one of the important anthropogenic factor, which plays a pivotal role in vegetation succession and ecosystem processes. It is very important to understand the ecological changes due to fire and other anthropogenic factors for conservation and management of biodiversity. Because of its synoptic, multi-spectral and multi-temporal nature remote sensing data can be a good source for forest fire monitoring. In the present study, an effort has been made to monitor the burnt areas using March 2000 and 2004 IRS LISS — III data. The study revealed that an area of 2.15 km2 and 4.46 km2 was affected by fire in 2000 and 2004 respectively. Repeated drought, followed by mass flowering and dying of bamboo accelerated the spread of fire from ground to canopy in areas with high bamboo density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号