首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Silica occurs in abundance in a variety of hydrothermal samples from the Trans-Atlantic Geotraverse (TAG) hydrothermal mound, 26°N Mid-Atlantic Ridge. The water content, trace element chemistry, and mineralogy of crystalline silica from 15 different samples have been examined by vibrational spectroscopy and probe microanalysis. The samples are from: shallow subsurface ferric iron oxyhydroxide silica deposits (n=4), a fragment of an active white smoker chimney (n=1), anhydrite bearing hydrothermal breccias (n=2), pyrite silica breccias (n=3), and silicified wall rock breccias (n=5). Length-fast chalcedony occurs in association with variable quantities of ferric iron oxyhydroxides in hydrothermal breccias from the mound flanks, within shallower subsurface chert samples, and within white smoker chimney walls. Samples from the anhydrite zone contain textures which are suggestive of an origin involving replacement of anhydrite. Samples taken from TAG 1 and 5 from below the anhydrite zone contain no chalcedony. Instead they contain subhedral quartz crystals which show oscillatory zoning in aluminium. Two types of crystalline silica namely, type A and type B quartz, are defined on the basis of the infrared spectra in the OH region from 3200 cm−1 to 3600 cm−1. The type A quartz occurs beneath the anhydrite zone at TAG 1 and 5. We propose a model that relates specific varieties of crystalline silica to different thermal and chemical environments within the mound interior. Length-fast chalcedony occurs in an outer low temperature envelope across the top and sides of the mound. The common association between length-fast chalcedony and ferric iron oxyhydroxides suggests that chalcedony crystallization is favoured where catalysis by ferric iron can occur. The apparent suppression of fibrous silica at the expense of single quartz crystals with increasing depth is attributed to differing growth rates and degrees of supersaturation of silica-bearing solutions with increasing temperature within the mound. The transition from type A to type B single crystal growth is interpreted to occur at temperatures approaching ˜360 °C due to decreasing solubility of aluminium in quartz, so that aluminium is rendered unavailable for type A valence compensation. Received: 10 September 1998 / Accepted: 6 July 1999  相似文献   

2.
Agates are natural hierarchicalal structural assemblies composed largely of silica minerals: chalcedony, quartz, and quartzine. Microstructural heterogeneities, most typical of those of agate-forming minerals, are characterized by variations in periods of helicoidal twisting of chalcedony and by micrometric rhythmic alternation of zones with a low refractive index within the matrix of normal chalcedony, quartz, and quartzine. A study of the degree of crystallization of chalcedony using the Barsanova-Yakovleva method showed that neither helicoidal twisting nor refractive index zoning brought about any significant disturbance in the chalcedony structure. Helicoidal twisting is a result of the stresses caused by substitution of Si4+ for Al3+ asymmetric with respect to chalcedony crystal. It is suggested that layering by the refractive index developed due to accumulation of small portions of gel consisting of high silica polymers at the front of crystal growth.  相似文献   

3.
玛瑙是一种隐晶质硅质岩石,主要由玉髓以及少量蛋白石、斜硅石和微晶石英等组成.其在世界各地分布广泛,质地坚硬细腻、色彩鲜艳多样、纹理交错、造型千姿百态,是一种平凡而美丽的宝石.本文结合国内外最新研究进展,对玛瑙矿物的结构、水含量和成因机制进行了综合评述.玛瑙以纹带构造为特征,其内部纹带花纹和化学组成呈韵律性变化,并在不同观察尺度表征出来.因此,玛瑙也被定义为条带状玉髓.然而,多数玛瑙实际上是由纤维状玉髓、同心环带状玉髓、水平条带状玉髓、微晶石英和自形石英晶体等组成,它们的相对含量与玛瑙的产地和形成过程密切相关.X射线衍射和电子背散射衍射(EBSD)测量数据揭示,玛瑙中的硅质矿物多发生定向生长,其中微晶石英a轴倾向于垂直韵律环带,c轴则近似平行韵律环带.傅立叶变换红外光谱(FTIR)测量表明,玛瑙含有少量分子水和羟基水,并且总水含量随着硅质矿物结晶度提高而降低.至今实验室仍然无法合成玛瑙,还不清楚玛瑙纹带构造的形成机制和过程.一种代表性假设认为,玛瑙中的纹带源于硅质热液沉淀作用或者硅胶原位结晶作用.但是,最近研究发现玛瑙纹带中共生矿物的结晶度、晶体取向和含水量具有系统差异,揭示其形成过程可能与成岩序列密切相关.将实验岩石学与定量显微结构观察以及多种矿物微区分析测试手段有机结合,深入研究玛瑙环带内部微量元素、水含量和晶体取向数据,获得其系统性变化特征及其内部联系,可以为玛瑙成因机制和形成过程研究提供重要数据支撑和关键性的约束条件.  相似文献   

