首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate forest biomass mapping methods would provide the means for e.g. detecting bioenergy potential, biofuel and forest-bound carbon. The demand for practical biomass mapping methods at all forest levels is growing worldwide, and viable options are being developed. Airborne laser scanning (ALS) is a promising forest biomass mapping technique, due to its capability of measuring the three-dimensional forest vegetation structure. The objective of the study was to develop new methods for tree-level biomass estimation using metrics derived from ALS point clouds and to compare the results with field references collected using destructive sampling and with existing biomass models. The study area was located in Evo, southern Finland. ALS data was collected in 2009 with pulse density equalling approximately 10 pulses/m2. Linear models were developed for the following tree biomass components: total, stem wood, living branch and total canopy biomass. ALS-derived geometric and statistical point metrics were used as explanatory variables when creating the models. The total and stem biomass root mean square error per cents equalled 26.3% and 28.4% for Scots pine (Pinus sylvestris L.), and 36.8% and 27.6% for Norway spruce (Picea abies (L.) H. Karst.), respectively. The results showed that higher estimation accuracy for all biomass components can be achieved with models created in this study compared to existing allometric biomass models when ALS-derived height and diameter were used as input parameters. Best results were achieved when adding field-measured diameter and height as inputs in the existing biomass models. The only exceptions to this were the canopy and living branch biomass estimations for spruce. The achieved results are encouraging for the use of ALS-derived metrics in biomass mapping and for further development of the models.  相似文献   

2.
Traditional field-based forest inventories tend to be expensive, time-consuming, and cover only a limited area of a forested region. Remote sensing (RS), especially airborne laser scanning (ALS) has opened new possibilities for operational forest inventories, particularly at the single-tree level, and in the prediction of single-tree characteristics. Throughout the world, forests have varying characteristics that necessitate the development of modern, effective, and versatile tools for ALS data processing. To address this need, we aimed to develop a tool for individual tree detection (ITD) utilising a self-calibrating algorithm procedure and to verify its accuracy using the complicated forest structure of near natural forests in the temperate zone.This study was carried out in the Polish part of the Białowieża Forest (BF). The airborne laser scanner (ALS) and color-infrared (CIR) datasets were acquired for more than 60 000 ha. Field-based measurements were performed to provide reference data at the single tree level. We introduced a novel ITD method that is self-calibrated and uses a hierarchical analyses of the canopy height model.There were more than 20 000 000 of trees in first layer in BF above 7 m height. Trees visible from above were divided into coniferous, deciduous and mixed trees that were then matched with an accuracy of 85 %, 85 % and 75 %, respectively. Compared to existing methods, the proposed method is more flexible and achieves better results, especially for deciduous species. Before application of the presented method to other regions, the calibration based on the developed optimisation procedure is needed.  相似文献   

3.
Three-dimensional (3D) data from airborne laser scanning (ALS) and, more recently, digital aerial photogrammetry (DAP) have been successfully used to model forest attributes. While multi-temporal, wall-to-wall ALS data is not usually available, aerial imagery is regularly acquired in many regions. Thus, the combination of ALS and DAP data provide a sufficient temporal resolution to properly monitor forests. However, field data is needed to fit new forest attribute models for each 3D data acquisition, which is not always affordable. In this study, we examined whether transferability of growing stock volume (GSV) models may provide an improvement in the efficiency of forest inventories updating. We used two available ALS datasets acquired with different characteristics in 2009 and 2010, respectively, generated two DAP point clouds from imagery collected in 2010 and 2017, and utilized field data from two ground surveys conducted in 2009 and 2016-2017. We first analyzed the stability of point cloud derived metrics. Then, Support Vector Regression models based on the most stable metrics were fitted to assess model transferability by applying them to other datasets in four different cases: (1) ALS-ALS, (2) DAP-DAP temporal, (3) ALS-DAP and (4) ALS-DAP temporal. Some metrics were found to be enough stable in each case, so they could be used interchangeably between datasets. The application of models to other datasets resulted in unbiased predictions with relative root mean square error differences ranging from -8.27% to 14.59%. Results demonstrated that 3D-based GSV models may be transferable between point clouds of the same type as well as point clouds acquired using different technologies such as ALS and DAP, suggesting that DAP data may be used as a cost-efficient source of information for updating ALS-assisted forest inventories.  相似文献   

