首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Located at western portion of northern margin of North China craton, the Baotou–Bayan Obo district is one of the most important Fe–REE–Nb and Au metallogenic provinces in China. Presently, about 52 gold deposits and prospects have been discovered, explored and mined, among which Shibaqinhao, Laoyanghao, Houshihua, Saiyinwusu, Wulashan and Donghuofang are the most important ones. All these gold occurrences can be subdivided into three groups (or types) according to its host rocks: (1) hosted by Archean high-grade metamorphic rocks; (2) hosted by Proterozoic sedimentary rocks; (3) hosted by or related to Hercynian alkaline intrusive rocks. The first group contains the Shibaqinhao, Laoyanghao and Houshihua gold deposits. Gold mineralization at these three deposits occurs within Archean amphibolite, gneiss and granulite as gold-bearing quartz veins and veinlet groups containing native gold, electrum, pyrite and chalcopyrite. The Saiyinwusu deposit belongs to the second group, and occurs within Proterozoic sandstone, quartzite and carbonaceous slate as quartz veins and replacement bodies along the fracture zones. Pyrite, marcasite, arsenopyrite, native gold and electrum are identified. The third group includes the Wulashan, Donghuofang and Luchang deposits. Gold mineralization at these three deposits occurs predominantly within the Hercynian alkaline syenite or melagabbro stocks and dyke swarms or along their contacts with Archean metamorphic wall rocks as K-feldspar–quartz veins, dissemination and veinlets. Pyrite, galena, chalcopyrite, native gold and calaverite are major metallic minerals.δ34S value of sulfides (pyrite, galena and pyrrhotite) separates from groups 1 and 2 varies from −4.01‰ to −0.10‰ and −3.01‰ to 2.32‰, respectively. δ34S values of Archean and Proterozoic metamorphic wall rocks for groups 1 and 2 deposits range from −20.2‰ to −17.0‰ and −15.8‰ to −16.2‰, respectively. The values are much lower than their hosted gold deposits. All these pyrite separates from Hercynian alkaline intrusions associated with the gold deposits show positive δ34S values of 1.3‰ to 4.8‰, which is higher than those Precambrian metamorphic wall rocks and their hosted gold deposits. δ34S values of the sulfides (pyrite and galena) from the Donghuofang and Wulashan deposits (group 3) increase systematically from veins (−14.8‰ to −2.4‰) to the Hercynian alkaline igneous wall rocks (2.8‰ to 4.8 ‰). All of these deposits in groups 1, 2 and 3 show relatively radiogenic lead isotopic compositions compared to mantle or lower crust curves. Most lead isotope data of sulfides from the gold ores plot between the Hercynian alkaline intrusions and Precambrian metamorphic wall rocks. Data are interpreted as indicative of a mixing of lead from mantle-derived alkaline magma with lead from Precambrian metamorphic wall rocks.Isotopic age data, geological and geochemical evidence suggest that the ore fluids for the groups 1 and 2 deposits were generated during the emplacement of the Hercynian alkaline syenite and mafic intrusions. The Hercynian alkaline magma may provide heat, volatiles and metals for these groups 1 and 2 deposits. Evolved metamorphic fluids produced by the devolatilization, which circulated the wall rocks, were also progressively involved in the alkaline magmatic hydrothermal system, and may have dominate the ore fluids during late stage of ore-forming processes. Most of these gold deposits hosted by Archean high-grade metamorphic rocks occur at or near the intersections of the NE- and E–W-trending fracture systems. The ore fluid of the group 3 deposits may have resulted from the mixing of Hercynian alkaline magmatic fluids and evolved meteoric waters. The deposits are believed to be products of Hercynian alkaline igneous processes along deep-seated fault zones within Archean terrain.  相似文献   

