首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study evaluated the utility of narrowband (EO-1 Hyperion) and broadband (Landsat ETM+) remote sensing data for the estimation of leaf area index (LAI) in a tropical environment in Sulawesi, Indonesia. LAI was inferred from canopy gap fraction measurements taken in natural tropical forest and cocoa plantations. Single and multiple spectral bands and spectral indices were used as predictor variables in reduced major axis (RMA) and ordinary least squares (OLS) regression models. The predictive power of most regression models was notably higher when employing narrowband data instead of broadband data. Highly significant relationships between LAI and spectral reflectance were observed near the red-edge region and in most shortwave infrared (SWIR) bands. In contrast to most near-infrared (NIR) narrow bands, the correlation between SWIR reflectance and LAI was not confounded when including both vegetation types and did not suffer from saturation. The results demonstrate that leaf area index of a challenging tropical environment can be estimated with satisfactory accuracy from hyperspectral remote sensing data.  相似文献   

2.
Motivated by the increasingly availability and importance of hyperspectral remote sensing data, this study aims to determine whether current generation narrowband hyperspectral remote sensing data could be used to estimate vegetation Leaf Area Index (LAI) accurately than the traditional broadband multispectral data. A comparative study has been carried out to evaluate the performance of the narrowband Normalized Difference Vegetation Index (NDV1) derived from Hyperion hyperspectral sensor with that of derived from IRS LISS-III for the estimation of LAI of some major agricultural crops (e.g. cotton, sugarcane and rice) in part of Guntur district, India. It has been found that the narrowband NDVI derived from Hyperion has shown better results over its counterpart derived from broadband LISS-III. Linear regression models have been used which with selected subsets of individual Hyperion bands performed better to predict LAI than those based on the broadband datasets, although the potential to overfit models using the large number of available Hyperion bands is a concern for further research.  相似文献   

3.
Because of the pointing capability of the Hyperion/Earth Observing-One (EO-1) to improve the revisit time of the scene, temporal series of narrowband vegetation indices (VIs) can be generated to study the phenology of the Amazonian tropical forests. In this study, 10 selected narrowband VIs calculated from Hyperion nadir and off-nadir data and from different view directions (forward scattering and backscattering) were analyzed for their sensitivity to view-illumination effects along the dry season on the Seasonal Semi-deciduous Forest. Data analysis was also supported by PROSAIL modeling to simulate the spectral response of this forest type in both directions. Hyperion and PROSAIL results showed that the Enhanced Vegetation Index (EVI) and Photochemical Reflectance Index (PRI) were the two more anisotropic VIs, whereas the Normalized Difference Vegetation Index (NDVI), Structure Insensitive Pigment Index (SIPI) and the Vogelmann Red Edge Index (VOG) were comparatively less sensitive to view-illumination effects. When compared to the other VIs and because of the greater dependence on the near-infrared (NIR) reflectance, EVI showed a different spectral behavior. EVI increased from forward scattering to backscattering and with decreasing solar zenith angle (SZA) towards the end of the local dry season, due to reduction in shading and enhancement of the illumination effects. On the other hand, PRI was higher with increasing shading in the forward scattering direction, as deduced from the PROSAIL simulation. Results emphasized the importance of taking into account bidirectional effects when analyzing temporal series of VIs collected over tropical forests by imaging spectrometers with pointing capability or even by multispectral sensors with large field-of-view (FOV).  相似文献   