4.
Quantitative X-ray texture analysis was used to identify the fiber elongation direction of microfibrous quartz varieties in materials that contain narrow bands of closely spaced, radially divergent spherulitic fiber bundles. The statistical approach of X-ray texture analysis makes it possible to determine the fiber axis direction even when the maximum divergence angle of fibers within spherulitic fiber bundles diverge ±20° from a common growth direction. Representative samples of chalcedony <11&2macr;0>, quartzine [0001], and pseudochalcedony were selected for additional study with transmis-sion electron microscopy. All varieties of microfibrous quartz were found to contain high concentrations of polysynthetic Brazil twins and domains characterized by a modulated microstructure. Trace element profiles of aluminum and iron concentration were measured by electron microprobe analysis for an agate sample that contains alternating bands of chalcedony <11&2macr;0> and quartzine fibers. The elemental concentration profiles were measured in a direction parallel to the growth direction of microfibrous quartz. Although fibers within the chalcedony bands initially displayed cooperative helical twisting, the fibers became untwisted during the later stages of growth within any one band. The trace element profiles revealed that higher concentrations of aluminum are associated with quartzine and non-twisted <11&2macr;0> fibers, rather than twisted chalcedony <11&2macr;0> fibers. Except for the presence of iron-rich inclusions between quartzine and chalcedony bands, trace concentrations of iron were below the detection limit for the different varieties of microfibrous quartz analyzed. Received: 6 January 1997 / Accepted: 4 September 1997  相似文献   

5.
Electron microscopic examination of Namurian bedded cherts in North Wales (Great Britain) has revealed the existence of two dominant surface textures, granular and spongy, with a range of textures intermediate between the two. These textures can be used to differentiate between three principal lithologies within the cherts and between laminae and colour bands within the lithologies. A positive relationship is demonstrated between the presence of spongy texture and a high volume of impurities; there is a gradation, with increasing argillaceous/organic content, from granular through intermediate to spongy surfaces. It is suggested that this gradation reflects an increase in chalcedony over micro-crystalline quartz resulting from: (l) an increase in impurities; (2) an increase in the rate of precipitation of silica. The relationship between surface texture and type of lithology is considered to be consistent with the order of crystallisation for silica put forward by MILLOT (1960).  相似文献   

6.
Chalcedony is a spatial arrangement of hydroxylated nanometre-sized α-quartz (SiO2) crystallites that are often found in association with the silica mineral moganite (SiO2). A supplementary Raman band at 501 cm−1 in the chalcedony spectrum, attributed to moganite, has been used for the evaluation of the quartz/moganite ratio in silica rocks. Its frequency lies at 503 cm−1 in sedimentary chalcedony, representing a 2 cm−1 difference with its position in pure moganite. We present a study of the 503 cm−1 band’s behaviour upon heat treatment, showing its gradual disappearance upon heating to temperatures above 300 °C. Infrared spectroscopic measurements of the silanole (SiOH) content in the samples as a function of annealing temperature show a good correlation between the disappearance of the 503 cm−1 Raman band and the decrease of structural hydroxyl. Thermogravimetric analyses reveal a significant weight loss that can be correlated with the decreasing of this Raman band. X-ray powder diffraction data suggest the moganite content in the samples to remain stable. We propose therefore the existence of a hitherto unknown Raman band at 503 cm−1 in chalcedony, assigned to ‘free’ Si–O vibrations of non-bridging Si–OH that oscillate with a higher natural frequency than bridging Si–O–Si (at 464 cm−1). A similar phenomenon was recently observed in the infrared spectra of chalcedony. The position of this Si–OH-related band is nearly the same as the Raman moganite band and the two bands may interfere. The actually observed Raman band in silica rocks might therefore be a convolution of a silanole and a moganite vibration. These findings have broad implications for future Raman spectroscopic studies of moganite, for the assessment of the quartz/moganite ratio, using this band, must take into account the contribution from silanole that are present in chalcedony and moganite.  相似文献   

