首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 IntroductionTodeveloptheoceanwidelyanddeeply ,weneedabundantoceaninformation .Asanessentialpartofsuchinformation ,seafloortopographyplaysaveryimportantroleinavarietyofmarineactivities .However,thehighcostforoceanbathymetricsurveyinglimitstheapplicationo…  相似文献   

2.
P. Moore 《Journal of Geodesy》2001,75(5-6):241-254
 Dual satellite crossovers (DXO) between the two European Remote Sensing satellites ERS-1 and ERS-2 and TOPEX/Poseidon are used to (1) refine the Earth's gravity field and (2) extend the study of the ERS-2 altimetric range stability to cover the first four years of its operation. The enhanced gravity field model, AGM-98, is validated by several methodologies and will be shown to provide, in particular, low geographically correlated orbital error for ERS-2. For the ERS-2 altimetric range study, TOPEX/Poseidon is first calibrated through comparison against in situ tide gauge data. A time series of the ERS-2 altimeter bias has been recovered along with other geophysical correction terms using tables for bias jumps in the range measurements at the single point target response (SPTR) events. On utilising the original version of the SPTR tables the overall bias drift is seen to be 2.6±1.0 mm/yr with an RMS of fit of 12.2 mm but with discontinuities at the centimetre level at the SPTR events. On utilising the recently released revised tables, SPTR2000, the drift is better defined at 2.4±0.6 mm/yr with the RMS of fit reduced to 3.7 mm. Investigations identify the sea-state bias as a source of error with corrections affecting the overall drift by close to 1.2 mm/yr. Received: 25 May 2000 / Accepted: 24 January 2001  相似文献   

3.
 Aliasing of the diurnal and semi-diurnal tides is a major problem when estimating the ocean tides from satellite altimetry. As a result of aliasing, the tides become correlated and many years of altimeter observations may be needed to seperate them. For the three major satellite altimetry missions to date i.e., GEOSAT, ERS-1, and TOPEX/POSEIDON (T/P), the alias periods as well as the Rayleigh periods over which the tides decorrelate can be identified. Especially in case of GEOSAT and ERS-1, severe correlation problems arise. However, it is shown by means of covariance analyses that the tidal phase advance differences on crossing satellite groundtracks can significantly reduce the correlations among the diurnal and semi-diurnal tides and among these tides and the seasonal cycles of ocean variability. Therefore, it has been attempted to solve a multi-satellite response tidal solution for the diurnal and semi-diurnal bands from a total of 7 years of altimetry. Unfortunately, it could be shown that the GEOSAT and ERS-1 orbit errors are too large to improve a 3-year T/P tidal solution with about 2 years of GEOSAT and 2 years of ERS-1 altimeter observations. However, these results are preliminary and it is expected that more accurate orbits, which have become available recently for ERS-1, and additional altimeter data from ERS-2 and the GEOSAT Follow-On (GFO) should lead to an improved T/P tidal model. Received: 4 May 1999 / Accepted: 24 January 2000  相似文献   

4.
 A new method for calculating analytical solar radiation pressure models for GNSS spacecraft has been developed. The method simulates the flux of light from the Sun using a pixel array. The method can cope with a high level of complexity in the spacecraft structure and models effects due to reflected light. Models have been calculated and tested for the Russhar global navigation satellite system GLONASS IIv spacecraft. Results are presented using numerical integration of the force model and long-arc satellite laser ranging (SLR) analysis. The integrated trajectory differs from a precise orbit calculated using a network of global tracking stations by circa 2 m root mean square over a 160 000-km arc. The observed − computed residuals for the 400-day SLR arc are circa 28 mm. Received: 23 December 1999 / Accepted: 28 August 2000  相似文献   

5.
About half a million marine gravity measurements over a 30×30 area centered on Japan have been processed and adjusted to produce a new free-air gravity map from a 5′×5′ grid. This map seems to have a better resolution than those previously published as measured by its correlation with bathymetry. The grid was used together with a high-degree and -order spherical harmonics geopotential model to compute a detailed geoid with two methods: Stokes integral and collocation. Comparisons with other available geoidal surfaces derived either from gravity or from satellite altimetry were made especially to test the ability of this new geoid at showing the sea surface topography as mapped by the Topex/Poseidon satellite. Over 2 months (6 cycles) the dynamic topography at ascending passes in the region (2347N and 123147E) was mapped to study the variability of the Kuroshio current. Received: 15 July 1994 / Accepted: 17 February 1997  相似文献   