4.
Agricultural residues have gained increasing interest as a source of renewable energy. The development of methods and techniques that allow to inventory residual biomass needs to be explored further. In this study, the residual biomass of olive trees was estimated based on parameters derived from using a Terrestrial Laser Scanning System (TLS). To this end, 32 olive trees in 2 orchards in the municipality of Viver, Central Eastern Spain, were selected and measured using a TLS system. The residual biomass of these trees was pruned and weighed. Several algorithms were applied to the TLS data to compute the main parameters of the trees: total height, crown height, crown diameter and crown volume. Regarding the last parameter, 4 methods were tested: the global convex hull volume, the convex hull by slice volume, the section volume, and the volume measured by voxels. In addition, several statistics were computed from the crown points for each tree. Regression models were calculated to predict residual biomass using 3 sets of potential explicative variables: firstly, the height statistics retrieved from 3D cloud data for each crown tree, secondly, the parameters of the trees derived from TLS data and finally, the combination of both sets of variables. Strong relationships between residual biomass and TLS parameters (crown volume parameters) were found (R2 = 0.86, RMSE = 2.78 kg). The pruning biomass prediction fraction was improved by 6%, in terms of R2, when the variance of the crown-point elevations was selected (R2 = 0.92, RMSE = 2.01 kg). The study offers some important insights into the quantification of residual biomass, which is essential information for the production of biofuel.  相似文献   

5.
A computational canopy volume (CCV) based on airborne laser scanning (ALS) data is proposed to improve predictions of forest biomass and other related attributes like stem volume and basal area. An approach to derive the CCV based on computational geometry, topological connectivity and numerical optimization was tested with sparse-density, plot-level ALS data acquired from 40 field sample plots of 500–1000 m2 located in a boreal forest in Norway. The CCV had a high correspondence with the biomass attributes considered when derived from optimized filtrations, i.e. ordered sets of simplices belonging to the triangulations based on the point data. Coefficients of determination (R2) between the CCV and total above-ground biomass, canopy biomass, stem volume, and basal area were 0.88–0.89, 0.89, 0.83–0.97, and 0.88–0.92, respectively, depending on the applied filtration. The magnitude of the required filtration was found to increase according to an increasing basal area, which indicated a possibility to predict this magnitude by means of ALS-based height and density metrics. A simple prediction model provided CCVs which had R2 of 0.77–0.90 with the aforementioned forest attributes. The derived CCVs always produced complementary information and were mainly able to improve the predictions of forest biomass relative to models based on the height and density metrics, yet only by 0–1.9 percentage points in terms of relative root mean squared error. Possibilities to improve the CCVs by a further analysis of topological persistence are discussed.  相似文献   

6.
7.
多光谱数据的降维处理对基于深度学习的单木树冠检测研究有重要意义,如何使用合适的降维方法以提高单木检测的精度却少有研究讨论。本文使用无人机搭载多光谱相机进行航拍作业,采集研究区内银杏树种多光谱影像。将原始多光谱影像通过特征波段选择、特征提取、波段组合的方法生成5种不同的数据集用于训练3种经典的深度学习网络FPN-Faster-R-CNN,YOLOv3,Faster R-CNN。其中由波段组合方法得到的近红外、红色、绿色波段组合在不同类型的目标检测网络中都有最好的检测结果,其中FPN-Faster-R-CNN网络对银杏树冠的检测精度最高为88.4%,由OIF指标得到的蓝色、红色、近红外波段组合信息量最高,但在所有网络中的平均检测精度最低,仅为79.3%。实验结果表明:在不同波段降维方法中,若降维后的影像中目标物体的色彩与背景差异较明显,且轮廓清晰,则深度学习网络对树冠的检测可获得较好的结果。而影像自身的信息量则对深度学习网络的树冠检测能力的提升作用有限。本研究中针对多光谱影像的降维方法分析,为基于深度学习的单木树冠检测研究提供了重要的实验参考。  相似文献   