2.
Gold Deposits in Beishan Mountain, Northwestern China   总被引:2,自引:0,他引:2  
Abstract. The Beishan Mountain spans three provinces ‐ Gansu, Xinjiang and Inner Mongolia, having an area of 120,000 km2 Tectonically, it transverses three different tectonic units, i.e. Siberia, Kazakhstan and Tarim plates, and is composed of nine ter‐rains with widely exposed Precambrian and Paleozoic strata, complex structures, intensive magmatic activities and widespread ore deposits. It is not only a main part of Tianshan‐Yinshan‐Great Hinggan metallogenic belt in China, but also a key to under‐stand the evolution of central‐Asian orogenic system. At present, more than 100 gold deposits and prospects have been discovered, explored and mined, among which Nanjinshan, Mazhuangshan, Liushashan, Jinwozi, Zhaobishan and Xiaoxigong are the most important ones. Based on the host rocks and the geological features, all these gold occurrences can be subdivided into three groups (or types): (1) hosted by Carboniferous or Permian volcanic or subvolcanic rocks; (2) hosted by or related to plutonic intrusions; and (3) hosted by Precambrian metamorphic rocks. The first group includes the Mazhuangshan gold deposit, which occurs in Hercynian quartz por‐phyry and rhyolite porphyry as gold‐bearing quartz veins. The second group is composed of the Liushashan, Nanjinshan Zhaobishan and Jinwozi gold deposits. Gold mineralization at these four deposits occurs within Hercynian granitoids intrusion: or late Paleozoic sedimentary rocks as quartz veins, veinlets and altered rocks. The Xiaoxigong gold deposit belongs to the third group, and is hosted by Precambrian schist, amphibolite and migmatite as quartz veins and altered rocks. Isotopic age dating data, geological and geochemical evidence suggest that most of the groups 1 and 2 gold deposits were generated during the emplacement of the Hercynian or partly Indosinian intrusions. These intrusions may provide both heat and metals for groups 1 and 2 deposits. In contrast, although the formation is closely related to the Hercynian magma‐tism, the ore‐forming materials of the group 3 deposits may not only come from the intrusions, but also from the Precambrian metamorphic rocks.  相似文献   

3.
The Jidong area is located on the north margin of the North China craton. It is a nucleus composed of the oldest rocks in China. Precambrian metamorphic rocks with various Phanerozoic granitoids invaded are widespread. Gold deposits here have close spatial relations to granitoids. Some deposits occur within them and others in the outer zone of the contact belt of the intrusion, extending thousands of metres. There have been controversial views in regard to the relations of the deposits to the intrusions although traditional techniques have been used to date the intrusions. In order to solve such a problem, the SHRIMP technique was adopted to date the U-Pb ages of zircon collected from the Yuerya intrusion which hosts the large-sized Yuerya Au deposit and Qingshankou intrusion 2 km away from the Jinchangyu (larger-sized) Au deposit. Analysis shows that the ages of 175±1 Ma and 174±3 Ma for Yuerya intrusion and the age of 199±2 Ma for Qingshankou granite indicate the Early Yanshanian stage of the Meso-  相似文献   

4.
产于太古宙中深变质岩中的金矿床在我国华北东北地区分布很广,成矿时代主要靠同位素年龄及其与后期岩浆活动的关系来确定。夹皮沟金矿是该型矿床中工作较多且有代表性的一个矿床,对其成矿时代有前寒武纪(Ar、Pt)成矿、显生宙(海西、海西一印支、燕山)成矿及前寒武纪十显生亩成矿等不同认识。本文根据矿脉与海西期花岗闪长岩及脉岩的关系,以及含金石英包裹体Rb-sr等时线年龄资料,认为成矿属海西期或海西一印支期,可能有燕山期的叠加。由于石英含过剩氩,故所得元古宙Ar-Ar、K-Ar表面年龄无地质意义,锆石可能具继承性,其太古宙年龄不能肯定为成矿时代。该矿是否有前寒武纪成矿期尚待进一步工作。  相似文献   