7.
The thermal behaviour of silica rocks upon heat treatment is dependent on the constituent minerals and petrographic texture types. These constituents can be shown to be mainly quartz in the form of two types of chalcedony (Length-fast (LF) chalcedony and Length-slow (LS) chalcedony, the latter also being termed quartzine) and moganite. Even though the thermal behaviour of LF-chalcedony is well understood, major uncertainties persist concerning the high-temperature behaviour of LS-chalcedony and moganite. We present here a comparative study of these three constituents of common silica rocks. Our results show that the chemical reaction is the same in all three, Si–OH + HO–Si → Si–O–Si + H2O, but that the reaction kinetics and activation temperatures are very different. LS-chalcedony begins to react from 200 °C upwards, that is at temperatures 50 °C below the ones observed in LF-chalcedony, and shows the fastest reaction kinetics of this ‘water’ loss. Chemically bound water (SiOH) in moganite is more stable at high temperatures and no specific activation temperature is necessary for triggering the temperature-induced ‘water’ loss. Moganite is also found to act as a stabilizer in silica rocks preventing them from temperature-induced fracturing. These findings have implications for the study of potential heat treatment temperatures of silica rocks (in industry and heritage studies), but they also shed light on the different structures of SiO2 minerals and the role of OH impurities therein.  相似文献   

8.
《Sedimentology》2018,65(3):745-774
This paper explores little investigated diagenesis of spicule‐dominated sediments, based on Permian spiculites and cool‐water carbonates of the Tempelfjorden Group in central Spitsbergen. Field observations, petrography, stable isotope geochemistry, and mineralogical and chemical analyses reveal that the strata have been subjected to multistage diagenesis as the result of silica phase transitions at medium burial depths and deep‐burial overprinting. The growth of silica concretions occurred during the opal‐A/opal‐CT conversion and was controlled by the content and distribution of clay and spicules in the sediment, resulting in a variety of megascopic silica fabrics. Opal‐CT was subsequently dissolved, and all silica is now in a stable quartz stage. Petrographically, the rocks are characterized by a variety of chalcedony and quartz cements which perfectly preserve precursor textures. Most cements precipitated from silica‐oversaturated fluids, and their shapes reflect the silica saturation state and geometry of the pore space. Some microquartz and cryptoquartz also formed by a solid–solid inversion (recrystallization) of chalcedony. The cements have δ 18O values between +30‰ and +20‰ Standard Mean Ocean Water and display a systematic depletion in 18O from the first to the last crystallized, interpreted to reflect a gradual increase in temperature during burial. The precipitation of quartz cements started in the Middle Triassic when the strata passed the 19°C isotherm at burial depths of ca 600 m, and was completed in the mid‐Cretaceous, 2·3 km beneath the sea floor at temperatures of 75°C. Late diagenetic overprinting of the chert includes fracturing, brecciation and cementation with carbonate cements having δ 18O values between +2‰ and −30‰ Pee Dee Belemnite and δ 13C values between +4‰ and −14‰ Pee Dee Belemnite; they are linked to hot solutions introduced during Cretaceous volcanism or Palaeogene tectonism. This study illustrates the diagenetic pathway during burial of spicule‐rich sediments in a closed system and thereby provides a baseline for studies of more complexly altered chert deposits.  相似文献   