8.
申鑫  曹林  佘光辉 《遥感学报》2016,20(6):1446-1460
精确估算森林生物量对全球碳平衡以及气候变化的研究有重要意义。以亚热带天然次生林为研究对象,借助地面实测样地数据,通过对机载LiCHy(LiDAR,CCD and Hyperspectral)传感器同时获取的高光谱和高空间分辨率数据进行信息提取和数据融合,建模反演森林生物量。首先通过面向对象分割方法进行单木冠幅提取,然后融合从高光谱数据提取的光谱特征变量和从高空间分辨率数据提取的单木冠幅统计变量,构建多元回归模型估算地上、地下生物量,最后利用地面实测生物量经交叉验证评价模型精度。结果表明,综合模型的精度(R~2为0.54—0.62)高于高光谱模型(R~2为0.48—0.57);在高光谱模型中地上生物量模型精度(R~2为0.57)高于地下生物量模型(R~2为0.48);在综合模型中地上生物量模型精度(R~2为0.62)同样高于地下生物量模型(R~2为0.54)。交叉验证结果表明,与仅使用高光谱数据(单一数据源)相比,通过集成高光谱和高空间分辨率数据的生物量反演效果有所提升,可以更加有效地估算亚热带森林生物量。  相似文献   

9.
Improvements in the acquisition of three-dimensional (3D) information from the Airborne Laser Scanner (ALS) increase its applications for studying Earth's surface. The use of ALS data in natural resource inventories is still in an experimental stage in central Europe. Here, a survey was completed in Germany, where plot-level features from LANDSAT Thematic Mapper and ALS data were applied. An automated process was developed for forest stratification using orthoimages. A genetic algorithm was applied for variable screening. Variable subsets of different sizes were employed for simultaneous predictions of structural forest attributes using the ‘Random Forest’ (RF) method. Performance was assessed by leave-one-out cross-validations on bootstrap resample data. Results indicate that the stratification of forest notably improved the results of predictions. The improvements were more obvious for the strata-related attributes. Accuracy was enhanced as the number of selected variables increased. However, parsimonious models are still essentially required for practical applications. The RF errors were slightly greater than those from least squares regression, as the non-parametric methods do not share the same mix of error components as regression. Through the combination of remote sensing and modelling, we conclude that our results are helpful for bridging the gap between regional earth observation and on-the-ground forest structure.  相似文献   

10.
The prediction of tropical forest attributes using airborne laser scanning (ALS) is becoming attractive as an alternative to traditional field measurements. Area-based ALS inventories require a set of representative field plots from the study area, which may be difficult to obtain in tropical forests with limited accessibility. This study investigates the effect of sample-plot selection in Nepal, based on two accessibility factors: distance to road and degree of slope. The sparse Bayesian method was employed in the model to estimate above-ground biomass (AGB) with an independent validation dataset for model validation. Study findings showed that the sample plot distance and slope had a considerable effect on the accuracy of the AGB estimation, because the forest structure varied according to the level of accessibility. Thus, the field sample plots that are used in model construction should cover the full range of sample plot distances and slopes occurring within the area.  相似文献   