5.
Abstract. Early Cretaceous granitic intrusions are associated with Au‐quartz veins and Cu‐Fe skarns in the the Kitakami Mountains, which are underlain by the late Paleozoic of continental margin‐type sedimentary rocks and Mesozoic accretionary complexes. The plutonic rocks are divided into potassic, high‐Sr/Y calc‐alkaline and low‐Sr/Y calc‐alkaline series. All the metallic mineral deposits are spatially associated with small stocks and plugs; they show no consistent association with the larger plutonic bodies. The plutonic rocks generally belong to the magnetite series but less oxidized in the southwestern part of the Kitakami Mountains where Au‐quartz veins occur. The gold deposits are classified into high and low sulfide types. The high sulfide type contains a high volume of sulfide minerals mostly of chalcopyrite, arsenopyrite and pyrrhotite with low bulk Au/Ag ratios. This type occurs almost exclusively in and surrounding the Orikabe pluton, including two most important gold deposits (Oya and Kohoku) of the Kitakami Mountains. The pluton is composed of potassic gabbroids, potassic granitoids of the shoshonite ‐ high‐K calc‐alkaline series (Orikabe type), and less potassic Sasamori‐type granodiorite. All these rocks belong to a moderately oxidized magnetite series. The Orikabe pluton has one of the lowest initial Sr ratio (0.70392) in the Kitakami Mountains, and the Au‐Cu‐dominant ore components of the high sulfide type Au deposits are considered magmatic in origin carried by the juvenile magmas from the upper mantle. The low sulfide type is generally plain quartz vein with a low volume of sulfides and a high bulk Au/Ag ratio. The associated minerals are often scheelite and/or arsenopyrite and pyrrhotite. The ore deposits include historically famed Au‐quartz veins at Shishiori and Ogayu. They are widespread in the southwestern Kitakami Mountains and may be later than the high sulfide type in age, and are hosted most commonly in the sedimentary rocks, which surround small weakly oxidized magnetite‐series plutons of low to intermediate Sr/Y series. These less differentiated intrusions typically include quartz dior‐ite and granodiorite. Some ore components of this type may have derived from the host sedimentary rocks. Among other mineral deposit types in the region, the largest ore deposit is Kamaishi Cu‐Fe skarn (magnetite ores of 58 MT, Fe 50–64 %; Cu 143 KT). It is related to the high‐Sr/Y series Ganidake granodiorite stock, which is a strongly oxidized magnetite‐series body. In contrast, the second largest deposit in the mountains, Akagane deposit, is a similar‐type skarn but associated with an intrusion classified as less oxidized, ilmenite to intermediate series, and that is intermediate in Sr/Y of calc‐alkaline series granodiorite. Degree of magmatic differentiation appears to be not critical factor in the formation of Au‐quartz vein and Cu‐Fe skarn deposits in the region, but is definitely significant for controlling the distribution of the Mo‐mineralization to the east.  相似文献   

6.
The Jiaodong gold province is situated in the eastern Sino-Korean Platform within the so-calledJiaoliao Uplift. The basement rocks are Archaean and Proterozoic metamorphic rocks. Mesozoic sedimentary andvolcanic cover occur within extensional basins. Intrusive rocks are dominated by Mesozoic granitoid, with interme-diate-acid and basic dyke swarms. The structures form an E-W-trending anticlinorium in the basement complex, andlarge-scale NE-SW-and NNE-SSW-trending fault zones of Mesozoic age. The gold mineralization is associated withthe Mesozoic faults and related secondary fractures in the granites or granite-basement contacts. The mineralizationtypes are quartz-vein type and wall-rock alteration type. Wall-rock alteration is very well developed around the orezones. Alteration minerals include quartz, sericite (and fuchsite), pyrite, calcite, chlorite, hematite, rutile and graph-ite. The ore assemblage is uniform in all deposits, including pyrite, chalcopyrite, galena, sphalerite, arsenopyrite,pyrrhotite, gold, electrum, hessite, petzite, magnetite, molybdenite, tetrahedrite and wolframite. Mesozoic collisionand subduction between the South China and North China continental blocks contributed to formation of the Meso-zoic granitoid intrusions. The granitic magma is considered to be derived from partial melting of the crust throughunderplating processes. Gold was remobilised from basement rocks and deposited in fracture zones by the high-temperature fluids associated with these processes.  相似文献   