4.
ABSTRACT

We designed a unique hyperspectral experiment from the Earth Observing One (EO-1) orbit change to evaluate solar illumination effects over tropical forests in Brazil. Ten nadir-viewing Hyperion images collected over a fixed site and period of the year (July to August) were selected for analysis. We evaluated variations in reflectance and in 16 narrowband vegetation indices (VIs) with increasing solar zenith angle (SZA) from the pre-drift (2004–2008) to the EO-1 drift period (2011–2016). To detect changes in reflectance and shadows, we applied spectral mixture analysis (SMA) and principal component analysis (PCA) and calculated the similarity spectral angle (θ) between the vegetation spectra measured with variable SZA. The magnitude of the illumination effects was also evaluated from change-point analysis and nonparametric Mann-Whitney U tests applied over the time series. Finally, we complemented our experiment using the PROSAIL model to simulate the VIs variation with increasing SZA resultant from satellite drift. The results showed significant changes in Hyperion reflectance and VIs, especially when the EO-1 crossed the study area at earlier times and larger SZA in 2015 (9:05 a.m.; SZA = 59°) and 2016 (8:30 a.m.; SZA = 67°). Compared to the pre-drift period (10:30 a.m.; SZA = 45°), the SZA differences of 14° (2015) and 22° (2016) increased the shade fractions and decreased the vegetation brightness. PCA separated the pre-drift and drift reflectance datasets, showing shifts in scores due to changes in brightness. θ increased with SZA, indicating changes in the shape of the vegetation spectra with drift. For most VIs, the change-point analysis indicated 2015 (SZA = 59°) as the predominant year of detected changes. Compared to the EO-1 original orbit, the Plant Senescence Reflectance Index (PSRI), Anthocyanin Reflectance Index (ARI) and Structure Insensitive Pigment Index (SIPI) presented the largest positive changes during drift, while the Photochemical Reflectance Index (PRI), Visible Atmospherically Resistant Index (VARI) and Enhanced Vegetation Index (EVI) had the largest negative changes. The effect size of the illumination geometry on these VIs was large, as indicated by increasing values of the Cohen’s r metric toward 2016. The anisotropy of the Hyperion VIs was generally consistent with that from PROSAIL in the simulated pre-drift and drift periods. Focusing on structural indices, it affected the relationships between VIs and simulated leaf area index (LAI) at large SZA.  相似文献   

5.
A commercially available digital camera can be used in a low-cost automatic observation system for monitoring crop growth change in open-air fields. We developed a prototype Crop Phenology Recording System (CPRS) for monitoring rice growth, but the ready-made waterproof cases that we used produced shadows on the images. After modifying the waterproof cases, we repeated the fixed-point camera observations to clarify questions regarding digital camera-derived vegetation indices (VIs), namely, the visible atmospherically resistant index (VARI) based on daytime normal color images (RGB image) and the nighttime relative brightness index (NRBINIR) based on nighttime near infrared (NIR) images. We also took frequent measurements of agronomic data such as plant length, leaf area index (LAI), and aboveground dry matter weight to gain a detailed understanding of the temporal relationship between the VIs and the biophysical parameters of rice. In addition, we conducted another nighttime outdoor experiment to establish the link between NRBINIR and camera-to-object distance. The study produced the following findings. (1) The customized waterproof cases succeeded in preventing large shadows from being cast, especially on nighttime images, and it was confirmed that the brightness of the nighttime NIR images had spatial heterogeneity when a point light source (flashlight) was used, in contrast to the daytime RGB images. (2) The additional experiment using a forklift showed that both the ISO sensitivity and the calibrated digital number of the NIR (cDNNIR) had significant effects on the sensitivity of NRBINIR to the camera-to-object distance. (3) Detailed measurements of a reproductive stem were collected to investigate the connection between the morphological feature change caused by the panicle sagging process and the downtrend in NRBINIR during the reproductive stages. However, these agronomic data were not completely in accord with NRBINIR in terms of the temporal pattern. (4) The time-series data for the LAI, plant length, and aboveground dry matter weight could be well approximated by a sigmoid curve based on NRBINIR and VARI. The results confirmed that NRBINIR was more sensitive to all of the agronomic data for overall season, including the early reproductive stages. VARI had an especially high correlation with LAI, unless yellow panicles appeared in the field of view.  相似文献   

6.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled.  相似文献   

7.
陈拉  黄敬峰  王秀珍 《遥感学报》2008,12(1):143-151
本研究利用水稻冠层高光谱数据,模拟NOAA-AVHRR,Terra-MODIS和Landsat-TM的可见光波段反射率数据,计算各传感器的多种植被指数(NDVI,RVI,EVI,GNDVI,GRVI和Red-edge RVI),比较植被指数模型对水稻LAI的估测精度,分析不同植被指数对LAI变化的敏感性.相对于红波段植被指数,红边比值植被指数(Red-edge RVI)和绿波段指数GRVI与LAI有更好的线性相关关系,而GNDVI和LAI呈现更好的对数相关关系.MODIS的Red-edge RVI指数不仅模型拟合的精度最高,还有独立数据验证的估测精度也最高,而且它的验证精度较拟合精度下降幅度最小;其次是绿波段构建的GNDVI和GRVI植被指数的估测精度,再次是NDVI和EVI的估测精度,而RVI的估测精度最差.敏感性分析发现,13个植被指数对水稻LAI的估测能力都随着LAI的增加而下降,但归一化类植被指数和比值类植被指数对LAI变化反应的差异明显,归一化类植被指数在LAI较低时(LAI<1.5)对LAI变化的反应开始非常敏感,但迅速下降,而比值类植被指数在LAI较低时,明显小于归一化类植被指数,之后随着LAI的增大(LAI>1.5)比值类植被指数对LAI的变化敏感性,则明显高于归一化类植被指数.Red-edge RVI和绿波段指数GRVI和LAI不仅表现了很好的线性相关关系,而且在LAI大于2.9左右保持较高的敏感性.  相似文献   

