首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Knowledge of the tectonic history of the Pamir contributes to our understanding of both the evolution of collisional orogenic belts as well as factors controlling Central Asian aridification. It is, however, not easy to decipher the Mesozoic–Cenozoic tectonics of the Pamir due to extensive Neogene deformation in an orogen that remains largely understudied. This study reports detrital apatite and zircon fission-track (FT) ages from both the eastern Tajik Basin sedimentary rocks and Pamir modern river sands. These FT data, supported by vitrinite reflectance and zircon and apatite U–Pb double dating, suggest that the majority of the FT ages are unreset and record exhumation stages of the Pamir, which has served as the source terrane of the Tajik Basin since the Cretaceous. Furthermore, we combine the new data with a compilation of published detrital apatite and zircon FT data from both the Tajik Basin sedimentary rocks and Pamir modern river sands, to explore the Mesozoic–Cenozoic tectonic history of Pamir. Deconvolved FT Peak Ages document two major Mesozoic exhumation events associated with the Late Triassic–Early Jurassic Cimmerian orogeny that reflects accretion of the Pamir terranes, as well as the Early–early Late Cretaceous deformation associated with the northward subduction of the Neo-Tethys Ocean beneath Pamir. The compiled data also show significant Late Eocene–Neogene exhumation associated with the ongoing formation of the Pamir, which peaks at ca. 36, 25, 14 and 7 Ma.  相似文献   

2.
The upper Campanian–Lower Eocene synorogenic sedimentary wedge of the Ranchería Basin was deposited in an intraplate basin resting on a tilted continental crustal block that was deformed by collision and subsequent subduction of the Caribbean Plate. Upper Cretaceous–Lower Eocene strata rest unconformably upon Jurassic igneous rocks of the Santa Marta Massif, with no major thrust faults separating the Santa Marta Massif from the Ranchería Basin. The upper Campanian–Lower Eocene succession includes, from base to top: foraminifera‐rich calcareous mudstone, mixed carbonate–siliciclastic strata and mudstone, coal and immature fluvial sandstone beds. Diachronous collision and eastward tilting of the plate margin (Santa Marta Massif and Central Cordillera) favoured the generation of accommodation space in a continuous intraplate basin (Ranchería, Cesar and western Maracaibo) during the Maastrichtian to Late Palaeocene. Terrigenous detritus from the distal colliding margin filled the western segments of the continuous intraplate basin (Ranchería and Cesar Basins); in the Late Paleocene, continental depositional systems migrated eastwards as far as the western Maracaibo Basin. In Early Eocene time, reactivation of former extensional structures fragmented the intraplate basin into the Ranchería‐Cesar Basins to the west, and the western Maracaibo Basin and Palmar High to the East. This scenario of continent–oceanic arc collision, crustal‐scale tilting, intraplate basin generation and fault reactivation may apply for Upper Cretaceous–Palaeogene syntectonic basins in western Colombia and Ecuador, and should be considered in other settings where arc–continent collision is followed by subduction.  相似文献   

3.
This article presents combined stratigraphic, sedimentological, subsidence and provenance data for the Cretaceous–Palaeogene succession from the Zhepure Mountain of southern Tibet. This region records the northernmost sedimentation of the Tethyan passive margin of India, and this time interval represents the transition into continental collision with Asia. The uppermost Cretaceous Zhepure Shanpo and Jidula formations record the transition from pelagic into upper slope to delta‐plain environments. The Palaeocene–lower Eocene Zongpu Formation records a carbonate ramp that is overlain by the deep‐water Enba Formation (lower Eocene). The upper part of the Enba Formation records shallowing into a storm‐influenced, outer shelf environment. Detrital zircon U–Pb and Hf isotopic data indicate that the terrigenous strata of the Enba Formation were sourced from the Lhasa terrane. Unconformably overlying the Enba Formation is the Zhaguo Formation comprising fluvial deposits with evidence of recycling from the underlying successions. Backstripped subsidence analysis indicates shallowing during latest Cretaceous‐earliest Palaeocene time (Zhepure Shanpo and Jidula formations) driven by basement uplift, followed by stability (Zongpu Formation) until early Eocene time (Enba Formation) when accelerated subsidence occurred. The provenance, subsidence and stratigraphy suggest that the Enba and Zhaguo formations record foredeep and wedge‐top sedimentation respectively within the early Himalayan foreland basin. The underlying Zongpu Formation is interpreted to record the accumulation of a carbonate ramp at the margin of a submarine forebulge. The precursor tectonic uplift during latest Cretaceous time could either record surface uplift over a mantle plume related to the Réunion hotspot, or an early signal of lithospheric flexure related to oceanic subduction, continental collision or ophiolite obduction. The results indicate that the collision of India with Asia occurred before late Danian (ca. 62 Ma) time.  相似文献   

