首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the last decades, increasingly precise astronomical observations of the Galactic Centre (GC) region at radio, infrared, and X-ray wavelengths laid the foundations to a detailed understanding of the high energy astroparticle physics of this most remarkable location in the Galaxy. Recently, observations of this region in high energy (HE, 10 MeV–100 GeV) and very high energy (VHE, > 100 GeV) γ-rays added important insights to the emerging picture of the Galactic nucleus as a most violent and active region where acceleration of particles to very high energies – possibly up to a PeV – and their transport can be studied in great detail. Moreover, the inner Galaxy is believed to host large concentrations of dark matter (DM), and is therefore one of the prime targets for the indirect search for γ-rays from annihilating or decaying dark matter particles. In this article, the current understanding of the γ-ray emission emanating from the GC is summarised and the results of recent DM searches in HE and VHE γ-rays are reviewed.  相似文献   

2.
3.
In this review statistical issues appearing in astrophysical searches for particle dark matter, i.e. indirect detection (dark matter annihilating into standard model particles) or direct detection (dark matter particles scattering in deep underground detectors) are discussed. One particular aspect of these searches is the presence of very large uncertainties in nuisance parameters (astrophysical factors) that are degenerate with parameters of interest (mass and annihilation/decay cross sections for the particles). The likelihood approach has become the most powerful tool, offering at least one well motivated method for incorporation of nuisance parameters and increasing the sensitivity of experiments by allowing a combination of targets superior to the more traditional data stacking. Other statistical challenges appearing in astrophysical searches are to large extent similar to any new physics search, for example at colliders, a prime example being the calculation of trial factors. Frequentist methods prevail for hypothesis testing and interval estimation, Bayesian methods are used for assessment of nuisance parameters and parameter estimation in complex parameter spaces. The basic statistical concepts will be exposed, illustrated with concrete examples from experimental searches and caveats will be pointed out.  相似文献   

4.
The history of cosmic ray studies can be traced back to the 1910s when Hess and other scientists first discovered them. Cosmic rays are very important laboratories of particle physics, and have led to many important discoveries of fundamental particles, such as the positrons, muons, pions, and a series of strange particles. Cosmic rays are nowadays the key probes of the extremely high-energy physics and dark matter particles. A brief review about the history and recent progresses of direct observations of cosmic rays is presented. In recent years, the new space-borne experiments such as PAMELA and AMS-02, as well as a few of balloon-borne experiments, have measured the energy spectra of cosmic rays very precisely, and revealed several new features/anomalies. Remarkable excesses of positron fraction in the total electron plus positron fluxes have been observed, which may be caused by the annihilation/decay of dark matter particles or by astrophysical pulsars. The cosmic ray antiprotons, which are expected to have the same secondary origin as that of positrons, do not show significant excesses compared with the background prediction. This result also constrains the modeling of the positron excesses. In addition, the spectral hardening above several hundred GeV of cosmic ray nuclei has been revealed. These results have important and interesting implications on our understandings of the origin, acceleration, and propagation of cosmic rays. In particular, China has launched the Dark Matter Particle Explorer (DAMPE) to indirectly search for the dark matter and explore the high-energy universe in the TeV window. Most recently, the DAMPE collaborators reported the new measurements of the cosmic ray electron plus positron fluxes up to about 5 TeV with a very high precision. The DAMPE data revealed clearly a deflection around 0.9 TeV in the electron energy spectrum. Possible fine structures of the electron plus positron spectra can be critically addressed with the accumulation of data in the coming years.  相似文献   

5.
宇宙线从发现起至今已超过百年。在20世纪上半叶,大型粒子加速器技术成熟以前,对宇宙线的研究引领着基本粒子物理的发展,从宇宙线研究中取得的多项成果斩获诺贝尔奖。21世纪,宇宙线因其与极端高能的物理规律和暗物质等新物理现象联系密切而绽放出新的活力,宇宙线起源、加速、传播等相关的天文学及物理学问题也备受关注。简述了近年来在空间直接观测宇宙线实验方面取得的进展,以及其对理解宇宙线物理问题的推动。最后概述了中国在相关领域的研究历程和现状。  相似文献   

6.
The CTA will mean a significant increase of the potential for dark matter detection, compared to present-day detectors like MAGIC, HESS and VERITAS. In particular, if – as it might be indicated from early LHC results – the dark matter sector is heavy, perhaps in the TeV mass range, imaging air Cherenkov arrays have a good opportunity to detect γ-rays from dark matter annihilation in the galactic halo, the galactic center, dwarf galaxies, or galaxy clusters. A review of the present situation is given and a few of the “miracles” that may enhance chances for detection in CTA are discussed, such as Sommerfeld enhancement and internal bremsstrahlung radiation. A few templates for dark matter are studied, and the importance of the acceptance of the detector at low energies is pointed out. Finally, the idea of a complement to CTA in the form of a high-altitude, low energy threshold dedicated dark matter array, DMA, is discussed.  相似文献   