8.
Spectral invariants provide a novel approach for characterizing canopy structure in forest reflectance models and for mapping biophysical variables using satellite images. We applied a photon recollision probability (p) based forest reflectance model (PARAS) to retrieve leaf area index (LAI) from fine resolution SPOT HRVIR and Landsat ETM+ satellite data. First, PARAS was parameterized using an extensive database of LAI-2000 measurements from five conifer-dominated boreal forest sites in Finland, and mixtures of field-measured forest understory spectra. The selected vegetation indices (e.g. reduced simple ratio, RSR), neural networks and kNN method were used to retrieve effective LAI (Le) based on reflectance model simulations. For comparison, we established empirical vegetation index-LAI regression models for our study sites. The empirical RSR–Le regression performed best when applied to an independent test site in southern Finland [RMSE 0.57 (24.2%)]. However, the difference to the best reflectance model based retrievals produced by neural networks was only marginal [RMSE 0.59 (25.1%)]. According to this study, the PARAS model provides a simple and flexible modelling tool for calibrating algorithms for LAI retrieval in conifer-dominated boreal forests. The advantage of PARAS is that it directly uses field measurements to parameterize canopy structure (LAI-2000, hemispherical photographs) and optical properties of foliage and understory.  相似文献   

9.
The retrieval of canopy biophysical variables is known to be affected by confounding factors such as plant type and background reflectance. The effects of soil type and plant architecture on the retrieval of vegetation leaf area index (LAI) from hyperspectral data were assessed in this study. In situ measurements of LAI were related to reflectances in the red and near-infrared and also to five widely used spectral vegetation indices (VIs). The study confirmed that the spectral contrast between leaves and soil background determines the strength of the LAI–reflectance relationship. It was shown that within a given vegetation species, the optimum spectral regions for LAI estimation were similar across the investigated VIs, indicating that the various VIs are basically summarizing the same spectral information for a given vegetation species. Cross-validated results revealed that, narrow-band PVI was less influenced by soil background effects (0.15 ≤ RMSEcv ≤ 0.56). The results suggest that, when using remote sensing VIs for LAI estimation, not only is the choice of VI of importance but also prior knowledge of plant architecture and soil background. Hence, some kind of landscape stratification is required before using hyperspectral imagery for large-scale mapping of vegetation biophysical variables.  相似文献   

10.
The aim of this study is to estimate leaf area index (LAI) in different type of plants using vegetation indices (VIs) and neural network algorithms retrieved from MODIS data. Four VI were calculated, and neural networks were built up based on MODIS surface reflectance products. Among the tested VIs, normalized difference vegetation index (NDVI) and chlorophyll index (CI) appeared to be the best candidate indices in estimating LAI across sites with different vegetation types. The models having the highest accuracy were CI for grassland and deciduous broad leaf forest with determination coefficients (R-square above 0.70, and NDVI for crop R-square?=?0.78). Neural network showed better results than VI methods except in grassland sites. The added VI information showed no significant improvement of model accuracy for the neural networks in most sites.  相似文献   

11.
Remote sensing images are widely used to map leaf area index (LAI) continuously over landscape. The objective of this study is to explore the ideal image features from Chinese HJ-1 A/B CCD images for estimating winter wheat LAI in Beijing. Image features were extracted from such images over four seasons of winter wheat growth, including five vegetation indices (VIs), principal components (PC), tasseled cap transformations (TCT) and texture parameters. The LAI was significantly correlated with the near-infrared reflectance band, five VIs [normalized difference vegetation index, enhanced vegetation index (EVI), modified nonlinear vegetation index (MNLI), optimization of soil-adjusted vegetation index, and ratio vegetation index], the first principal component (PC1) and the second TCT component (TCT2). However, these image features cannot significantly improve the estimation accuracy of winter wheat LAI in conjunction with eight texture measures. To determine the few ideal features with the best estimation accuracy, partial least squares regression (PLSR) and variable importance in projection (VIP) were applied to predict LAI values. Four remote sensing features (TCT2, PC1, MNLI and EVI) were chosen based on VIP values. The result of leave-one-out cross-validation demonstrated that the PLSR model based on these four features produced better result than the ten features’ model, throughout the whole growing season. The results of this study suggest that selecting a few ideal image features is sufficient for LAI estimation.  相似文献   