4.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

5.
We present the first comprehensive seismic‐stratigraphic analysis of Fairway Basin, which is situated on the rifted continent of Zealandia in the Tasman Sea, southwest Pacific, between Australia and New Caledonia. The basin is 700 km long, 150 km wide, and has water depths of 500–3000 m. We describe depositional architecture and paleogeographic evolution of this basin. Basin formation was concurrent with two tectonic events: (i) Cretaceous rifting during eastern Gondwana breakup and (ii) initiation and Cenozoic evolution of Tonga–Kermadec subduction system to the east of the basin. To interpret the basin history we compiled and interpreted 2D seismic‐reflection profiles and make correlations with DSDP boreholes and the geology of New Caledonia. Five seismic‐stratigraphic units were defined. The deepest and oldest unit, FW3, folded and faulted can be correlated with volcaniclastic sediments and magmatic rocks in New Caledonia that are associated with Mesozoic Gondwana margin subduction. Alternatively, given the basin location 200–300 km west of New Caledonia and inboard of the ancient plate boundary, the unit could have formed as Gondwana intra‐continental basin with no known correlative. The overlying unit FW2b records syn‐rift deposition, probably associated with Cretaceous Gondwana breakup. Subaerial erosion supplied terrigenous sediment into the deltas in the northern part of the basin, as suggested by the truncation surfaces on the basement highs and sigmoid reflector geometries within unit FW2b respectively. Above, unit FW2a records post‐rift sedimentation and passive subsidence as the Tasman Sea opened and the Fairway Basin drifted away from Australia. Subsidence led to the flooding of the basement highs and burial of wave‐cut surfaces. Eocene compressive deformation resulted in minor folding and tilting within the Fairway Basin and was associated with the formation of many diapiric structures. The top of unit FW2 is an extensive unconformity that is associated with erosion and truncation on surrounding ridges. Above this unconformity, unit FW1b is interpreted as a turbidite system sourced from topography created during the Eocene tectonic event, which we interpret as being related to Tonga–Kermadec subduction initiation. Pelagic carbonate sedimentation is now prevalent. Unit FW1a has progressively draped the basin during Oligocene to Pleistocene subsidence. Many small volcanic cones were erupted during this final phase of subsidence, either as a delayed consequence of subduction initiation, or related to Tasmantid and Lord Howe hotspot trails. The northern Fairway Ridge remains close to sea level and its reef system continues to supply carbonate detrital sediments into the basin, most likely during sea‐level lowstands. Fairway Basin contains a nearly continuous record of tectonic and paleoclimatic events in the southwest Pacific since Cretaceous time. Its paleogeographic history is a key piece in the puzzle for understanding patterns of regional biodiversity in the southwest Pacific.  相似文献   