7.
Recent studies have revealed that the Makeng Fe deposit is a skarn type deposit. However, the skarns in Makeng, occurring primarily between limestone and sandstone, are not typically associated with limestone and plutons. Different periods of intrusions, e.7. Hercynian mafic intrusions and Yanshanian (i.e. early Cretaceous) Dayang–Juzhou granitic intrusion, occurred in the Makeng deposit district. In this study, the formation processes of the skarns and Fe mineralization are constrained by detailed fieldwork, petrology, geochronology, and geochemistry. Skarns and Fe mineralization intersecting the Hercynian mafic intrusions are observed in consecutive specimens from the 106# tunnel. They suggest that the skarn formation and Fe mineralization occurred after the Hercynian mafic intrusions and are related to the later Yanshanian Dayang–Juzhou granitic intrusion. The geochronological characteristics of weakly skarn‐altered diabases, the decreasing nature of Fe contents in altered diabase, and the major element compositions of pyroxenes and garnets also support that Hercynian mafic intrusions are strongly reformed by Yanshanian granitic magmas and the Fe migrated from mafic intrusion was responsible for formation of iron ore.  相似文献   

8.
刘海田 《地质与资源》1999,8(4):209-216
河北省赤城县黄土梁金矿产于水泉沟-大南山碱性杂岩体内接触带,矿床受钾化正长岩及断裂构造双重控制.矿床具矿化带宽、规模大、贫硫化物、蚀变单一、矿石类型简单、埋藏浅、易采选等特点,是一处与海西期-燕山早期岩浆活动有关的热液矿床.  相似文献   

9.
Genesis of the Xinqiao Gold-Sulfide Orefield, Anhui Province, China   总被引:3,自引:0,他引:3  
The Xinqiao S-Fe-Cu-Au orefield is located in the Tongling ore cluster in the middle and lower reaches of the Yangtze River in East China. There have been many researches regarding the genesis of the Xinqiao orefield in recent years, showing that it belongs to various types, such as sedimentary-reformed type, stratabound-skarn type, sedimentary submarine rocks-hosted exhalative type. We propose that it was formed in two periods of mineralization base on systematic field observation and Pb and S isotopic analyses in nearly ten years. The first period was formed during a syngenetic sedimentary process, whereas the massive sulphide orebodies are mainly related to the Yanshanian granitic magmatism. Sulfide metallic mineral associations show zoning around a granite intrusion, i.e. magnetite and pyrite→pyrite, chalcopyrite and native gold→pyrite, sphalerite and galena. Gold orebodies occur outside the contact zone of the granite intrusion.  相似文献   

10.
岩浆矽卡岩及其矿床   总被引:19,自引:0,他引:19  
岩浆矽卡岩是由钙硅酸盐熔(流)体或钙矽卡岩质岩浆贯入结晶或/和隐爆团结(结晶)形成的。主要呈脉状体,少数呈角砾岩筒(带),受断裂、裂隙构造控制,可产于各类不同岩石(层)中。岩浆矽卡岩与富碱中基-中酸性侵入岩密切共生,两者在主化学成分上具共轭、互补关系,组成特征的岩浆矽卡岩 -富碱(中基-中酸)侵入岩对。它们是深部高位岩浆房受钙质强烈混染的富碱闪长质岩浆发生不混溶分 离所衍生的两种不同性质的熔(流)体或岩浆的产物。与岩浆矽卡岩有关的各类矿床,主要是含同生铁氧 化物/硫化物液体的钙矽卡岩(矿)浆,伴随其成岩演变的产物,并构成了一个特殊的(岩)浆矽卡岩矿床系列。  相似文献   

11.
福建尤溪肖板金矿床金的赋存状态及金矿物特征   总被引:6,自引:0,他引:6  
肖板金矿床属受构造控制的中低温岩浆热液矿床,矿化类型为构造蚀变岩型。金多呈独立金矿物形式出现,少许呈分散状;金矿物以自然金为主,平均成色930,有少量银金矿和碲金矿。金矿物以包体金、裂隙金、连生金和粒间金等形式嵌布于黄铁矿、黄铜矿、石英、方铅矿及方解石等主要载金矿物中,且石英、方解石中较金属硫化物中占优势。金矿物形态各异,粒度以中细粒为主。  相似文献   