12.
We propose 3D triangulations of airborne Laser Scanning (ALS) point clouds as a new approach to derive 3D canopy structures and to estimate forest canopy effective LAI (LAIe). Computational geometry and topological connectivity were employed to filter the triangulations to yield a quasi-optimal relationship with the field measured LAIe. The optimal filtering parameters were predicted based on ALS height metrics, emulating the production of maps of LAIe and canopy volume for large areas. The LAIe from triangulations was validated with field measured LAIe and compared with a reference LAIe calculated from ALS data using logarithmic model based on Beer’s law. Canopy transmittance was estimated using All Echo Cover Index (ACI), and the mean projection of unit foliage area (β) was obtained using no-intercept regression with field measured LAIe. We investigated the influence species and season on the triangulated LAIe and demonstrated the relationship between triangulated LAIe and canopy volume. Our data is from 115 forest plots located at the southern boreal forest area in Finland and for each plot three different ALS datasets were available to apply the triangulations. The triangulation approach was found applicable for both leaf-on and leaf-off datasets after initial calibration. Results showed the Root Mean Square Errors (RMSEs) between LAIe from triangulations and field measured values agreed the most using the highest pulse density data (RMSE = 0.63, the coefficient of determination (R2) = 0.53). Yet, the LAIe calculated using ACI-index agreed better with the field measured LAIe (RMSE = 0.53 and R2 = 0.70). The best models to predict the optimal alpha value contained the ACI-index, which indicates that within-crown transmittance is accounted by the triangulation approach. The cover indices may be recommended for retrieving LAIe only, but for applications which require more sophisticated information on canopy shape and volume, such as radiative transfer models, the triangulation approach may be preferred.  相似文献   

13.
The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.  相似文献   

14.
Estimating forest structural attributes using multispectral remote sensing is challenging because of the saturation of multispectral indices at high canopy cover. The objective of this study was to assess the utility of hyperspectral data in estimating and mapping forest structural parameters including mean diameter-at-breast height (DBH), mean tree height and tree density of a closed canopy beech forest (Fagus sylvatica L.). Airborne HyMap images and data on forest structural attributes were collected from the Majella National Park, Italy in July 2004. The predictive performances of vegetation indices (VI) derived from all possible two-band combinations (VI(i,j) = (Ri − Rj)/(Ri + Rj), where Ri and Rj = reflectance in any two bands) were evaluated using calibration (n = 33) and test (n = 20) data sets. The potential of partial least squares (PLS) regression, a multivariate technique involving several bands was also assessed. New VIs based on the contrast between reflectance in the red-edge shoulder (756–820 nm) and the water absorption feature centred at 1200 nm (1172–1320 nm) were found to show higher correlations with the forest structural parameters than standard VIs derived from NIR and visible reflectance (i.e. the normalised difference vegetation index, NDVI). PLS regression showed a slight improvement in estimating the beech forest structural attributes (prediction errors of 27.6%, 32.6% and 46.4% for mean DBH, height and tree density, respectively) compared to VIs using linear regression models (prediction errors of 27.8%, 35.8% and 48.3% for mean DBH, height and tree density, respectively). Mean DBH was the best predicted variable among the stand parameters (calibration R2 = 0.62 for an exponential model fit and standard error of prediction = 5.12 cm, i.e. 25% of the mean). The predicted map of mean DBH revealed high heterogeneity in the beech forest structure in the study area. The spatial variability of mean DBH occurs at less than 450 m. The DBH map could be useful to forest management in many ways, e.g. thinning of coppice to promote diameter growth, to assess the effects of management on forest structure or to detect changes in the forest structure caused by anthropogenic and natural factors.  相似文献   