7.
Fermi卫星对GeV能段的河外伽马射线背景(Extragalactic Gamma-ray Background, EGB)进行了较为精确的测量, 极大提高了对高能伽马射线背景的认识, 但是在TeV能段, 使用空间探测器进行观测非常困难, 只能依赖地面伽马射线探测器, 如成像大气切伦科夫望远镜. 目前, 对于TeV能段的河外伽马射线背景的认识还不完善. 使用有低活跃状态能谱的61个TeV源(包含2个星暴星系、6个射电星系以及53个耀变体)的累计流量给出河外TeV伽马射线背景的下限. 结果显示, 低能段(0.5--4.5TeV)流量由两个临近的耀变体Mrk 421和Mrk 501主导, 贡献了大约58%的累计背景流量; 而大于4.5TeV的能段, 由3个已观测到10TeV以上能段流量的极端耀变体H 1426+428、1ES 1959+650以及1ES 0229+200主导. 最后分别探究了星暴星系、射电星系以及耀变体对河外TeV伽马射线背景的贡献, 不同耀变体子类对河外TeV伽马射线背景的贡献以及不同红移区间TeV源对河外伽马射线背景的贡献.  相似文献   

8.
We outline the science prospects for gamma-ray bursts (GRBs) with the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory operating at energies above few tens of GeV. With its low energy threshold, large effective area and rapid slewing capabilities, CTA will be able to measure the spectra and variability of GRBs at multi-GeV energies with unprecedented photon statistics, and thereby break new ground in elucidating the physics of GRBs, which is still poorly understood. Such measurements will also provide crucial diagnostics of ultra-high-energy cosmic ray and neutrino production in GRBs, advance observational cosmology by probing the high-redshift extragalactic background light and intergalactic magnetic fields, and contribute to fundamental physics by testing Lorentz invariance violation with high precision. Aiming to quantify these goals, we present some simulated observations of GRB spectra and light curves, together with estimates of their detection rates with CTA. Although the expected detection rate is modest, of order a few GRBs per year, hundreds or more high-energy photons per burst may be attainable once they are detected. We also address various issues related to following up alerts from satellites and other facilities with CTA, as well as follow-up observations at other wavelengths. The possibility of discovering and observing GRBs from their onset including short GRBs during a wide-field survey mode is also briefly discussed.  相似文献   

9.
We exclude hydrogen-burning stars, of any mass above the hydrogen-burning limit and any metallicity, as significant contributors to the massive haloes deduced from rotation curves to dominate the outer parts of spiral galaxies. We present and analyse images of four nearly edge-on bulgeless spiral galaxies (UGC 711, NGC 2915, UGC 12426, UGC 1459) obtained with ISOCAM (The CAMera instrument on board the Infrared Space Observatory ) at 14.5 and 6.75 μm. Our sensitivity limit for detection of any diffuse infrared emission associated with the dark haloes in these galaxies is a few tens of μJy per 6 × 6 arcsec2 pixel, with this limit currently set by remaining difficulties in modelling the non-linear behaviour of the detectors. All four galaxies show zero detected signal from extended non-disc emission, consistent with zero halo-like luminosity density distribution. The 95 per cent upper limit on any emission, for NGC 2915 in particular, allows us to exclude very low mass main-sequence stars ( M  > 0.08 M⊙) and young brown dwarfs (≲1 Gyr) as significant contributors to dark matter in galactic haloes. Combining our results with those of the Galactic microlensing surveys, which exclude objects with M  < 0.01 M⊙, excludes almost the entire possible mass range of compact baryonic objects from contributing to Galactic dark matter.  相似文献   

10.
11.
The observational progress in the γ-ray astronomy in the last few years has led to the discovery of more than a thousand sources at GeV energies and more than a hundred sources at TeV energies. A few different classes of compact objects in the Galaxy have been established. They show many unexpected features at high energies the physics of which remains mainly unknown. At present it is clear that detailed investigation of these new phenomena can be performed only with the technical equipment which offer an order of magnitude better sensitivity, and a few times better energy, angular and time resolution in the broad energy range staring from a few tens of GeV up to a few hundreds TeV. Such facilities can be realized by the next generation of instruments such as the planned Cherenkov Telescope Array (CTA).The aim of this report is to summarize up to date observational results on the compact galactic sources in the GeV–TeV γ-ray energy range, discuss their theoretical implications, and indicate which hypothesis considered at present might be verified with the next generation of telescopes. We point out which of the observational features of the γ-ray sources are important to investigate with special care with the planned CTA in order to throw new light on physical processes involved. Their knowledge should finally allow us to answer the question on the origin of energetic particles in our Galaxy.  相似文献   