12.
Orogenic, lode gold mineralisation in the South Eastern Desert of Egypt is related to quartz veins spatially and temporally associated with conjugate NW- and NE-trending brittle–ductile shear zones. These structures are assumed to be linked to a regional transpression deformation which occurred late in the tectonic evolution of the area. In the Betam deposit, gold is confined to quartz(±carbonate) veins cutting through tectonised metagabbro and metasedimentary rocks in the vicinity of small granite intrusions. The ore bodies contain ubiquitous pyrite and arsenopyrite, in addition to minor disseminated chalcopyrite, pyrrhotite, galena, tetrahedrite and rare gold/electrum. New ore microscopy and electron microprobe studies indicate that most free-milling Au is intimately associated with the late-paragenetic galena–tetrahedrite–chalcopyrite assemblage. An early Fe–As sulphide assemblage, however, shows minor traces of refractory gold. New mineralogical and geochemical data are used to better constrain on possible element dispersions for exploration uses. This study indicates that parameters that most consistently define primary dispersion of gold in the mine area include pervasive silicification, sericite and carbonate alteration. The trace element data of gold lodes reflect a systematic dispersion of gold and certain base metals. Low-cost, extensive exploration programs may use elevated concentrations of Ag, Sb, Cu and Pb as tracers for Au ore zones in the Betam mine area and surroundings.  相似文献   

13.
河北金家庄超基性岩型金矿床的地球化学特征   总被引:1,自引:1,他引:0  
对金家庄金矿的金属矿物化学成分、流体包裹体成分和同位素组成进行了分析。研究表明 ,金家庄金矿在矿石矿物成分上以黄铜矿、闪锌矿、黄铁矿等主要金属矿物中普遍含有Pt、Pd、Ni等深源元素并出现针镍矿为特征 ,在成矿物质来源上 ,碳、硫和主要成矿元素主要来源于超基性岩体 ,成矿热液则可能主要来源于地下热水溶液。  相似文献   

14.
文章首次对蒙甘新相邻(北山)地区各类金、铜和铜—镍矿床(点)地质特征、成因类型和空间分布特点进行了系统总结,论证了金、铜和铜—镍成矿作用与古生代岩浆活动的关系,对区域地壳演化过程中金、铜和铜—镍成矿的动力学机制进行了深入讨论。研究结果表明,该区的金矿床(点)大体可划分为变质岩型、火山岩型、斑岩型和深成侵入岩型;铜矿床(点)有斑岩型、夕卡岩型和铜—镍硫化物型。金和铜矿床(点)大都沿古板块汇聚带分布,与海西期火成岩具密切的时空分布关系,它们是古板块对接碰撞期和碰撞期后大规模构造—岩浆活动的产物。  相似文献   

15.
相山铀矿田巴泉隐爆角砾岩(筒)地质特征与铀成矿   总被引:1,自引:0,他引:1  
周玉龙 《铀矿地质》2012,(5):273-280
巴泉铀矿床位于相山矿田的北部边缘,是典型的隐爆角砾岩(筒)型铀矿床。隐爆角砾岩(筒)是由与相山火山机构有密切联系的燕山晚期侵入于震旦系变质岩中的潜花岗斑岩岩枝发生隐爆作用而生成。矿床是多阶段岩浆活动、多次隐爆作用和多期铀成矿作用互为响应、连续发展地质过程的产物,是集岩浆岩体-角砾岩体-铀矿体为一体的综合地质单元。燕山晚期潜花岗斑岩浆和英安玢岩浆的侵入、隐爆作用形成的角砾岩(筒),以及断裂构造的频繁运动,对铀成矿乃至矿床的形态和规模起到重要的控制作用。隐爆角砾岩(筒)的形成具有脉动性、隐爆性,显示隐爆角砾岩岩性的复杂多变,矿化蚀变种类、组合和强弱变化具有规律性。铀矿体(化)主要赋存于隐爆角砾岩和震碎角砾岩中,矿化显现出中富边贫、上强下弱的特征。  相似文献   

16.
本文以笔者所提出的构造矿源层(前寒武系变质岩区)+燕山期岩体(岩浆岩或火山岩)+断裂交汇部位(构造扩容空间)的金银-多金属构造成矿的模式(或谓“三位一体”构造成矿模式),对中国主要金矿的构造成矿、成矿控矿系列(构造成矿区、构造成矿带、构造成矿田、矿床和矿体的成矿定位)作了进一步的论述。指出了具有前寒武系变质岩的地穹区及其边缘断裂带为金的构造成矿富集区,并指出了金矿构造成矿的有序性规律及找矿远景区。  相似文献   