6.
The onset of deformation in the northern Andes is overprinted by subsequent stages of basin deformation, complicating the examination of competing models illustrating potential location of earliest synorogenic basins and uplifts. To establish the width of the earliest northern Andean orogen, we carried out field mapping, palynological dating, sedimentary, stratigraphic and provenance analyses in Campanian to lower Eocene units exposed in the northern Eastern Cordillera of Colombia (Cocuy region) and compare the results with coeval succession in adjacent basins. The onset of deformation is recorded in earliest Maastrichtian time, as terrigenous detritus arrived into the basin marking the end of chemical precipitation and the onset of clastic deposition produced by the uplift of a western source area dominated by shaly Cretaceous rocks. Disconformable contacts within the upper Maastrichtian to middle Palaeocene succession document increasing supply of quartzose sandy detritus from Cretaceous quartzose rocks exposed in eastern source areas. The continued unroofing of both source areas produced a rapid shift in depositional environments from shallow marine in Maastrichtian to fluvial‐lacustrine systems during the Palaeocene‐early Eocene. Supply of immature Jurassic sandstones from nearby western uplifts, together with localized plutonic and volcanic Cretaceous rocks, caused a shift in Palaeocene sandstones composition from quartzarenites to litharenites. Supply of detrital sandy fragments, unstable heavy minerals and Cretaceous to Ordovician detrital zircons, were derived from nearby uplifted blocks and from SW fluvial systems within the synorogenic basin, instead of distal basement rocks. The presence of volcanic rock fragments and 51–59 Ma volcanic zircons constrain magmatism within the basin. The Maastrichtian–Palaeocene sequence studied here documents crustal deformation that correlates with coeval deformation farther south in Ecuador and Peru. Slab flattening of the subducting Caribbean plate produced a wider orogen (>400 km) with a continental magmatic arc and intra‐basinal deformation and magmatism.  相似文献   

7.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

8.
Fine‐grained Palaeogene–early Neogene strata of the South Caspian basin, specifically the Oligocene–Lower Miocene Maikop Series, are responsible for the bulk of hydrocarbon generation in the region. Despite the magnitude of oil and gas currently attributed to the source interval offshore, geochemical evaluation of 376 outcrop samples from the northern edge of the Kura basin (onshore eastern Azerbaijan) indicates that depositional conditions in these proximal strata along the basin margins were dominantly oxic to mildly suboxic/anoxic throughout three major depositional stages: the Palaeocene–Eocene, Oligocene–early Middle Miocene and late Middle–Late Miocene. Palaeocene–Eocene samples have low average total organic carbon (TOC) values (0.3%), with higher total inorganic carbon (TIC) values (average=2.6%), extremely low sulphur content (0.2%) and relatively high detrital input as indicated by Fe/Al and Ti/Al ratios. C–S–Fe associations, along with relatively lower concentrations of redox‐sensitive trace elements (e.g. V, Ni, Mo, U) indicate dominantly oxic environments of deposition during much of the Palaeocene–Eocene. A pronounced geochemical shift occurred near the Eocene–Oligocene boundary, and continued through the Early Miocene. Specifically, this interval is characterized by a distinct increase in TOC (ranging from 0.1 to 6.3% with an average of 1.5%), C–S–Fe associations that reveal an abrupt relative increase of carbon and sulphur with respect to iron‐dominated Palaeocene–Eocene samples, and higher concentrations of redox‐sensitive trace metals. These changes suggest that a shift away from unrestricted marine conditions and towards more variable salinity conditions occurred coincident with the initial collision of the Arabian plate and partial closure of the Paratethys ocean. Despite periodic basin restriction, the majority of Upper Eocene–Lower Miocene strata in the northern Kura basin record oxic to slightly dysoxic conditions.  相似文献   

