首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the Early Triassic the Jameson Land Basin (Central East Greenland) was located around 30° N, in the Northern arid belt, but by the Early Jurassic was positioned at a latitude of approximately 50° N. This study examines the record of this transition through a largely continental succession using clay mineralogy, sedimentology, petrography and heavy mineralogy. The Jameson Land Basin is aligned north–south and is 280 km long and 80 km wide. Following an Early Triassic marine phase the basin was filled by predominantly continental sediments. The Early‐to‐Late Triassic succession comprises coarse alluvial clastics (Pingo Dal Formation) overlain by a succession of fine‐grained evaporite‐rich playa/lacustrine sediments (Gipsdalen Formation), indicative of arid climatic conditions. The overlying buff, dolomitic and then red lacustrine mudstones with subordinate sandstones (Fleming Fjord Formation) record reduced aridity. The uppermost Triassic grades into dark organic‐rich, and in places coaly, mudstones and buff coarse‐grained sandstones of lacustrine origin that belong to the Kap Stewart Group, which spans the Triassic–Jurassic boundary, and appear to record more humid climatic conditions. Clay mineralogy analyses highlight significant variations in the kaolinite/illite ratio, from both mudstone and sandstone samples, through the Triassic and into the earliest Jurassic. Complementary heavy mineral analyses demonstrate that the variations recognised in clay mineralogy and sandstone maturity through the Triassic–Early Jurassic succession are not a product of major provenance change or the effect of significant diagenetic alteration. The observed variations are consistent with sedimentological evidence for a long‐term trend towards more humid conditions through the Late Triassic to Early Jurassic, and the suggestion of a significant pluvial episode in the mid‐Carnian.  相似文献   

2.
A general shift towards higher mineralogical and textural maturity changes the reservoir character across the Triassic–Jurassic transition in the southwestern Barents Sea basin (SWBSB), largely affecting the hydrocarbon prospectivity in the region. Petrographic and geochronological provenance data presented in this paper suggest that the shift from mineralogically immature to mature sandstones initiated during the deposition of the Norian–Rhaetian Fruholmen Formation, and varies with basin location. Strong contrasts between the Fruholmen Formation and underlying formations are associated with proximity to the rejuvenated Caledonian and Fennoscandian hinterlands and are mainly restricted to the southern basin margins. In the basin interior, subtle petrographic variations between the Fruholmen Formation and older Triassic sandstones reflect a distal position relative to the southern hinterland. The long-lived misconception of a regional compositional contrast in the Arctic at the turn of the Norian can be attributed to higher sampling frequency associated with hydrocarbon exploration activity along the southern basin margins, and masking by increased annual precipitation and subsequent reworking during the Jurassic. Geothermal signatures and rearrangement of ferric clay material across the Carnian–Norian transition support a recycled origin for the Fruholmen Formation in the basin interior. As the closest tectonically active region at the time, the Novaya Zemlya fold-and-thrust belt represents the best provenance candidate for polycyclic components in Norian–Rhaetian strata. In addition to recycling in the hinterland during the Late Triassic, local erosion of exposed intrabasinal highs and platforms at the Triassic–Jurassic transition represents a second process where thermodynamically unstable mineral components originally sourced from the Uralides may be removed. Textural and mineralogical modification may also have occurred in marginal-marine depositional environments during periods with elevated sea level. Mature sediment supply from the rejuvenated hinterland in the south, multiple cycles of reworking and gradual accumulation of polycyclic grains have likely led to the extreme compositional maturity registered in the Tubåen, Nordmela and Stø formations in the SWBSB. It is likely that increased annual precipitation since the latest Carnian had an amplifying effect on sandstone maturation across the Triassic–Jurassic boundary, but we consider the effect to be inferior compared to provenance shifts and reworking. Findings from this study are important for understanding compositional and textural maturity enhancement processes in siliciclastic sedimentary basins.  相似文献   