11.
The demand for precise mapping and monitoring of forest resources, such as above ground biomass (AGB), has increased rapidly. National accounting and monitoring of AGB requires regularly updated information based on consistent methods. While remote sensing technologies such as airborne laser scanning (ALS) and digital aerial photogrammetry (DAP) have been shown to deliver the necessary 3D spatial data for AGB mapping, the capacity of repeat acquisition, remotely sensed, vegetation structure data for AGB monitoring has received less attention. Here, we use vegetation height models (VHMs) derived from repeat acquisition DAP data (with ALS terrain correction) to map and monitor woody AGB dynamics across Switzerland over 35 years (1983-2017 inclusive), using a linear least-squares regression approach. We demonstrate a consistent relationship between canopy height derived from DAP and field-based NFI measures of woody AGB across four inventory periods. Over the environmentally heterogeneous area of Switzerland, our models have a comparable predictive performance (R2 = 0.54) to previous work predicting AGB based on ALS metrics. Pearson correlation coefficients between measured and predicted changes in woody AGB over time increased with shorter time gaps (< 2 years) between image capture and field-based measurements, ranging between 0.76 and 0.34. A close temporal match between field surveys and remote sensing data acquisition is thus key to reliable mapping and monitoring of AGB dynamics, especially in areas where forest management and natural disturbances trigger relatively fast canopy dynamics. We show that VHMs derived from repeat DAP capture constitute a cost effective and reliable approach to map and monitor changes in woody AGB at a national extent and can provide an important information source for national carbon accounting and monitoring of ecosystem service provisioning.  相似文献   

12.
Improved monitoring and understanding of tree growth and its responses to controlling factors are important for tree growth modeling. Airborne Laser Scanning (ALS) can be used to enhance the efficiency and accuracy of large-scale forest surveys in delineating three-dimensional forest structures and under-canopy terrains. This study proposed an ALS-based framework to quantify tree growth and competition. Bi-temporal ALS data were used to quantify tree growth in height (ΔH), crown area (ΔA), crown volume (ΔV), and tree competition for 114,000 individual trees in two conifer-dominant Sierra Nevada forests. We analyzed the correlations between tree growth attributes and controlling factors (i.e. tree sizes, competition, forest structure, and topographic parameters) at multiple levels. At the individual tree level, ΔH had no consistent correlations with controlling factors, ΔA and ΔV were positively related to original tree sizes (R?>?0.3) and negatively related to competition indices (R?R|?>?0.7), ΔV was positively related to original tree sizes (|R|?>?0.8). Multivariate regression models were simulated at individual tree level for ΔH, ΔA, and ΔV with the R2 ranged from 0.1 to 0.43. The ALS-based tree height estimation and growth analysis results were consistent with field measurements.  相似文献   

13.
Image matching is emerging as a compelling alternative to airborne laser scanning (ALS) as a data source for forest inventory and management. There is currently an open discussion in the forest inventory community about whether, and to what extent, the new method can be applied to practical inventory campaigns. This paper aims to contribute to this discussion by comparing two different image matching algorithms (Semi-Global Matching [SGM] and Next-Generation Automatic Terrain Extraction [NGATE]) and ALS in a typical managed boreal forest environment in southern Finland. Spectral features from unrectified aerial images were included in the modeling and the potential of image matching in areas without a high resolution digital terrain model (DTM) was also explored. Plot level predictions for total volume, stem number, basal area, height of basal area median tree and diameter of basal area median tree were modeled using an area-based approach. Plot level dominant tree species were predicted using a random forest algorithm, also using an area-based approach. The statistical difference between the error rates from different datasets was evaluated using a bootstrap method.Results showed that ALS outperformed image matching with every forest attribute, even when a high resolution DTM was used for height normalization and spectral information from images was included. Dominant tree species classification with image matching achieved accuracy levels similar to ALS regardless of the resolution of the DTM when spectral metrics were used. Neither of the image matching algorithms consistently outperformed the other, but there were noticeably different error rates depending on the parameter configuration, spectral band, resolution of DTM, or response variable. This study showed that image matching provides reasonable point cloud data for forest inventory purposes, especially when a high resolution DTM is available and information from the understory is redundant.  相似文献   