9.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

10.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   

11.
《Basin Research》2018,30(Z1):336-362
The subsidence evolution of the Tethyan Moroccan Atlas Basin, presently inverted as the Central High Atlas, is characterized by an Early Jurassic rifting episode, synchronous with salt diapirism of the Triassic evaporite‐bearing rocks. Two contrasting regions of the rift basin – with and without salt diapirism – are examined to assess the effect of salt tectonics in the evolution of subsidence patterns and stratigraphy. The Djebel Bou Dahar platform to basin system, located in the southern margin of the Atlas Basin, shows a Lower Jurassic record of normal faulting and lacks any evidence of salt diapirism. In contrast, the Tazoult ridge and adjacent Amezraï basin, located in the centre of the Atlas Basin, reveals spectacular Early Jurassic diapirism. In addition, we analyse alternative Central High Atlas post‐Middle Jurassic geohistories based on new thermal and burial models (GENEX® 4.0.3 software), constrained by new vitrinite reflectance data from the Amezraï basin. The comparison of the new subsidence curves from the studied areas with published subsidence curves from the Moroccan Atlas, the Saharan Atlas (Algeria) and Tunisian Atlas show that fast subsidence peaks were diachronous along the strike, being younger towards the east from Early–Middle Jurassic to Late Cretaceous. This analysis also evidences a close relationship between these high subsidence rate episodes and salt diapirism.  相似文献   

12.
Subsidence analyses from the Betic Cordillera, southeast Spain   总被引:1,自引:0,他引:1  
Fifty‐four Mesozoic–Cenozoic stratigraphic sections from the Betic Cordillera of southeast Spain have been analysed in order to estimate the timing and amount of lithospheric stretching that occurred at the western end of the Tethyan Ocean since the Hercynian Orogeny. The standard backstripping technique has been used in order to calculate the water‐loaded subsidence of basement for each section. Water‐loaded subsidence curves were then inverted in order to determine the variation of lithospheric strain rate as a function of time, which yields estimates of timing, magnitude and intensity of stretching. Rifting commenced during the Late Permian/Early Triassic times and continued intermittently throughout the Mesozoic in response to the opening of the Tethyan Ocean to the east and the opening of the Atlantic Ocean to the west. Two major events in the Permo‐Triassic/Early Jurassic and the Late Jurassic/Early Cretaceous can be clearly identified. Stretching factors are generally small (1.1–1.25) probably because the Betic Cordillera was located at the westernmost end of the Tethys. Peak strain rates of ~10?15 s?1 were obtained for Mesozoic rift events and these values are in broad agreement with those obtained throughout the Tethyan Realm. We have also analysed the Neogene extensional event, which played an important role in forming the existing Mediterranean Sea. A combination of well‐log information and calibrated seismic reflection data was modelled. Peak strain rates in these younger basins are almost one order of magnitude faster than those estimated for the Mesozoic basins. These higher values appear to be typical of back‐arc extensional basins elsewhere. To the west and north of the Betic Cordillera, the Guadalquivir foreland basin developed as extension took place further east. Backstripped sections from this basin clearly record the northward migration of foreland basin subsidence through time.  相似文献   

13.
The Tarim Basin in western China formed the easternmost margin of a shallow epicontinental sea that extended across Eurasia and was well connected to the western Tethys during the Paleogene. Climate modelling studies suggest that the westward retreat of this sea from Central Asia may have been as important as the Tibetan Plateau uplift in forcing aridification and monsoon intensification in the Asian continental interior due to the redistribution of the land‐sea thermal contrast. However, testing of this hypothesis is hindered by poor constraints on the timing and precise palaeogeographic dynamics of the retreat. Here, we present an improved integrated bio‐ and magnetostratigraphic chronological framework of the previously studied marine to continental transition in the southwest Tarim Basin along the Pamir and West Kunlun Shan, allowing us to better constrain its timing, cause and palaeoenvironmental impact. The sea retreat is assigned a latest Lutetian–earliest Bartonian age (ca. 41 Ma; correlation of the last marine sediments to calcareous nannofossil Zone CP14 and correlation of the first continental red beds to the base of magnetochron C18r). Higher up in the continental deposits, a major hiatus includes the Eocene–Oligocene transition (ca. 34 Ma). This suggests the Tarim Basin was hydrologically connected to the Tethyan marine Realm until at least the earliest Oligocene and had not yet been closed by uplift of the Pamir–Kunlun orogenic system. The westward sea retreat at ca. 41 Ma and the disconformity at the Eocene–Oligocene transition are both time‐equivalent with reported Asian aridification steps, suggesting that, consistent with climate modelling results, the sea acted as an important moisture source for the Asian continental interior.  相似文献   