6.
This analysis was performed with the GEOSAT software developed at NDRE for high-precision analysis of satellite tracking and VLBI data for geodetic and geodynamic applications.For applications to ERS-1, a realistic surface force model is used together with the Jacchia 77 atmospheric model, semi-daily drag coefficients, a 1-cpr sinusoidal along-track acceleration, and the GSFC JGM-2 gravity model. ERS-1 orbits have been derived for 5.5-day arcs of laser tracking data between July 6 and August 12, 1992. Results from overlapping orbits and comparison with precise D-PAF orbits indicate an orbital accuracy of 10–15 cm in the radial direction, ~ 60 cm in the along-track direction and ~ 15 cm in the cross-track direction.  相似文献   

7.
We have analyzed recent gravity recovery and climate experiment (GRACE) RL04 monthly gravity solutions, using a new decorrelating post-processing approach. We find very good agreement with mass anomalies derived from a global hydrological model. The post-processed GRACE solutions exhibit only little amplitude damping and an almost negligible phase shift and period distortion for relevant hydrological basins. Furthermore, these post-processed GRACE solutions have been inspected in terms of data fit with respect to the original inter-satellite ranging and to SLR and GPS observations. This kind of comparison is new. We find variations of the data fit due to solution post-processing only within very narrow limits. This confirms our suspicion that GRACE data do not firmly ‘pinpoint’ the standard unconstrained solutions. Regarding the original Kusche (J Geod 81:733–749, 2007) decorrelation and smoothing method, a simplified (order-convolution) approach has been developed. This simplified approach allows to realize a higher resolution—as necessary, e.g., for generating computed GRACE observations—and needs far less coefficients to be stored.  相似文献   

8.
空间大地测量新技术及应用   总被引:1,自引:1,他引:0  
随着空间及卫星定位技术的飞速发展,各种空间定位技术及应用也愈来愈多。简要介绍了甚长基线干涉测量(VLBI)技术、激光测月(LLR)技术、卫星激光测距(SLR)技术、卫星雷达测高技术、多普勒定轨和无线电定位系统(DORIS)、精密测距及其变率测量系统(PRARE)以及合成孔径雷达干涉测量(InSAR)等空间定位测量技术,重点阐述了GPS新技术及应用。  相似文献   

9.
 A technique is presented for the development of a high-precision and high-resolution mean sea surface model utilising radar altimetric sea surface heights extracted from the geodetic phase of the European Space Agency (ESA) ERS-1 mission. The methodology uses a cubic-spline fit of dual ERS-1 and TOPEX crossovers for the minimisation of radial orbit error. Fourier domain processing techniques are used for spectral optimal interpolation of the mean sea surface in order to reduce residual errors within the initial model. The EGM96 gravity field and sea surface topography models are used as reference fields as part of the determination of spectral components required for the optimal interpolation algorithm. A comparison between the final model and 10 cycles of TOPEX sea surface heights shows differences of between 12.3 and 13.8 cm root mean square (RMS). An un-optimally interpolated surface comparison with TOPEX data gave differences of between 15.7 and 16.2 cm RMS. The methodology results in an approximately 10-cm improvement in accuracy. Further improvement will be attained with the inclusion of stacked altimetry from both current and future missions. Received: 22 December 1999 / Accepted: 6 November 2000  相似文献   

10.
ERS-1 radial positioning using the JGM-2 and JGM-3 gravity fields is assessed by analysing dual crossovers with TOPEX/Poseidon, neither field containing ERS-1 data. This method allows a more complete recovery of ERS-1 radial orbit error, specifically of the previously unattainable mean geographical error. The global analysis shows that the theoretical error derived from the JGM-2 covariance matrix is realistic and that JGM-3 represents a slight improvement, at least at the inclination of ERS-1. A latitudinal-based study in the southern ocean indicates possible weaknesses in both fields, notably for low and resonant geopotential orders m. A refinement of JGM-2, RGM-2, is undertaken through inclusion of ERS-1 and STELLA laser tracking and ERS-1 altimetry, reducing several of its deficiencies. Received: 14 May 1996 / Accepted: 17 February 1997  相似文献   