3.
In a recent study, Andrews et al. (2020) describe “exhumed hydrocarbon traps” in North-East Greenland. The basic premise for their interpretation is that dark-coloured, pyrobitumen-bearing sandstones represent the remnants of once buried petroleum reservoirs. We do not see the necessary field or analytical evidence to support a model that has strong implications for resource evaluations. Andrews et al. (2020) have not considered previous published information on diagenetic and thermal maturity history of the area. A more probable model would include the intrusion of dykes and sills into a sedimentary succession with immature petroleum source rocks and reservoir-quality sandstones. The heating caused rapid generation of petroleum components and local hydrothermal circulation systems in adjacent porous sandstones. Any petroleum was rapidly destroyed leaving essentially only black grain-coatings and minor particles of pyrobitumen—essentially in one short-lived continuous process. The existence of new plays in the North Atlantic as proposed by Andrews et al. (2020) is in our opinion not substantiated as this requires analytical data from unaltered oils from the less mature parts of the sedimentary succession and considerations of thermal maturity and basin evolution. To draw conclusions that have a serious impact on resource evaluations based on the dark colouration of sandstones without comprehensive analytical data is, in our opinion, ill advised.  相似文献   

4.
5.
Air photo interpretation along with limited field work is the basis of a compilation map of Tertiary structures in the Upper Paleozoic through Mesozoic platform cover strata of Nordenskiold Land. Permian Kapp Starostin Formation strata form a continuous marker horizon delineating both a large NE-verging fold complex, which involves the basement (Hecla Hoek sequence) through basal Tertiary strata, and somewhat smaller scale folds, some of which may have formed in association with detachments and thrusts within the platform cover sequence. The map pattern is both a function of local structural plunge and changes in fold geometry along strike. Regional considerations suggest that subsurface basement-involved thrusts exist. In S Nordenskiold Land, to the E of folded Kapp Starostin Formation strata, a 3.5 km wide zone of folding and thrusting in Triassic and Jurassic strata above a subhorizontal decollement is inferred to occur. Further E is the W limb of the central Tertiary basin syncline.  相似文献   

6.
The Cooper–Eromanga Basins of South Australia and Queensland are not at their maximum burial depth due to Late Cretaceous–Tertiary, and Late Triassic–Early Jurassic exhumation. Apparent exhumation (maximum burial depth–present burial depth) for the Cooper Basin has been quantified using the compaction methodology. The results show that exhumation of the Cooper Basin for the majority of the wells is greater than the exhumation of the Eromanga Basin. Using the compaction methodology, apparent exhumation of Early to Middle Triassic age Arrabury and Tinchoo Formatios has been quantified. Both units yield similar results and do not support that the Arrabury/Tinchoo boundary represents the Cooper–Eromanga boundary. Hence, the Cooper Basin is believed to have reached its maximum burial depth in Late Triassic times. Sonic log data are not available for the units overlying the Late Cretaceous Winton Formation; thus, it is not possible to date exhumation beyond the Late Cretaceous–Tertiary using the compaction methodology. Tertiary sequences as are preserved are relatively thin and separated by marked unconformities and weathered surfaces; hence, exhumation rather than sedimentation dominated the Tertiary, and in exhumed areas, maximum burial depth was attained in Late Cretaceous times. The burial/exhumation history of representative wells was synthesized using sediment decompaction and establishing porosity/depth relations for the Cooper–Eromanga units. Considering the relative significance of the major periods of exhumation in the Cooper/Eromanga Basins, three broad types of burial/exhumation histories can be distinguished. Maximum burial depth of the Cooper Basin sequence was attained before the deposition of the Eromanga Basin sequence, i.e. Late Triassic–Early Jurassic times; maximum burial depth of the Cooper and Eromanga Basin sequences attained in Late Cretaceous times; and Cooper and Eromanga Basin sequences are currently at maximum burial‐depth. Incorporation of exhumation into burial history has major implications for hydrocarbon exploration.  相似文献   