9.
《Applied Geochemistry》2002,17(6):709-734
Uranium, Th and Pb isotopes were analyzed in layers of opal and chalcedony from individual mm- to cm-thick calcite and silica coatings at Yucca Mountain, Nevada, USA, a site that is being evaluated for a potential high-level nuclear waste repository. These calcite and silica coatings on fractures and in lithophysal cavities in Miocene-age tuffs in the unsaturated zone (UZ) precipitated from descending water and record a long history of percolation through the UZ. Opal and chalcedony have high concentrations of U (10 to 780 ppm) and low concentrations of common Pb as indicated by large values of 206Pb/204Pb (up to 53,806), thus making them suitable for U-Pb age determinations. Interpretations of U-Pb isotope systems in opal samples at Yucca Mountain are complicated by the incorporation of excess 234U at the time of mineral formation, resulting in reverse discordance of U-Pb ages. However, the 207Pb/235U ages are much less affected by deviation from initial secular equilibrium and provide reliable ages of most silica deposits between 0.6 and 9.8 Ma. For chalcedony subsamples showing normal age discordance, these ages may represent minimum times of deposition. Typically, 207Pb/235U ages are consistent with the microstratigraphy in the mineral coating samples, such that the youngest ages are for subsamples from outer layers, intermediate ages are from inner layers, and oldest ages are from innermost layers. 234U and 230Th in most silica layers deeper in the coatings are in secular equilibrium with 238U, which is consistent with their old age and closed system behavior during the past ∼0.5 Ma. The ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from lithophysal cavities in the welded part of the Topopah Spring Tuff yield slow long-term average growth rates of 1 to 5 mm/Ma. These data imply that the deeper parts of the UZ at Yucca Mountain maintained long-term hydrologic stability over the past 10 Ma. despite significant climate variations. U-Pb ages for subsamples of silica layers from different microstratigraphic positions in individual calcite and silica coating samples collected from fractures in the shallower part of the UZ (welded part of the overlying Tiva Canyon Tuff) indicate larger long-term average growth rates up to 23 mm/Ma and an absence of recently deposited materials (ages of outermost layers are 3–5 Ma.). These differences between the characteristics of the coatings for samples from the shallower and deeper parts of the UZ may indicate that the nonwelded tuffs (PTn), located between the welded parts of the Tiva Canyon and Topopah Spring Tuffs, play an important role in moderating UZ flow.  相似文献   

10.
Representative samples of the two fabric varieties of microcrystalline quartz, chalcedony and quartzine, from agates of different origin were investigated by transmission electron microscopy (TEM). Both varieties contain lamellar admixtures of the SiO2 mineral moganite. The transitions from quartz to moganite within the fabric differ in a characteristic way. Whereas in quartzine the gradient between the structures is steep, the transition is more continuous in chalcedony. The morphology of moganite in chalcedony and quartzine is determined by the (101)-face; in pure moganite from Gran Canaria it is governed by the (110)-face.  相似文献   

11.
Agate/chalcedony samples of different origin were investigated by performing Raman, X-ray diffraction (using Rietveld refinement), and cathodoluminescence measurements. These analyses were performed to measure the content and spatial distribution of the silica polymorph moganite, which is considered to represent periodic Brazil-law twinning of α-quartz at the unit-cell scale in agate/chalcedonies. Homogeneous standard samples including the nearly α-quartz free moganite type material from Gran Canaria were analysed in order to compare results of the X-ray diffractometry and Raman spectroscopy techniques and to provide a calibration curve for the Raman results. However, due to the different length scales analysed by the two techniques, the “moganite content” in microcrystalline SiO2 samples measured by Raman spectroscopy (short-range order) was found to be considerably higher than the “moganite content” measured by X-ray diffractometry (long-range order). The difference is explained by the presence of moganite nanocrystals, nano-range moganite lamellae, and single Brazil-law twin-planes that are detected by vibrational spectroscopy but that are not large enough (in the sense of coherently scattering lattice domains) to be detected by X-ray diffractometry. High resolution Raman analysis provides a measure of the moganite content and its spatial variation in microcrystalline silica samples with a lateral resolution in the μm-range. Variations in the moganite-to-quartz ratio are revealed by varying intensity ratios of the main symmetric stretching-bending vibrations (A1 modes) of α-quartz (465 cm−1) and moganite (502 cm−1), respectively. Traces of Raman microprobe analyses perpendicular to the rhythmic zoning of agates revealed that the moganite-to-quartz ratio is often not uniform but shows a cyclic pattern that correlates with the observed cathodoluminescence pattern (colour and intensity). Data obtained from an agate sample from a fluorite deposit near Okorusu, Namibia and from a volcanic agate from Los Indios, Cuba were selected for detailed presentation. Variations of cathodoluminescence and Raman data between single bands in agates suggest alternating formation of fine-grained, highly defective chalcedony intergrown with moganite, and coarse-grained low-defect quartz. Multiple zones indicate dynamic internal growth during a self-organizational crystallization process from silica-rich fluids. Received: 4 December 1997 / Accepted 19 June 1998  相似文献   