12.
13.
We study annihilation radiation of neutralinos in the Galactic Centre, assuming the existence of a 'spike' in the dark matter density profile, caused by adiabatic accretion on to the massive black hole lying at the Galactic Centre. Under this assumption we find that it is possible to reproduce the observed SgrA* emission at radio and gamma-ray frequencies in a consistent scenario with a magnetic field close to the equipartition strength and with values of γ (the density profile power-law index) around 0.1.  相似文献   

14.
Summary The discovery of giant gravitational arcs and arclets in rich clusters of galaxies is one of the major events of the last decade in observational cosmology. High resolution imaging in subarcsecond seeing conditions of giant arcs gives information on the cluster potential and the matter distribution within the inner regions of clusters. Ultra-deep photometry of the clusters reveals numerous arclets with an orthoradial orientation from which one can infer the projected mass profile at large distance and the redshift distribution of the faintest distant background galaxies which are unobservable with standard spectroscopic techniques. Thanks to the strong magnification factor, the spectroscopy of giant arcs is possible and we can therefore observe with great detail a few very distant galaxies. Individual redshifts of arcs give the total mass of the lens, whereas the spectroscopy of a large sample of arcs also gives information on the redshift distribution of distant galaxies. It is obvious that cluster lenses play an important role as large natural telescopes for probing the distant universe. Finally, observations of multiple-arc configurations due to different sources may even constrain the cosmological parameters. We are now confident that gravitational lensing will be an essential tool within the next decade for observing very high redshift galaxies and the weak shear generated by the largest structures of the universe.In this review we summarize the present status of gravitational arc(let)s surveys with particular emphasis on the most important issues which have arisen during the last years and on the prospects for the future, regarding the rebirth of the Hubble Space Telescope, the coming of a new generation of Very Large Telescopes, and the development of large CCDs in the optical and the infrared.  相似文献   

15.
The third EGRET catalog contains a large number of unidentified sources. This subset of objects is expected to include known gamma-ray emitters of Galactic origin such as pulsars and supernova remnants, in addition to an extragalactic population of blazars. However, current data allows the intriguing possibility that some of these objects may represent a new class of yet undiscovered gamma-ray sources. Many theoretically motivated candidate emitters (e.g. clumps of annihilating dark matter particles) have been suggested to account for these detections. We take a new approach to determine to what extent this population is Galactic and to investigate the nature of the possible Galactic component. By assuming that galaxies similar to the Milky Way should host comparable populations of objects, we constrain the allowed Galactic abundance and distribution of various classes of gamma-ray sources using the EGRET data set. We find it is highly improbable that a large number of the unidentified sources are members of a Galactic halo population, but that a distribution of the sources entirely in the disk and bulge is plausible. Finally, we discuss the additional constraints and new insights that GLAST will provide.  相似文献   

16.
In regions of very high dark matter density such as the Galactic Centre, the capture and annihilation of WIMP dark matter by stars has the potential to significantly alter their evolution. We describe the dark stellar evolution code D ark S tars , and present a series of detailed grids of WIMP-influenced stellar models for main-sequence stars. We describe the changes in stellar structure and main-sequence evolution which occur as a function of the rate of energy injection by WIMPs, for masses of  0.3–2.0 M  and metallicities   Z = 0.0003–0.02  . We show what rates of energy injection can be obtained using realistic orbital parameters for stars at the Galactic Centre, including detailed consideration of the velocity and density profiles of dark matter. Capture and annihilation rates are strongly boosted when stars follow elliptical rather than circular orbits. If there is a spike of dark matter induced by the supermassive black hole at the Galactic Centre, single solar mass stars following orbits with periods as long as 50 yr and eccentricities as low as 0.9 could be significantly affected. Binary systems with similar periods about the Galactic Centre could be affected on even less eccentric orbits. The most striking observational effect of this scenario would be the existence of a binary consisting of a low-mass protostar and a higher mass evolved star. The observation of low-mass stars and/or binaries on such orbits would either provide a detection of WIMP dark matter, or place stringent limits on the combination of the WIMP mass, spin-dependent nuclear-scattering cross-section, halo density and velocity distribution near the Galactic Centre. In some cases, the derived limits on the WIMP mass and spin-dependent nuclear-scattering cross-section would be of comparable sensitivity to current direct-detection experiments.  相似文献   