7.
The Yanshan fold‐thrust belt is an exposed portion of a major Mesozoic orogenic system that lies north of Beijing in northeast China. Structures and strata within the Yanshan record a complex history of thrust faulting characterized by multiple deformational events. Initially, Triassic thrusting led to the erosion of a thick sequence of Proterozoic and Palaeozoic sedimentary strata from northern reaches of the thrust belt; Triassic–Lower Jurassic strata that record this episode are deposited in a thin belt south of this zone of erosion. This was followed by postulated Late Jurassic emplacement of a major allochthon (the Chengde thrust plate), which is thought to have overridden structures and strata associated with the Triassic event and is cut by two younger thrusts (the Gubeikou and Chengde County thrusts). The Chengde allochthon is now expressed as a major east–west trending, thrust‐bounded synform (the Chengde synform), which has been interpreted as a folded klippe 20 km wide underlain by a single, north‐vergent thrust fault. Two sedimentary basins, defined on the basis of provenance, geochronology and palaeodispersal trends, developed within the Yanshan belt during Late Jurassic–Early Cretaceous time and are closely associated with the Chengde thrust and allied structures. Shouwangfen basin developed in the footwall of the Gubeikou thrust and records syntectonic unroofing of the hanging wall of that fault. Chengde basin developed in part atop Proterozoic strata interpreted as the upper plate of the Chengde allochthon and records unroofing of the adjacent Chengde County thrust. Both the Chengde County thrust and the Gubeikou thrust are younger than emplacement of the postulated Chengde allochthon, and structurally underlie it, yet neither Shouwangfen basin nor Chengde basin contain a detrital record of the erosion of this overlying structure. In addition, facies, palaeodispersal patterns and geochronology of Upper Jurassic strata that are cut by the Chengde thrust suggest only limited (ca. 5 km) displacement along this fault. We suggest that the units forming the Chengde synform are autochthonous, and that the synform is bounded by two limited‐displacement faults of opposing north and south vergence, rather than a single large north‐directed thrust. This conclusion implies that the Yanshan belt experienced far less Late Jurassic shortening than was previously thought, and has major implications for the Mesozoic evolution of the region. Specifically, we argue that the bulk of shortening and uplift in the Yanshan belt was accomplished during Triassic–Early Jurassic time, and that Late Jurassic structures modified and locally ponded sediments from a well‐developed southward drainage system developed atop this older orogen. Although Upper Jurassic strata are widespread throughout the Yanshan belt, it is clear that these strata developed within several discrete intermontane basins that are not correlable across the belt as a single entity. Thus, the Yanshan has no obvious associated foreland basin, and determining where the Mesozoic erosional products of this orogen ultimately lie is one of the more intriguing unresolved questions surrounding the palaeogeography of North China.  相似文献   

8.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

9.
A part of the Carboniferous basin stratigraphy, the clastic to carbonaceous Minkinfjellet "Member" of the Nordenskioldbreen Formation in Central Spitsbergen, is deposited in an asymmetric basin structure (here referred to as the Minkinfjellet Basin), similar to the underlying Ebbadalen Formation. The western boundary -situated within the Billcfjorden Fault Zone -has probably been a little farther east than during deposition of the Ebbadalen strata. The thickness attains ca. 350 m in central parts of the basin, and the strata strongly attenuates to the east and south. The base and top are interpreted as low-angle stratigraphical unconformities. The boundary with the overlying Cadcllfjellet Member of the Nordenskioldbreen Formation is locally disrupted by carbonate breccias of suggested earthquake origin. Formation rank is suggested for the sedimentary succession of the Minkinfjellet basin.  相似文献   

10.
Sedimentological and geochronological studies along a north–south traverse across the Bangong‐Nujiang suture zone (BNSZ) in Gaize, Tibet provide evidence for a Late Triassic–Jurassic accretionary wedge accreted to the south margin of Qiangtang. This wedge, preserved as the Mugagangri Group (MG), records evidence for the northward subduction of the Bangong‐Nujiang Ocean (BNO) beneath Qiangtang. The MG strata comprise two coarser intervals (lower olistostromes and upper conglomerates) intercalated within sandy turbidites, which are consistent with timing and forearc stratigraphy during subduction initiation predicted by geodynamic modelling. Following the model, the northward subduction of the BNO beneath Qiangtang and subsequent arc‐magmatism are inferred to have begun, respectively, at ca. 220 Ma and ca. 210 Ma, with respect to depositional ages constrained by youngest detrital‐zircon ages. The initiation of arc‐magmatism is also supported by provenance transition reflected by sandstone detrital modes and age patterns of detrital zircons. Previously, evidence for an incipient arc was lacking, but the timing of Late Triassic BNO subduction and related arc‐magmatism is coincident with an important Late Triassic magmatic event in central Qiangtang that probably represents the ‘missing’ arc. Other Qiangtang events, such as exhumation of the Qiangtang metamorphic belt as a source area, and development of the Late Triassic Nadigangri deposits and bimodal volcanism, are more easily explained in the tectonic context of early northward subduction of the BNO beneath Qiangtang, beginning at about 220 Ma.  相似文献   