12.
Crystal size distribution (CSD) theory has been applied to drill core samples from Makaopuhi lava lake, Kilauea Volcano, Hawaii. Plagioclase and Fe-Ti oxide size distribution spectra were measured and population densities (n)were calculated and analyzed using a steady state crystal population balance equation: n=n 0 exp(-L/G). Slopes on ln(n) versus crystal size (L) plots determine the parameter G, a. product of average crystal growth rate (G) and average crystal growth time (). The intercept is J/G where J is nucleation rate. Known temperature-depth distributions for the lava lake provide an estimate of effective growth time (), allowing nucleation and growth rates to be determined that are independent of any kinetic model. Plagioclase growth rates decrease with increasing crystallinity (9.9–5.4×10–11 cm/s), as do plagioclase nucleation rates (33.9–1.6×10–3/cm3 s). Ilmenite growth and nucleation rates also decrease with increasing crystallinity (4.9–3.4 ×10–10 cm/s and 15–2.2×10–3/cm3 s, respectively). Magnetite growth and nucleation rates are also estimated from the one sample collected below the magnetite liquidus (G =2.9×10–10 cm/s, J=7.6×10–2/cm3 s). Moments of the population density function were used to examine the change in crystallization rates with time. Preliminary results suggest that total crystal volume increases approximately linearly with time after 50% crystallization; a more complete set of samples is needed for material with <50% crystals to define the entire crystallization history. Comparisons of calculated crystallization rates with experimental data suggests that crystallization in the lava lake occurred at very small values of undercooling. This interpretation is consistent with proposed thermal models of magmatic cooling, where heat loss is balanced by latent heat production to maintain equilibrium cooling.  相似文献   

13.
The structure of the microcrystalline silica varieties chalcedony, flint, moganite, opal-C and -CT is characterized by X-ray powder diffractometry and transmission electron microscopy (TEM). The role of impurities is investigated by infrared spectroscopy and chemical analysis. Microcrystalline opal, chalcedony and flint have a disordered intergrowth structure composed of cristobalite and tridymite domains in opal, and quartz and moganite domains in chalcedony and flint. Each constituent phase has different cell dimensions and symmetry. The main impurity is water which is enriched at the intergrowth interfaces. Density and refractive indices of microcrystalline silica depend on the water content.  相似文献   

14.
This study describes the reduction of functionalised model compounds to their corresponding hydrocarbons by catalytic hydropyrolysis to provide information on the release of biomarkers from kerogens and asphaltenes covalently bound through the functional groups investigated. Five model compounds were investigated, the n-C18 carboxylic acids, stearic and oleic acids; the C24 steroidal acid, 5β-cholanic acid; and the saturated and unsaturated C27 sterols, 5α-cholestanol and cholesterol. The yield and distribution of the hydrocarbons generated were assessed for the model compounds adsorbed to silica and carbon substrates, and unsupported on a bed of catalyst. The n-C18 acids are shown to be reduced to the n-C18 alkane, with a selectivity of >95% for stearic acid, although due to its unsaturated structure, oleic acid is prone to cracking, with shorter chained n-alkanes also being formed. The conversion of these compounds, adsorbed to either silica or carbon is relatively low, even at hydropyrolysis temperatures significantly above their boiling point, suggesting that interactions between the acids and substrate leading to the formation of stable entities (Si–O–C linkages in the case of silica) significantly retard volatilisation. The yield can be increased by placing the compounds directly onto a bed of catalyst, but for low boiling compounds such as stearic acid this can result in volatilisation and cracking at temperatures below that of the activation point of the catalyst. This method produced improved yields of >95% pure product for higher boiling compounds such as 5β-cholanic acid. The presence of the functional group attached to the ring system of compounds such as 5α-cholestanol does not diminish the selectivity of the technique. The double bond in cholesterol resulted in more incomplete hydrogenation with sterenes being generated, and in addition to 5α and 5β-cholestane, diasteranes were also generated via migration of the double bond.  相似文献   