14.
This study presents a hybrid framework for single tree detection from airborne laser scanning (ALS) data by integrating low-level image processing techniques into a high-level probabilistic framework. The proposed approach modeled tree crowns in a forest plot as a configuration of circular objects. We took advantage of low-level image processing techniques to generate candidate configurations from the canopy height model (CHM): the treetop positions were sampled within the over-extracted local maxima via local maxima filtering, and the crown sizes were derived from marker-controlled watershed segmentation using corresponding treetops as markers. The configuration containing the best possible set of detected tree objects was estimated by a global optimization solver. To achieve this, we introduced a Gibbs energy, which contains a data term that judges the fitness of the objects with respect to the data, and a prior term that prevents severe overlapping between tree crowns on the configuration space. The energy was then embedded into a Markov Chain Monte Carlo (MCMC) dynamics coupled with a simulated annealing to find its global minimum. In this research, we also proposed a Monte Carlo-based sampling method for parameter estimation. We tested the method on a temperate mature coniferous forest in Ontario, Canada and also on simulated coniferous forest plots with different degrees of crown overlap. The experimental results showed the effectiveness of our proposed method, which was capable of reducing the commission errors produced by local maxima filtering, thus increasing the overall detection accuracy by approximately 10% on all of the datasets.  相似文献   

15.
机器学习算法在森林地上生物量估算中的应用   总被引:1,自引:0,他引:1  
森林地上生物量是森林生产力的重要评价指标,对其进行高效监测对维持全球碳平衡和保护生态系统具有重要意义。本文首先基于冠层高度模型数据,通过分水岭分割算法得到单木冠幅边界;然后在单木冠幅范围内提取23个LiDAR变量,结合佩诺布斯科特试验森林的87组实测数据,利用随机森林和支持向量机建立森林地上生物量估算模型;最后对样地模型估算的结果进行了比较,讨论了预测结果及其精度。结果表明:本文选用的随机森林模型和支持向量机模型在估算森林地上生物量的应用中获得了较高的精度;并且,随机森林模型在基于机载雷达数据估测森林地上生物量中的估算精度更高,模型泛化能力更强,制图精度也更好,具有更好的适用性。  相似文献   

16.
Site productivity and forest growth are critical inputs into projecting wood volume and biomass accumulation over time. Site productivity, which is determined most commonly using site index models is also the primary criterion to consider many forest management decisions. Most of the previous research utilizing the remote sensing data for assessment of site index with forest height are based on the existing site index models developed with traditional dendrometric methods. However, these traditional methods are both time-consuming and expensive. This study demonstrates how bi-temporal airborne laser scanning (ALS) data collected within the 8-year period can be used for the development of site index models for Scots pine. The accuracy of ALS-derived models was assessed by comparison to the reference site index model developed based on data from stem analysis of 174 felled Scots pine trees. We evaluated the effect of different height metrics and grid cell size on the trajectory of site index models developed from ALS-derived measurements. Four methods of estimating top height from ALS point clouds were evaluated: 95th, 99th and 100th percentiles of point clouds and an individual tree detection approach (ITD). The models were created for a range of grid cell sizes: 10 × 10 m, 30 × 30 m, and 50 × 50 m. The results indicate that bitemporal ALS data could substitute traditional methods that have been applied to date for stand growth modelling. It was found that top height increment can be estimated by using both ITD approach and the 100th percentile of point cloud giving an appropriate top height (TH) increment estimation. Observed growth curves of reference trees agreed best with the trajectories that were obtained based on TH calculated using ITD method (R2 = 0.892) and 100th percentile (R2 = 0.797). In case of TH obtained from 99th and 95th percentiles only weak correlation was found: R2 = 0.358 and R2 = 0.213, accordingly. The height growth models developed with 95th and 99th percentiles of point cloud were not compatible with the reference model. We also found that grid cell size did not affect the model height growth trajectories. Irrespective of the grid cell size, the obtained model trajectories for the given method of TH estimation are nearly identical for cells 10 × 10, 30 × 30 and 50 × 50 m.  相似文献   