11.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

12.
S.Liu  S.Yang 《Basin Research》2000,12(1):1-18
Upper Triassic, Lower–Middle Jurassic and Upper Jurassic strata in the western Ordos Basin of North China are interpreted as three unconformity-bounded basin phases, BP-4, BP-5 and BP-6, respectively. The three basin phases were deposited in three kinds of predominantly continental basin: (1) a Late Triassic composite basin with a south-western foreland subbasin and a north-western rift subbasin, (2) an Early–Middle Jurassic sag basin and (3) a Late Jurassic foreland molasse wedge. Within the Late Triassic composite basin BP-4 includes three sequences, S4-1, S4-2 and S4-3. In the south-western foreland subbasin, the three sequences are the depositional response to three episodes of thrust load subsidence, and are mainly composed of alluvial fan, steep-sloped lacustrine delta and fluvial systems in front of a thrust fault-bounded basin flank. In the north-western rift subbasin, the three sequences are the depositional response to three episodes of rift subsidence, and consist of alluvial fan – braid plain and fan delta systems basinward of a normal fault-bounded basin margin. In the sag basin BP-5 includes four sequences, S5-1, S5-2, S5-3 and S5-4, which reflect four episodes of intracratonic sagging events and mainly consist of fluvial, gentle-gradient lacustrine delta and lacustrine systems sourced from peripheral uplifted flanks. BP-6, deposited in the foreland-type basin, includes one sequence, S6-1, which is the depositional response to thrust load subsidence and is composed of alluvial fan systems. The formation and development of these three kinds of basins was controlled by Late Triassic and Jurassic multi-episode tectonism of basin-bounding orogenic belts, which were mainly driven by collision of the North China and South China blocks and subduction of the western Pacific plate.  相似文献   

13.
浙江方岩丹霞地貌发育的年代、成因与特色研究   总被引:2,自引:1,他引:1  
方岩丹霞地貌在大地构造上隶属于华南褶皱系构造单元,该单元在燕山运动时期,由于太平洋板块俯冲入欧亚板块之下,促使大陆边缘地壳重新活动.晚侏罗世末至早白垩世,本区构造应力场由晚侏罗世的北西-南东向挤压,转为早白垩世的北东-南西向挤压和北西-南东向的拉张,发育了永康早白垩世断坳盆地,在盆地中沉积了下白垩统永康群馆头组(K1g)、朝川组(K1c)和方岩组(K1f)地层.中生代晚期永康盆地逐渐隆升,结束了红层沉积,遭受侵蚀,方岩地区丹霞地貌密集围谷、密集方山和廊穴等青年期的地貌特点表明该区大规模的抬升发生在较近的地质年代.  相似文献   