15.
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar.  相似文献   

16.
New major and trace element analyses and Sr-isotope determinations of rocks from Mt. Somma–Vesuvius volcano produced from 25 ky BP to 1944 AD are part of an extensive database documenting the geochemical evolution of this classic region. Volcanic rocks include silica undersaturated, potassic and ultrapotassic lavas and tephras characterized by variable mineralogy and different crystal abundance, as well as by wide ranges of trace element contents and a wide span of initial Sr-isotopic compositions. Both the degree of undersaturation in silica and the crystal content increase through time, being higher in rocks produced after the eruption at 472 AD (Pollena eruption). Compositional variations have been generally thought to reflect contributions from diverse types of mantle and crust. Magma mixing is commonly invoked as a fundamental process affecting the magmas, in addition to crystal fractionation. Our assessment of geochemical and Sr-isotopic data indicates that compositional variability also reflects the influence of crustal contamination during magma evolution during upward migration to shallow crustal levels and/or by entrapment of crystal mush generated during previous magma storage in the crust. Using a variant of the assimilation fractional crystallization model (Energy Conservation–Assimilation Fractional Crystallization; [Spera and Bohrson, 2001. Energy-constrained open-system magmatic processes I: General model and energy-constrained assimilation and fractional crystallization (EC–AFC) formulation. J. Petrol. 999–1018]; [Bohrson, W.A. and Spera, F.J., 2001. Energy-constrained open-system magmatic process II: application of energy-constrained assimilation–fractional crystallization (EC–AFC) model to magmatic systems. J. Petrol. 1019–1041]) we estimated the contributions from the crust and suggest that contamination by carbonate rocks that underlie the volcano (2 km down to 9–10 km) is a fundamental process controlling magma compositions at Mt. Somma–Vesuvius in the last 8 ky BP. Contamination in the mid- to upper crust occurred repeatedly, after the magma chamber waxed with influx of new mantle- and crustal-derived magmas and fluids, and waned as a result of magma withdrawal and production of large and energetic plinian and subplinian eruptions.  相似文献   

17.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

18.
The filling process of amethyst-bearing geodes from Serra Geral Formation basalts, Brazil, is investigated by different methods performed on the SiO2 filling phases. Image analysis of quartz–amethyst deposits suggests a single growing mechanism ruled by geometric selection of randomly oriented crystals. Microthermometry of fluid inclusions reveals formation temperature lower than 100 °C, probably lower than 50 °C, and fluid salinity as high as 3 mass% NaCl eq. Composition in REE and trace-elements measured by ICP-MS on acid-digested or laser-ablated samples indicates a common genesis for amethyst, quartz and chalcedony, as well as the absence of significant variations from one geode to another. 87Sr/86Sr data on chalcedony shows that both the host basalt or the Botucatu sandstone are possible silica sources. These data, combined with thermo-kinetic considerations, permit us to discuss the filling process. We argue in favor of the contribution of a mineralized fluid of hydrothermal origin producing a regional silica source which decreased with time. The observed mineral sequence is related to the depletion of silica in the solution.  相似文献   

19.
The mechanisms that govern porphyroblast crystallization are investigated by comparing quantitative textural data with predictions from different crystallization models. Such numerical models use kinetic formulations of the main crystallization mechanism to predict textural characteristics, such as grain size distributions. In turn, data on porphyroblast textures for natural samples are used to infer which mechanism dominated during their formation. Whereas previous models assume that the rate‐limiting step for a porphyroblast producing reaction is either transport or growth, the model advanced in this study considers the production of nutrients for porphyroblasts as a potentially rate‐limiting factor. This production reflects the breakdown of (metastable) reactants, which at a specific pressure (P) and temperature (T) depends on the bulk composition of the sample. The production of nutrients that potentially contribute to the formation of porphyroblasts is computed based on thermodynamic models. The conceptual model assumes that these nutrients feed into some intergranular medium, and products form by nutrient consumption from that medium, with rates depending on reaction affinity. For any sequence of PT conditions along a PTt path, the numerical model first computes an effective supersaturation (σeff) of the product phase(s), then an effective nucleation rate (J), and finally the amount of (porphyroblast) growth. As a result, the model is useful in investigating how the textural characteristics of a sample (of given bulk composition) depend on the PTt path followed during porphyroblast crystallization. The numerical model is tested and validated by comparing simulation results with quantitative textural data for garnet porphyroblasts measured in samples from the Swiss Central Alps.  相似文献   

20.
Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic–Mesozoic granites in the Central Asian Orogenic Belt have commonly positive Nd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high-V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号