17.
利用合成孔径雷达(SAR)遥感数据可以有效地估测平均树高、生物量、蓄积量等森林生物学参数。但是遥感数据精度易受SAR系统不确定性因素的影响,造成森林参数反演精度降低甚至异常。遥感系统的全链路模拟可以将遥感过程的各类影响因素解耦,获取大量具有指定参数特征的遥感数据,有利于对不确定性因素单独或联合分析。建立了SAR三维森林场景全链路模拟模型,基于E-SAR样地参数及数据验证了模型的有效性,并以森林高度反演这一典型的林业应用为对象,定量分析了运动补偿残余相位误差这一典型的SAR系统不确定性因素对反演精度的影响程度,得到了残余相位误差与高度反演RMSE测量结果之间的关系曲线。  相似文献   

18.
利用遥感进行退耕还林成活率及长势监测方法的研究   总被引:2,自引:0,他引:2  
黄建文  鞠洪波  赵峰  陈巧  马红 《遥感学报》2007,11(6):899-905
本文以张家口退耕还林工程的新造经济林为例,提出了一种利用高分辨率遥感技术监测新造林成活率及长势的方法。主要采用面向对象的信息提取技术提取退耕地新造林的树冠信息。开发了基于树冠分布图的树冠因子提取程序,计算树冠因子,统计造林成活率,从而掌握新造林地的现状。最后,根据实际测量的数据进行误差检验,由遥感数据自动提取的树冠冠幅平均误差为:东西冠幅为0.337m,南北冠幅为0.433m;计算新造林成活率的精度达到了89.837%。为退耕还林工程科学,高效的管理及决策支持提供了依据。  相似文献   

19.
This article reviews the recent literature concerning airborne laser scanning for forestry purposes in Italy, and presents the current methodologies used to extract forest characteristics from discrete return ALS (Airborne Laser Scanning) data. Increasing interest in ALS data is currently being shown, especially for remote sensing-based forest inventories in Italy; the driving force for this interest is the possibility of reducing costs and providing more accurate and efficient estimation of forest characteristics. This review covers a period of approximately ten years, from the first application of laser scanning for forestry purposes in 2003 to the present day, and shows that there are numerous ongoing research activities which use these technologies for the assessment of forest attributes (e.g., number of trees, mean tree height, stem volume) and ecological issues (e.g., gap identification, fuel model detection). The basic approaches – such as single tree detection and area-based modeling – have been widely examined and commented in order to explore the trend of methods in these technologies, including their applicability and performance. Finally this paper outlines and comments some of the common problems encountered in operational use of laser scanning in Italy, offering potentially useful guidelines and solutions for other countries with similar conditions, under a rather variable environmental framework comprising Alpine, temperate and Mediterranean forest ecosystems.  相似文献   

20.
Forest structural diversity metrics describing diversity in tree size and crown shape within forest stands can be used as indicators of biodiversity. These diversity metrics can be generated using airborne laser scanning (LiDAR) data to provide a rapid and cost effective alternative to ground-based inspection. Measures of tree height derived from LiDAR can be significantly affected by the canopy conditions at the time of data collection, in particular whether the canopy is under leaf-on or leaf-off conditions, but there have been no studies of the effects on structural diversity metrics. The aim of this research is to assess whether leaf-on/leaf-off changes in canopy conditions during LiDAR data collection affect the accuracy of calculated forest structural diversity metrics. We undertook a quantitative analysis of LiDAR ground detection and return height, and return height diversity from two airborne laser scanning surveys collected under leaf-on and leaf-off conditions to assess initial dataset differences. LiDAR data were then regressed against field-derived tree size diversity measurements using diversity metrics from each LiDAR dataset in isolation and, where appropriate, a mixture of the two. Models utilising leaf-off LiDAR diversity variables described DBH diversity, crown length diversity and crown width diversity more successfully than leaf-on (leaf-on models resulted in R² values of 0.66, 0.38 and 0.16, respectively, and leaf-off models 0.67, 0.37 and 0.23, respectively). When LiDAR datasets were combined into one model to describe tree height diversity and DBH diversity the models described 75% and 69% of the variance (R² of 0.75 for tree height diversity and 0.69 for DBH diversity). The results suggest that tree height diversity models derived from airborne LiDAR, collected (and where appropriate combined) under any seasonal conditions, can be used to differentiate between simple single and diverse multiple storey forest structure with confidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号