17.
甘肃北山拾金坡金矿床地质特征及成因分析   总被引:1,自引:1,他引:1  
安国堡 《矿床地质》2006,25(4):483-490
拾金坡金矿是甘肃北山南带较为典型的含金硫化物石英脉型金矿床,矿化富集与加里东晚期—海西早期拾金坡复式岩体密切相关。矿体产于岩体的内接触带,产出部位明显受近EW向断裂破碎带的控制。矿体主要为大脉状、脉状、透镜状。矿床中发育一套典型的中温热液成因的矿物组合,矿石以强烈的绢云母化、碳酸盐化、硅化和黄铁矿化为特征,矿石的金属矿物组合为自然金_银金矿_黄铁矿_方铅矿_闪锌矿_黄铜矿,矿化属中温热液成因。硫和铅同位素显示成矿金属物质主要来自围岩,即斑状花岗岩;氢和氧同位素组成表明成矿流体来自花岗岩浆水。成矿时代属早—中海西期。因此可推断,拾金坡金矿床属于与构造_岩浆活动有关的中温岩浆热液成因矿床。  相似文献   

18.
北山地区金矿床金的赋存状态和金矿物特征   总被引:5,自引:0,他引:5  
甘肃北山地区金矿床主要有岩浆热液型金矿床和与韧性剪切带有关的金矿床,矿化类型为石英脉型和蚀变岩型。金多呈独立金矿物形式出现,少放许呈分散状;金矿物以银金矿为主,次为自然金,平均成色772;金矿物以粒间金、裂隙金、连生金、连生金和包体金等形成嵌布于石英、黄铁矿、方铅矿及闪锌矿等主要载物较为发育。金矿物特征反映出本区金矿床的成矿物质主要来源于变质岩,华力西-印支期中酸性岩浆活动是主要的动力源。  相似文献   

19.
Abstract: Mineral paragenesis of the alteration, ore and gangue minerals of the Lepanto epithermal copper‐gold deposit and the Victoria gold deposit, Mankayan Mineral District, Northern Luzon, Philippines, is discussed. The principal ore minerals of the Lepanto copper‐gold deposit are enargite and luzonite, with significant presence of tennantite‐tetrahedrite, chalcopyrite, sphalerite, galena, native gold/electrum and gold‐silver tellurides. Pervasive alteration zonations are commonly observed from silicification outward to advanced argillic then to propylitic zone. The ore mineralogy of the Lepanto copper‐gold deposit suggests high fS2 in the early stages of mineralization corresponding to the deposition of the enargite‐luzonite‐pyrite assemblage. Subsequent decrease in the fS2 formed the chalcopyrite‐tennantite‐pyrite assemblage. An increase in the fS2 of the fluids with the formation of the covellite‐digenite‐telluride assemblage caused the deposition of native gold/electrum and gold‐silver tellurides. The principal ore minerals of the Victoria gold deposit are sphalerite, galena, chalcopyrite, tetrahedrite and native gold/electrum. The alteration halos are relatively narrow and in an outward sequence from the ore, silica alteration grades to illitic‐argillic alteration, which in turn grades to propylitic alteration. The Victoria gold mineralization has undergone early stages of silica supersaturation leading to quartz deposition. Vigorous boiling increased the pH of the fluids that led to the deposition of sulfides and carbonates. The consequent decrease in H2S precipitated the gold. Gypsum and anhydrite mainly occur as overprints that cut the carbonate‐silica stages. The crosscutting and overprinting relationships of the Victoria quartz‐gold‐base metal veins on the Lepanto copper‐gold veins manifest the late introduction of near neutral pH hydrothermal fluids.  相似文献   

20.
毛景文  韩春明等 《地质通报》2002,21(12):858-868
概要介绍了中亚南天山大型金矿带的构造环境、地质特征和分布特点。中亚南天山是世界重要的金成矿带,其中发育有一系列世界级矿床。在该带中,除了剪切带型(造山型)金矿外,还有夕卡岩型、细网脉型以及爆破角砾岩型。成矿围岩是前寒武纪和早古生代浅变质岩系,成矿与二叠纪花岗质岩石密切相关,成矿流体以富CO2为特征,与矿化有关的围岩蚀变强烈发育,通常以Au,Ag,Sb,Te,As,W和Bi元素组合为地球化学找矿标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号