17.
One explanation for the disparity between cold dark matter (CDM) predictions of galaxy numbers and observations could be that there are numerous dark galaxies in the Universe. These galaxies may still contain baryons, but no stars, and may be detectable in the 21-cm line of atomic hydrogen. The results of surveys for such objects, and simulations that do/do not predict their existence, are controversial. In this paper, we use an analytical model of galaxy formation, consistent with CDM, to first show that dark galaxies are certainly a prediction of the model. Secondly, we show that objects like VIRGOHI21, a dark galaxy candidate recently discovered by us, while rare are predicted by the model. Thirdly, we show that previous 'blind' H  i surveys have placed few constraints on the existence of dark galaxies. This is because they have either lacked the sensitivity and/or velocity resolution or have not had the required detailed optical follow up. We look forward to new 21-cm blind surveys [Arecibo Legacy Fast ALFA (ALFALFA) survey and Arecibo Galactic Environments Survey (AGES)] using the Arecibo multibeam instrument which should find large numbers of dark galaxies if they exist.  相似文献   

18.
There are a number of theoretical and observational hints that large numbers of low-mass galaxies composed entirely of dark matter exist in the field. The theoretical considerations follow from the prediction of cold dark matter theory that there exist many low-mass galaxies for every massive one. The observational considerations follow from the observed paucity of these low-mass galaxies in the field but not in dense clusters of galaxies; this suggests that the lack of small galaxies in the field is due to the inhibition of star formation in the galaxies as opposed to the fact that their small dark matter haloes do not exist. In this work we outline the likely properties of low-mass dark galaxies, and describe observational strategies for finding them, and where in the sky to search. The results are presented as a function of the global properties of dark matter, in particular the presence or absence of a substantial baryonic dark matter component. If the dark matter is purely cold and has a Navarro, Frenk & White density profile, directly detecting dark galaxies will only be feasible with present technology if the galaxy has a maximum velocity dispersion in excess of 70 km s−1, in which case the dark galaxies could strongly lens background objects. This is much higher than the maximum velocity dispersions in most dwarf galaxies. If the dark matter in galaxy haloes has a baryonic component close to the cosmic ratio, the possibility of directly detecting dark galaxies is much more realistic; the optimal method of detection will depend on the nature of the dark matter. A number of more indirect methods are also discussed.  相似文献   

19.
In this paper, we present high-energy neutrino spectra from 21 Galactic supernova remnants (SNRs), derived from gamma-ray measurements in the GeV–TeV range. We find that only the strongest sources, i.e. G40.5-0.5 in the north and Vela Junior in the south could be detected as single point sources by IceCube or KM3NeT, respectively. For the first time, it is also possible to derive a diffuse signal by applying the observed correlation between gamma-ray emission and radio signal. Radio data from 234 supernova remnants listed in Green’s catalog are used to show that the total diffuse neutrino flux is approximately a factor of 2.5 higher compared to the sources that are resolved so far. We show that the signal at above 10 TeV energies can actually become comparable to the diffuse neutrino flux component from interactions in the interstellar medium. Recently, the IceCube collaboration announced the detection of a first diffuse signal of astrophysical high-energy neutrinos. Directional information cannot unambiguously reveal the nature of the sources at this point due to low statistics. A number of events come from close to the Galactic center and one of the main questions is whether at least a part of the signal can be of Galactic nature. In this paper, we show that the diffuse flux from well-resolved SNRs is at least a factor of 20 below the observed flux.  相似文献   

20.
This paper reports the results from three targeted searches of Milagro TeV sky maps: two extragalactic point source lists and one pulsar source list. The first extragalactic candidate list consists of 709 candidates selected from the Fermi-LAT 2FGL catalog. The second extragalactic candidate list contains 31 candidates selected from the TeVCat source catalog that have been detected by imaging atmospheric Cherenkov telescopes (IACTs). In both extragalactic candidate lists Mkn 421 was the only source detected by Milagro. This paper presents the Milagro TeV flux for Mkn 421 and flux limits for the brighter Fermi-LAT extragalactic sources and for all TeVCat candidates. The pulsar list extends a previously published Milagro targeted search for Galactic sources. With the 32 new gamma-ray pulsars identified in 2FGL, the number of pulsars that are studied by both Fermi-LAT and Milagro is increased to 52. In this sample, we find that the probability of Milagro detecting a TeV emission coincident with a pulsar increases with the GeV flux observed by the Fermi-LAT in the energy range from 0.1 GeV to 100 GeV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号