11.
 Global mean sea surface heights (SSHs) and gravity anomalies on a 2×2 grid were determined from Seasat, Geosat (Exact Repeat Mission and Geodetic Mission), ERS-1 (1.5-year mean of 35-day, and GM), TOPEX/POSEIDON (T/P) (5.6-year mean) and ERS-2 (2-year mean) altimeter data over the region 0–360 longitude and –80–80 latitude. To reduce ocean variabilities and data noises, SSHs from non-repeat missions were filtered by Gaussian filters of various wavelengths. A Levitus oceanic dynamic topography was subtracted from the altimeter-derived SSHs, and the resulting heights were used to compute along-track deflection of the vertical (DOV). Geoidal heights and gravity anomalies were then computed from DOV using the deflection-geoid and inverse Vening Meinesz formulae. The Levitus oceanic dynamic topography was added back to the geoidal heights to obtain a preliminary sea surface grid. The difference between the T/P mean sea surface and the preliminary sea surface was computed on a grid by a minimum curvature method and then was added to the preliminary grid. The comparison of the NCTU01 mean sea surface height (MSSH) with the T/P and the ERS-1 MSSH result in overall root-mean-square (RMS) differences of 5.0 and 3.1 cm in SSH, respectively, and 7.1 and 3.2 μrad in SSH gradient, respectively. The RMS differences between the predicted and shipborne gravity anomalies range from 3.0 to 13.4 mGal in 12 areas of the world's oceans. Received: 26 September 2001 / Accepted: 3 April 2002 Correspondence to: C. Hwang Acknowledgements. This research is partly supported by the National Science Council of ROC, under grants NSC89-2611-M-009-003-OP2 and NSC89-2211-E-009-095. This is a contribution to the IAG Special Study Group 3.186. The Geosat and ERS1/2 data are from NOAA and CERSAT/France, respectively. The T/P data were provided by AVISO. The CLS and GSFC00 MSS models were kindly provided by NASA/GSFC and CLS, respectively. Drs. Levitus, Monterey, and Boyer are thanked for providing the SST model. Dr. T. Gruber and two anonymous reviewers provided very detailed reviews that improved the quality of this paper.  相似文献   

12.
Summary.  GFZ Potsdam and GRGS Toulouse/Grasse jointly developed a new pair of global models of the Earth's gravity field to satisfy the requirements of the recent and future geodetic and altimeter satellite missions. A precise gravity model is a prerequisite for precise satellite orbit restitution, tracking station positioning and altimeter data reduction. According to different applications envisaged, the new model exists in two parallel versions: the first one being derived exclusively from satellite tracking data acquired on 34 satellites, the second one further incorporating satellite altimeter data over the oceans and terrestrial gravity data. The most recent “satellite-only” gravity model is labelled GRIM4-S4 and the “combined” gravity model GRIM4-C4. The models are solutions in spherical harmonics and have a resolution up to degree and order 60 plus a few resonance terms in the case of GRIM4-S4, and up to degree/order 72 in the case of GRIM4-C4, corresponding to a spatial resolution of 555 km at the Earth's surface. The gravitational coefficients were estimated in a rigorous least squares adjustment simultaneously with ocean tidal terms and tracking station position parameters, so that each gravity model is associated with a consistent ocean tide model and a terrestrial reference frame built up by over 300 optical, laser and Doppler tracking stations. Comprehensive quality tests with external data and models, and test arc computations over a wide range of satellites have demonstrated the state-of-the-art capabilities of both solutions in long-wavelength geoid representation and in precise orbit computation. Received 1 February 1996; Accepted 17 July 1996  相似文献   

13.
 The AUSGeoid98 gravimetric geoid model of Australia has been computed using data from the EGM96 global geopotential model, the 1996 release of the Australian gravity database, a nationwide digital elevation model, and satellite altimeter-derived marine gravity anomalies. The geoid heights are on a 2 by 2 arc-minute grid with respect to the GRS80 ellipsoid, and residual geoid heights were computed using the 1-D fast Fourier transform technique. This has been adapted to include a deterministically modified kernel over a spherical cap of limited spatial extent in the generalised Stokes scheme. Comparisons of AUSGeoid98 with GPS and Australian Height Datum (AHD) heights across the continent give an RMS agreement of ±0.364 m, although this apparently large value is attributed partly to distortions in the AHD. Received: 10 March 2000 / Accepted: 21 February 2001  相似文献   