15.
For three agricultural crop types, winter wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.), we estimated biophysical parameters including fresh and dry biomass, leaf area index (LAI), and vegetation water content, for which we found the equivalent water thickness (EWT), fuel moisture content per fresh weight (FMCFW), and fuel moisture content per dry weight (FMCDW). We performed these estimations using data from the newly launched Landsat 8 Operational Land Imager (OLI) sensor, as well as its predecessor the Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Progress in the design of the new sensor (i.e., Landsat 8), including narrower near-infrared (NIR) wavebands, higher signal-to-noise ratio (SNR), and greater radiometric resolution highlights the necessity to investigate the biophysical parameters of agricultural crops, especially compared to data from its predecessor. This study aims to evaluate vegetation indices (VIs) derived from the Landsat 8 OLI and the Landsat 7 ETM+. Both the Landsat 8 OLI and Landsat 7 ETM+ VIs agreed well with in-situ data measurements. However, the Landsat 8 OLI-derived VIs were generally more consistent with in situ data than the Landsat 7 ETM+ VIs. We also note that the Landsat 8 OLI is better able to capture the small variability of the VIs because of its higher SNR and wider radiometric range; in addition, the saturation phenomenon occurred earlier for the Landsat 7 ETM+ than for the Landsat 8 OLI. This indicates that the new sensor is better able to estimate the biophysical parameters of crops.  相似文献   

16.
邱凤  霍婧雯  张乾  陈兴海  张永光 《遥感学报》2021,25(4):1013-1024
多角度遥感观测是研究植被冠层BRDF (Bidirectional Reflectance Distribution Function)特性的重要手段,但目前对森林冠层进行连续间隔采样的多角度遥感观测及数据较少,热点方向的观测尤为缺乏。本研究基于无人机多角度高光谱成像系统,在主平面上对针叶林冠层以等角度连续间隔采样进行多角度观测,获取了主平面上多角度(包括热点和暗点)高光谱影像,并将观测结果与四尺度几何光学模型模拟结果进行对比分析。多角度观测获取的植被冠层反射率呈现出典型的植被方向反射特征,后向大部分角度观测的冠层反射率高于前向,在热点处出现峰值,在暗点附近方向出现最低值,观测天顶角VZA (View Zenith Angle)较大时表现出明显的"碗边效应"。结果表明:(1)观测的针叶林冠层反射率及BRDF特性与四尺度模型模拟基本一致,但红光波段模拟的热点反射率稍低于观测,前向观测VZA较大时模拟与观测结果差异稍大;(2)冠层结构及叶片光学特性的差异会导致观测到的BRDF特征不同;(3)观测的针叶林冠层BRDF呈现明显的光谱效应,不同波段呈现的各向异性特性不同,红光波段各向异性最强,近红外波段最弱;(4) BRDF的光谱效应差异导致观测到的植被指数也表现出各向异性,NDVI (Normalized Difference Vegetation Index)、PRI (Photochemical Reflectance Index)和MTCI(MERIS Terrestrial Chlorophyll Index)在热点方向最低,EVI (Enhanced Vegetation Index)在热点方向最高。本研究中无人机多角度成像观测提供的角度和高光谱信息,尤其是热点和暗点信息,在地物识别及分类、植被冠层结构反演及碳循环关键参数获取等研究方面具有较好的应用前景,在其它地物反射或热辐射等方向性特性研究中也具有较大的潜力。  相似文献   

17.
刘良云 《遥感学报》2014,18(6):1158-1168
由于地表空间异质性的普遍存在,遥感反演模型的非线性必然会导致不同分辨率观测的遥感结果不一致,从而产生遥感产品尺度效应。本文研究了遥感产品尺度效应概念、模拟方法和定量计算模型,并利用锡林浩特草原研究区的实测数据,对尺度效应模型和方法进行了定量计算与验证分析。首先,基于不同升尺度方法与多尺度遥感成像机理之间的机理联系,通过“先反演再平均”与“先平均再反演”之间的差异,可计算“高”分辨率与“低”分辨率之间的遥感产品尺度差异。其次,分别以红光、近红外两波段反射率和归一化植被指数(NDVI)为自变量,对叶面积指数(LAI)非线性遥感模型进行泰勒展开,研究了模型非线性、遥感数据空间异质性对LAI遥感产品尺度差异的影响,发现高阶项可忽略,利用二阶导数项和遥感数据方差项可定量计算遥感产品尺度差异,经过二阶导数项纠正后的尺度差异相对偏差从5.6%分别降低到0.78%和1.45%。最后,分析了LAI遥感产品尺度效应的特征规律,得出以下结论:随着植被覆盖的增大,同等遥感空间异质性的LAI遥感产品尺度差异越大,且红光波段比近红外波段的尺度差异敏感性高近2个数量级;对于绝大部分陆地植被区域,存在“低分辨率低估”尺度效应,且遥感产品尺度差异的主导要素为LAI模型非线性,NDVI变量自身非线性对尺度效应贡献占23.5%;对于湿地类植被与水体混合情形,NDVI变量非线性的贡献为主导贡献,出现“低分辨率高估”尺度效应,必须利用红光、近红外两波段的二阶导数项非线性尺度差异,才能解释这一类型的LAI遥感产品尺度效应。本文建立了具有一定普适意义的遥感产品尺度效应定量模拟与尺度纠正方法,对推动定量遥感的尺度问题研究有一定参考价值。  相似文献   