14.
Axel Heiberg Island (Arctic Archipelago, northern Nunavut, Canada) contains the thickest Mesozoic section in Sverdrup Basin (11 km). The ca. 370‐km‐long island is second only to Iran in its concentration of exposed evaporite diapirs. Forty‐six diapirs of Carboniferous evaporites and associated minibasins are excellently exposed on the island. Regional anticlines, which formed during Paleogene Eurekan orogeny, trend roughly north on a regular ca. 20‐km wavelength and probably detach on autochthonous Carboniferous Otto Fiord Formation evaporites comprising halite overlain by thick anhydrite. In contrast, a 60‐km‐wide area, known as the wall‐and‐basin structure (WABS) province, has bimodal fold trends and irregular (<10 km) wavelengths. Here, crooked, narrow diapirs of superficially gypsified anhydrite crop out in tight anticline cores, which are separated by wider synclinal minibasins. We interpret the WABS province to detach on a shallow, partly exposed canopy of coalesced allochthonous evaporite sheets. Surrounding strata record a salt‐tectonic history spanning the Late Triassic (Norian) to the Paleogene. Stratigraphic thinning against diapirs and spectacular angular unconformities indicate mild regional shortening in which diapiric roof strata were bulged up and flanking strata steepened. This bulging culminated in the Hauterivian, when diapiric evaporites broke out and coalesced to form a canopy. As the inferred canopy was buried, it yielded second‐generation diapirs, which rose between minibasins subsiding into the canopy. Consistent high level emplacement suggests that all exposed diapirs inside the WABS area rose from the canopy. In contrast, diapirs along the WABS margins were sourced in autochthonous salt as first‐generation diapirs. Apart from the large diapir‐flanking unconformities, Jurassic‐Cretaceous depositional evidence of salt tectonics also includes submarine debris flows and boulder conglomerates shed from at least three emergent diapirs. Extreme local relief, tectonic slide blocks, steep talus fans and subaerial debris flows suggest that many WABS diapirs continue to rise today. The Axel Heiberg canopy is one of only three known exposed evaporite canopies, each inferred or known at a different structural level: above the canopy (Axel Heiberg), through the canopy (Great Kavir) and beneath a possible canopy (Sivas).  相似文献   

15.
The Triassic–Lower Jurassic succession of the Southern Alps is characterized by rapid thickness changes, from an average of about 5000 m east of Lago Maggiore to about 500 m in the Western Southern Alps. The stratigraphy reflects the Triassic evolution of the Tethyan Gulf and the Early Jurassic rifting responsible for the Middle Jurassic break‐up of Adria from Europe. The succession of the Western Southern Alps starts with Lower Permian volcanics directly covered by Anisian sandstones. The top of the overlying Ladinian dolostones (300 m) records subaerial exposure and karstification. Locally (Gozzano), Upper Sinemurian sediments cover the Permian volcanics, documenting pre‐Sinemurian erosion. New biostratigraphic data indicate a latest Pliensbachian–Toarcian age for the Jurassic synrift deposits that unconformably cover Ladinian or Sinemurian sediments. Therefore, in the Western Southern Alps, the major rifting stage that directly evolved into the opening of the Penninic Ocean began in the latest Pliensbachian–Toarcian. New data allowed us to refine the evolution of the two previously recognized Jurassic extensional events in the Southern Alps. The youngest extensional event (Western Southern Alps) occurred as tectonic activity decreased in the Lombardy Basin. During the Sinemurian the Gozzano high represents the western shoulder of a rift basin located to the east (Lombardy). This evolution documents a transition from diffuse early rifting (Late Hettangian–Sinemurian), controlled by older discontinuities, to rifting focused along a rift valley close to the Pliensbachian–Toarcian boundary. This younger rift bridges the gap between the Hettangian–Sinemurian diffuse rifting and the Callovian–Bathonian break‐up. The late Pliensbachian–Toarcian rift, which eventually lead to continental break‐up, is interpreted as the major extensional episode in the evolution of the passive margin of Adria. The transition from diffuse to focused extension in the Southern Alps is comparable to the evolution of the Central Austroalpine during the Early Jurassic and of the Central and Northern Atlantic margins.  相似文献   

16.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

17.