14.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

15.
Exceptional exposure of the forearc region of NW Peru offers insight into evolving convergent margins. The sedimentary fill of the Talara basin spans the Cretaceous to the Eocene for an overall thickness of 9000 m and records within its stratigraphy the complicated history of plate interactions, subduction tectonics, terrane accretion, and Andean orogeny. By the early Tertiary, extensional tectonism was forming a complex horst and graben system that partitioned the basin into a series of localized depocentres. Eocene strata record temporal transitions from deltaic and fluvial to deep‐water depositional environments as a response to abrupt, tectonically controlled relative sea‐level changes across those depocentres. Stratigraphic and provenance data suggest a direct relationship between sedimentary packaging and regional tectonics, marked by changes in source terranes at major unconformities. A sharp shift is recognized at the onset of deepwater (bathyal) sedimentation of the Talara Formation, whose sediments reflect an increased influx of mafic material to the basin, likely related to the arc region. Although the modern topography of the Amotape Mountains partially isolates the Talara basin from the Lancones basin and the Andean Cordillera to the east, provenance data suggest that the Amotape Mountains were not always an obstacle for Cordilleran sediment dispersal. The mountain belt intermittently isolated the Talara basin from Andean‐related sediment throughout the early Tertiary, allowing arc‐related sediment to reach the basin only during periods of subsidence in the forearc region, probably related to plate rearrangement and/or seamounts colliding with the trench. Intraplate coupling and/or partial locking of subduction plates could be among the major causes behind shifts from contraction to extension (and enhanced subduction erosion) in the forearc region. Eventually, collisional tectonic and terrane accretion along the Ecuadorian margin forced a major late‐Eocene change in sediment dispersal.  相似文献   

16.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

17.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

18.
Depth‐dependent stretching, in which whole‐crustal and whole‐lithosphere extension is significantly greater than upper‐crustal extension, has been observed at both non‐volcanic and volcanic rifted continental margins. A key question is whether depth‐dependent stretching occurs during pre‐breakup rifting or during sea‐floor spreading initiation and early sea‐floor spreading. Analysis of post‐breakup thermal subsidence and upper‐crustal faulting show that depth‐dependent lithosphere stretching occurs on the outer part of the Norwegian volcanic rifted margin. For the southern Lofoten margin, large breakup lithosphere β stretching factors approaching infinity are required within 100 km of the continent–ocean boundary to restore Lower Eocene sediments and flood basalt surfaces (~54 Ma) to interpreted sub‐aerial depositional environments at sea level as indicated by well data. For the same region, the upper crust shows no significant Palaeocene and Late Cretaceous faulting preceding breakup with upper‐crustal β stretching factors <1.05. Further north on the Lofoten margin, reverse modelling of post‐breakup subsidence with a β stretching factor of infinity predicts palaeo‐bathymetries of ~1500 m to the west of the Utrøst Ridge and fails to restore Lower Eocene sediments and flood basalt tops to sea level at ~54 Ma. If these horizons were deposited in a sub‐aerial depositional environment, as indicated by well data to the south, an additional subsidence event younger than 54 Ma is required compatible with lower‐crustal thinning during sea‐floor spreading initiation. For the northern Vøring margin, breakup lithosphere β stretching factors of ~2.5 are required to restore Lower Eocene sediments and basalts to sea level at deposition, while Palaeocene and Late Cretaceous upper‐crustal β stretching factors for the same region are < 1.1. The absence of significant Palaeocene and late Cretaceous extension on the southern Lofoten and northern Vøring margins prior to continental breakup supports the hypothesis that depth‐dependent stretching of rifted margin lithosphere occurs during sea‐floor spreading initiation or early sea‐floor spreading rather than during pre‐breakup rifting.  相似文献   