14.
曲伟菁  吴斌  周旭华 《测绘学报》2012,41(6):904-909
本文利用2002年4月至2010年10月的Lageos1和Lageos2两颗激光卫星观测数据、GRACE以及地球物理模型三种独立的方法计算地球低阶重力场系数J 的变化,根据大气压强数据计算 J 时分别按反变气压计(IB)和非反变气压计(NIB)两种假设进行计算。通过分析 J 的季节特性表明,大气在NIB假设下得到的周年振幅比在IB假设下得到的振幅大3倍左右,相位相差47°;大气和陆地水的质量变化对 J 周年变化的贡献占主导地位,海洋的影响最小;大气、海洋和陆地水得到 J 半年振幅和相位值与SLR得到的振幅和相位值吻合较差,尤其是在IB假设下大气得到的结果与SLR结果相差最大; SLR、GRACE和地球物理模型三种独立方法得到的 J 周年项之间吻合相对较好,GRACE得到的周年振幅比SLR得到的周年振幅大50%左右, SLR观测得到的 J 周年振幅介于在NIB和IB两种假设下地球物理模型得到的结果之间;GRACE与SLR得到的 J 半年项的振幅相同,在IB假设下AOW得到的 J 半年振幅和相位与SLR结果差异最大。  相似文献   

15.
The impact of accelerometry on CHAMP orbit determination   总被引:6,自引:0,他引:6  
 The contribution of the STAR accelerometer to the CHAMP orbit precision is evaluated and quantified by means of the following results: orbital fit to the satellite laser ranging (SLR) observations, GPS reduced-dynamic vs SLR dynamic orbit comparisons, and comparison of the measured to the modeled non-gravitational accelerations (atmospheric drag in particular). In each of the four test periods in 2001, five CHAMP arcs of 2 days' length were analyzed. The mean RMS-of-fit of the SLR observations of the orbits computed with STAR data or the non-gravitational force model were 11 and 24 cm, respectively. If the accelerometer calibration parameters are not known at least at the few percent level, the SLR orbit fit deteriorates. This was tested by applying a 10% error to the along-track scale factor of the accelerometer, which increased the SLR RMS-of-fit on average to 17 cm. Reference orbits were computed employing the reduced-dynamic technique with GPS tracking data. This technique yields the most accurate orbit positions thanks to the estimation of a large number of empirical accelerations, which compensate for dynamic modeling errors. Comparison of the SLR orbits, computed with STAR data or the non-gravitational force model, to the GPS-based orbits showed that the SLR orbits employing accelerometer observations are twice as accurate. Finally, comparison of measured to modeled accelerations showed that the level of geomagnetic activity is highly correlated with the atmospheric drag model error, and that the largest errors occur around the geomagnetic poles. Received: 7 May 2002 / Accepted: 18 November 2002 Correspondence to: S. Bruinsma Acknowledgments. The TIGCM results were obtained from the CEDAR database. This study was supported by the Centre National d'Etudes Spatiales (CNES). The referees are thanked for their helpful remarks and suggestions.  相似文献   