Oil from the Oligocene oil sands of the Lower Ganchaigou Formation in the Northern Qaidam Basin and the related asphaltenes was analyzed using bulk and organic geochemical methods to assess the organic matter source input, thermal maturity, paleo-environmental conditions, kerogen type, hydrocarbon quality, and the correlation between this oil and its potential source rock in the basin. The extracted oil samples are characterized by very high contents of saturated hydrocarbons (average 62.76%), low contents of aromatic hydrocarbons (average 16.11%), and moderate amounts of nitrogen–sulfur–oxygen or resin compounds (average 21.57%), suggesting that the fluid petroleum extracted from the Oligocene oil sands is of high quality. However, a variety of biomarker parameters obtained from the hydrocarbon fractions (saturated and aromatic) indicate that the extracted oil was generated from source rocks with a wide range of thermal maturity conditions, ranging from the early to peak oil window stages, which are generally consistent with the biomarker maturity parameters, vitrinite reflectance (approximately 0.6%), and Tmax values of the Middle Jurassic carbonaceous mudstones and organic-rich mudstone source rocks of the Dameigou Formation, as reported in the literature. These findings suggest that the studied oil is derived from Dameigou Formation source rocks. Furthermore, the source- and environment-related biomarker parameters of the studied oil are characterized by relatively high pristane/phytane ratios, the presence of tricyclic terpanes, low abundances of C27 regular steranes, low C27/C29 regular sterane ratios, and very low sterane/hopane ratios. These data suggest that the oil was generated from source rocks containing plankton/land plant matter that was mainly deposited in a lacustrine environment and preserved under sub-oxic to oxic conditions, and the data also indicate a potential relationship between the studied oil and the associated potential source rocks. The distribution of pristane, phytane, tricyclic terpanes, regular steranes and hopane shows an affinity with the studied Oligocene Lower Ganchaigou Formation oil to previously published Dameigou Formation source rocks. In support of this finding, the pyrolysis–gas chromatography results of the analyzed oil asphaltene indicate that the oil was primarily derived from type II organic matter, which is also consistent with the organic matter of the Middle Jurassic source rocks. Thus, the Middle Jurassic carbonaceous mudstones and organic rock mudstones of the Dameigou Formation could be significantly contributing source rocks to the Oligocene Lower Ganchaigou Formation oil sand and other oil reservoirs in the Northern Qaidam Basin.

  相似文献   

18.
Around 4370 km of new seismic reflection data, collected along the East Greenland margin between 71°30'N and 77°N in 2003, provide a first detailed view of the sediment distribution and tectonic features along the East Greenland margin. After processing and converting the data to depth, we correlated ODP-Site 913 stratigraphy into the new seismic network. Unit GB-2 shows the greatest glacial sediment deposits beneath the East Greenland continental shelf. This unit is characterized by the beginning of prograding sequences and has, according to our stratigraphic correlation, a Middle Miocene age. It might have been caused by rapid changes in sea level and/or glacial erosion by an early ice sheet or glaciers along the coast. A basement high, presumably a 360 km long basement structure at 77°N–74°54'N, prevents continuous sediment transport from the shelf into the deep sea area in times before 15 Myr. The origin of this prominent structure remains speculative since no rock sample from this structure is available. Seaward dipping reflectors at the eastern flank of this structure strongly support that it is a volcanic construction and is most likely emplaced on continental or transitional crust. The compilation of sediment thickness provide an insight into the regional sediment distribution in the Greenland Basin. An average sediment thickness of 1 km is observed. The north bordering Boreas Basin has a sediment thickness of 1.8 km close to the Greenland fracture zone (GFZ).  相似文献   

19.
Summary. Palaeomagnetic and K–Ar whole rock age studies are reported from samples of the Camaraca Formation exposed near Arica (18.6° S, 70.3° W), Chile. The Camaraca Formation is composed of andesites and interbedded marine shales which yield a fauna placing the formation in the Bajocian–Callovian stages of the Jurassic. Our sampling sites span a strati-graphic thickness of 2 km and yield a reversal stratigraphy of: N–R–N. The K–Ar isochron method, applied to least altered samples from the formation, gives a sharply defined age of 157 Myr which is in agreement with the palaeontologically assigned age of the formation. Normal and reversed directions of remanent magnetization, isolated by of and thermal de-magnetization methods, are statistically antiparallel. The pole position, computed from these directions of magnetization, is at 010° E, 70%0 S ( A 95= 6.0°). This pole position, when compared with the well-studied Chon Alice Formation of Argentina, suggests that the sampling region has under-gone a 28°± 28° counter-clockwise rotation about a local vertical axis. The large uncertainty (between 0° and 56°) in this estimate is due to the large scatter in the South American reference data. When compared with African Jurassic palaeopoles, with allowance made for the opening of the South Atlantic, a counter-clockwise rotation of 44°± 14° is indicated.  相似文献   

20.
四川盆地下三叠统飞仙关组(T_1f)紫色页岩,富含有机质、磷和多种微量元素T_1f紫色母质添加到两类基础肥力较低的紫色母质和黄壤内,种植稻麦试验后对照结果表明T_1f紫色页岩肥效显著,因此它是一种矿质肥源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号