19.
The Neuquén Group is an Upper Cretaceous continental sedimentary unit exhumed during the latest Miocene contractional phase occurred in the southern Central Andes, allowing a direct field observation and study of the depositional geometries. The identification of growth strata on these units surrounding the structures of the frontal parts of the Andes, sedimentological analyses and U–Pb dating of detrital components, allowed the definition of a synorogenic unit that coexisted with the uplift of the early Andean orogen since ca. 100 Ma, maximum age obtained in this work, compatible with previous assignments and constrained in the top by the deposition of the Malargüe Group, in the Maastrichtian (ca. 72 Ma). The definition of a wedge top area in this foreland basin system, where growth strata were described, permitted to identify a Late Cretaceous orogenic front and foredeep area, whose location and amplitude contrast with previous hypotheses. This wedge top area was mostly fed from the paleo‐Andes with small populations coming from sources in the cratonic area that are interpreted as a recycling in Jurassic and Lower Cretaceous sections, which contrasts with other analyses performed at the foredeep zone that have mixed sources. In particular, Permian sources are interpreted as coming directly from the cores of the basement structures, where Neopaleozoic sections are exposed, next to the synorogenic sedimentation, implying a strong incision in Late Cretaceous times with an exhumation structural level similar to the present. The maximum recognised advance for this Late Cretaceous deformation in the study area is approximately 500 km east of the Pacific trench, which constitutes an anomaly compared with neighbour segments where Late Cretaceous deformations were found considerably retracted. The geodynamic context of the sedimentation of this unit is interpreted as produced under the westward fast moving of South America, colliding with two consecutive mid‐ocean ridges during a period of important plate reorganisation. The subduction of young, anhydrous, buoyant lithosphere would have produced changes in the subduction geometry, reflected first by an arc waning/gap and subsequently by an arc migration that coexisted with synorogenic sedimentation. These magmatic and deformational processes would be the product of a shallow subduction regime, following previous proposals, which occurred in Late Cretaceous times, synchronous to the sedimentation of the Neuquén Group.  相似文献   

20.
The Triassic–Lower Jurassic succession of the Southern Alps is characterized by rapid thickness changes, from an average of about 5000 m east of Lago Maggiore to about 500 m in the Western Southern Alps. The stratigraphy reflects the Triassic evolution of the Tethyan Gulf and the Early Jurassic rifting responsible for the Middle Jurassic break‐up of Adria from Europe. The succession of the Western Southern Alps starts with Lower Permian volcanics directly covered by Anisian sandstones. The top of the overlying Ladinian dolostones (300 m) records subaerial exposure and karstification. Locally (Gozzano), Upper Sinemurian sediments cover the Permian volcanics, documenting pre‐Sinemurian erosion. New biostratigraphic data indicate a latest Pliensbachian–Toarcian age for the Jurassic synrift deposits that unconformably cover Ladinian or Sinemurian sediments. Therefore, in the Western Southern Alps, the major rifting stage that directly evolved into the opening of the Penninic Ocean began in the latest Pliensbachian–Toarcian. New data allowed us to refine the evolution of the two previously recognized Jurassic extensional events in the Southern Alps. The youngest extensional event (Western Southern Alps) occurred as tectonic activity decreased in the Lombardy Basin. During the Sinemurian the Gozzano high represents the western shoulder of a rift basin located to the east (Lombardy). This evolution documents a transition from diffuse early rifting (Late Hettangian–Sinemurian), controlled by older discontinuities, to rifting focused along a rift valley close to the Pliensbachian–Toarcian boundary. This younger rift bridges the gap between the Hettangian–Sinemurian diffuse rifting and the Callovian–Bathonian break‐up. The late Pliensbachian–Toarcian rift, which eventually lead to continental break‐up, is interpreted as the major extensional episode in the evolution of the passive margin of Adria. The transition from diffuse to focused extension in the Southern Alps is comparable to the evolution of the Central Austroalpine during the Early Jurassic and of the Central and Northern Atlantic margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号