16.
In March 2013, the fourth generation of European Space Agency’s (ESA) global gravity field models, DIR4 (Bruinsma et al. in Proceedings of the ESA living planet symposium, 28 June–2 July, Bergen, ESA, Publication SP-686, 2010b) and TIM4 (Migliaccio et al. in Proceedings of the ESA living planet symposium, 28 June–2 July, Bergen, ESA, Publication SP-686, 2010), generated from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) gravity observation satellite was released. We evaluate the models using an independent ground truth data set of gravity anomalies over Australia. Combined with Gravity Recovery and Climate Experiment (GRACE) satellite gravity, a new gravity model is obtained that is used to perform comparisons with GOCE models in spherical harmonics. Over Australia, the new gravity model proves to have significantly higher accuracy in the degrees below 120 as compared to EGM2008 and seems to be at least comparable to the accuracy of this model between degree 150 and degree 260. Comparisons in terms of residual quasi-geoid heights, gravity disturbances, and radial gravity gradients evaluated on the ellipsoid and at approximate GOCE mean satellite altitude ( $h=250$  km) show both fourth generation models to improve significantly w.r.t. their predecessors. Relatively, we find a root-mean-square improvement of 39 % for the DIR4 and 23 % for TIM4 over the respective third release models at a spatial scale of 100 km (degree 200). In terms of absolute errors, TIM4 is found to perform slightly better in the bands from degree 120 up to degree 160 and DIR4 is found to perform slightly better than TIM4 from degree 170 up to degree 250. Our analyses cannot confirm the DIR4 formal error of 1 cm geoid height (0.35 mGal in terms of gravity) at degree 200. The formal errors of TIM4, with 3.2 cm geoid height (0.9 mGal in terms of gravity) at degree 200, seem to be realistic. Due to combination with GRACE and SLR data, the DIR models, at satellite altitude, clearly show lower RMS values compared to TIM models in the long wavelength part of the spectrum (below degree and order 120). Our study shows different spectral sensitivity of different functionals at ground level and at GOCE satellite altitude and establishes the link among these findings and the Meissl scheme (Rummel and van Gelderen in Manusrcipta Geodaetica 20:379–385, 1995).  相似文献   

17.
The accumulation of good quality satellite altimetry missions allows us to have a precise geoid with fair resolution and to compute free air gravity anomalies easily by fast Fourier transform (FFT) techniques.In this study we are comparing two methods to get gravity anomalies. The first one is to establish a geoid grid and transform it into anomalies using inverse Stokes formula in the spectral domain via FFT. The second one computes deflection of the vertical grids and transforms them into anomalies.The comparison is made using different data sets: Geosat, ERS-1 and Topex-Poseidon exact repeat misions (ERMs) north of 30°S and Geosat geodetic mission (GM) south of 30°S. The second method which transforms the geoid gradients converted into deflection of the vertical values is much better and the results have been favourably evaluated by comparison with marine gravity data.  相似文献   

18.
G. Bourda 《Journal of Geodesy》2008,82(4-5):295-305
The temporal variations of the Earth’s gravity field, nowadays routinely determined from satellite laser ranging (SLR) and GRACE (Gravity Recovery And Climate Experiment), are related to changes in the Earth’s rotation rate through the Earth’s inertia tensor. We study this connection from actual data by comparing the traditional length-of-day (LOD) measurements provided by the International Earth Rotation and Reference Systems Service (IERS) to the variations of the degree-2 and order-0 Stokes coefficient of the gravity field determined from fitting the orbits of the LAGEOS-1 and −2 satellites since 1985. The two series show a good correlation (0.62) and similar annual and semi-annual signals, indicating that the gravity-field-derived LOD is valuable. Our analysis also provides evidence for additional signals common to both series, especially at a period near 120 days, which could be due to hydrological effects.  相似文献   

19.
Combination of GNSS and SLR observations using satellite co-locations   总被引:6,自引:6,他引:0  
Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and allows the estimation of SLR station coordinates at the level of 1–2 cm. The SLR observations to GNSS satellites provide the scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119 mm and −13 mm on average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in the range of a few centimeters up to 5 cm. Scale differences of 0.9 ppb are seen between GNSS and SLR.  相似文献   

20.
A detailed gravimetric geoid in the North Atlantic Ocean, named DGGNA-77, has been computed, based on a satellite and gravimetry derived earth potential model (consisting in spherical harmonic coefficients up to degree and order 30) and mean free air surface gravity anomalies (35180 1°×1° mean values and 245000 4′×4′ mean values). The long wavelength undulations were computed from the spherical harmonics of the reference potential model and the details were obtained by integrating the residual gravity anomalies through the Stokes formula: from 0 to 5° with the 4′×4′ data, and from 5° to 20° with the 1°×1° data. For computer time reasons the final grid was computed with half a degree spacing only. This grid extends from the Gulf of Mexico to the European and African coasts. Comparisons have been made with Geos 3 altimetry derived geoid heights and with the 5′×5′ gravimetric geoid derived byMarsh andChang [8] in the northwestern part of the Atlantic Ocean, which show a good agreement in most places apart from some tilts which porbably come from the satellite orbit recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号