18.
New optical and microwave integrated vegetation indices (VIs) were designed based on observations from both field experiments and satellite (HJ-1 and RADARSAT-2) data. It was found that these VIs perform better in estimating the structure parameters of maize, such as Leaf Area Index (LAI), height and biomass, than the original ones. This investigation focused on the difference of interaction between the multispectral reflectance and microwave backscattering signatures with the maize growth variables. Because the maize was near the heading stage with large vegetation coverage in the experiment, the reflectance of the near-infrared band of HJ-1 was much less sensitive to the structure variables than that of the visible-light band. Thus, the optical VIs formulated using those bands were saturated to estimate the structure parameters. With respect to the RADARSAT-2 data, there was a relatively strong relationship between the HV cross-polarization and the volume scattering of the maize, which was mostly determined by the crown structure. The modified VIs were designed using both the VIs of HJ-1 and the HV cross-polarization of RADARSAT-2 to overcome the saturation limitation. The validation showed that this integrated method of determining VIs is a good alternative to that using only the optical or microwave observation.  相似文献   

19.
Sentinel-2数据的冬小麦地上干生物量估算及评价   总被引:3,自引:0,他引:3  
郑阳  吴炳方  张淼 《遥感学报》2017,21(2):318-328
作物生物量快速精确的监测对于农业资源的合理利用与农田的精准管理具有重要意义。近年来,遥感技术因其独特的优势已被广泛用于作物生物量的估算中。本文主要针对不同宽波段植被指数在冬小麦生物量(文中的生物量均是指地上干生物量)估算方面的表现进行探索。首先利用欧洲空间局最新的Sentinel-2A卫星数据提取出17种常见的植被指数,之后分别构建其与相应时期内采集的冬小麦地上生物量间的最优估算模型,通过分析两者间的相关性与敏感性,获取适宜进行生物量估算的指数。最后,绘制了研究区的生物量空间分布图。结果表明,所选的植被指数均与生物量显著相关。其中,红边叶绿素指数(CI_(re))与生物量的估算精度最高(决定性系数R~2为0.83;均方根误差RMSE为180.29 g·m~(–2))。虽然相关性较高,但部分指数,如归一化差值植被指数(NDVI)等在生物量较高时会出现饱和现象,从而导致生物量的低估。而加入红边波段的指数不仅能够延缓指数的饱和趋势,而且能够提高反演精度。此外,通过敏感性分析发现,归一化差值指数和比值指数分别在作物生长的早期和中后期对生物量的变化保持较高的敏感性。由于红边比值指数(SR_(re))和MERIS叶绿素敏感指数(MTCI)在冬小麦全生长季内一直对生物量的变化保持高灵敏性,二者是生物量估算中最为稳定的指数。  相似文献   

20.
徐雯靓  王少军 《遥感学报》2014,18(4):826-842
为了消除土壤背景信息对植被指数的影响,近几十年发展了土壤调节植被指数系列(SAVI family)。在不同环境条件下,不同指数抗土壤影响的能力不同。在总结了以消除土壤影响为目的的植被指数建立过程的基础上,利用PROSAIL辐射传输模型模拟的两组数据集,比较分析了NDVI、SAVI、TSAVI、MSAVI、OSAVI和GESAVI在不同叶面积指数(LAI)对应不同土壤背景的情况下抗土壤干扰、表达植被信息的能力,指出了不同植被指数应用的最适环境条件。结合植被指数—信噪比图,将这6种植被指数分成3类:在中低LAI值下,若植被覆盖度均匀,OSAVI和TSAVI有较强的消除土壤影响、表达植被信息的能力;当区域LAI分布不均、植被类型混杂时,MSAVI在表达植被信息时具有较好的稳定性。根据每类植被指数的特征,利用MODIS-VI和MODIS-LAI产品初步验证了上述结论的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号