首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
One-dimensional Lagrangian dispersion models, frequently used to relate in-canopy source/sink distributions of energy, water and trace gases to vertical concentration profiles, require estimates of the standard deviation of the vertical wind speed, which can be measured, and the Lagrangian time scale, T L , which cannot. In this work we use non-linear parameter estimation to determine the vertical profile of the Lagrangian time scale that simultaneously optimises agreement between modelled and measured vertical profiles of temperature, water vapour and carbon dioxide concentrations within a 40-m tall temperate Eucalyptus forest in south-eastern Australia. Modelled temperature and concentration profiles are generated using Lagrangian dispersion theory combined with source/sink distributions of sensible heat, water vapour and CO2. These distributions are derived from a multilayer Soil-Vegetation-Atmospheric-Transfer model subject to multiple constraints: (1) daytime eddy flux measurements of sensible heat, latent heat, and CO2 above the canopy, (2) in-canopy lidar measurements of leaf area density distribution, and (3) chamber measurements of CO2 ground fluxes. The resulting estimate of Lagrangian time scale within the canopy under near-neutral conditions is about 1.7 times higher than previous estimates and decreases towards zero at the ground. It represents an advance over previous estimates of T L , which are largely unconstrained by measurements.  相似文献   

2.
Source/sink strengths and vertical fluxdistributions of carbon dioxide within and above arice canopy were modelled using measured meanconcentration profiles collected during aninternational rice experiment in Okayama, Japan (IREX96). The model utilizes an Eulerian higher-orderclosure approach that permits coupling of scalar andmomentum transport within vegetation to infer sourcesand sinks from mean scalar concentration profiles; theso-called `inverse problem'. To compute the requiredvelocity statistics, a Eulerian second-order closuremodel was considered. The model well reproducedmeasured first and second moment velocity statisticsinside the canopy. Using these modelled velocitystatistics, scalar fluxes within and above the canopywere computed and compared with CO2eddy-correlation measurements above the canopy. Goodagreement was obtained between model calculations offluxes at the top of the canopy and measurements. Close to the ground, the model predicted higherrespiratory fluxes when the paddy was drained comparedto when it was flooded. This is consistent with thefloodwater providing a barrier to diffusion ofCO2 from the soil to the atmosphere. TheEulerian sources and flux calculations were alsocompared to source and flux distributions estimatedindependently using a Lagrangian Localized Near Fieldtheory, the first study to make such a comparison.Some differences in source distributions werepredicted by these analyses. Despite this, thecalculated fluxes by the two approaches compared wellprovided a closure constant, accounting for theinfluence of `near-field' sources in the Eulerian fluxtransport term, was given a value of 1.5 instead ofthe value of 8 found in laboratory studies.  相似文献   

3.
The two-scalar covariance budget is significant within the canopy sublayer (CSL) given its role in modelling scalar flux budgets using higher-order closure principles and in estimating the segregation ratio for chemically reactive species. Despite its importance, an explicit expression describing how the two-scalar covariance is modified by inhomogeneity in the flow statistics and in the vertical variation in scalar emission or uptake rates within the canopy volume remains elusive even for passive scalars. To progress on a narrower version of this problem, an analytical solution to the two-scalar covariance budget in the CSL is proposed for the most idealized flow conditions: a stationary and planar homogeneous flow inside a uniform and dense canopy with a constant leaf area density distribution. The foliage emission (or uptake) source strengths are assumed to vary exponentially with depth while the forest floor emission is represented as a scalar flux. The analytical solution is a superposition of a homogeneous part that describes how the two-scalar covariance at the canopy top is transported and dissipated within the canopy volume, and an inhomogeneous part governed by local production mechanisms of the two-scalar covariance. The homogeneous part is primarily described by the canopy adjustment length scale, and the attenuation coefficients of the turbulent kinetic energy and the mean velocity. Conditions for which the vertical variation of the two-scalar covariance is controlled by the rapid attenuation in the mean velocity and turbulent kinetic energy profiles, vis-à-vis the vertical variation of the scalar source strength, are explicitly established. This model also demonstrates how dissimilarity in the emissions from the ground, even for the extreme binary case with one scalar turned ‘on’ and the other scalar turned ‘off’, modifies the vertical variation of the two-scalar covariance within the CSL. To assess its applicability to field conditions, the analytical model predictions were compared with observations made at two different forest types—a sparse pine forest at the Hyytiälä SMEAR II-station (in Finland) and a dense alpine hardwood forest at Lavarone (in Italy). While the model assumptions do not represent the precise canopy morphology, attenuation properties of the turbulent kinetic energy and the mean velocity, observed mixing length, and scalar source attenuation properties for these two forest types, good agreement was found between measured and modelled two scalar covariances for multiple scalars and for the triple moments at the Hyytiälä site.  相似文献   

4.
We investigate the effect of source distribution on the bulk transfer of passive scalars between rough, vegetated land surfaces and the atmosphere, using data from a wind-tunnel experiment in which passive heat was emitted from both the underlying surface and canopy elements of a three-dimensional regular bluff-body array. The experimental results are compared with a simple one-dimensional, two-source model for scalar transfer. We find that: (1) the observed scalar transfer resistance across the boundary layer at the underlying surface is simply related to flat-plate theory by a constant of 0.62, despite the complexity of the turbulent flow within the wind-tunnel canopy; (2) one-dimensional gradient-transfer theory, even with extensions to account for the non-local nature of turbulent transfer within the canopy, does not describe the observed details of scalar concentration gradients in the highly three-dimensional canopy flow, but does provide a reasonable framework for bulk scalar transfer between the composite ground-canopy surface and the flow above the canopy; (3) the kB −1 parameter (which accounts for bulk excess resistance to scalar transfer over momentum transfer) is highly sensitive to scalar source partition between ground and canopy.  相似文献   

5.
The flux–gradient relationships in the unstable roughness sublayer (RSL) over an open canopy of black spruce forest were examined using long-term observations from an instrumented tower. The observed gradients normalised with the surface fluxes and height above the zero-plane displacement showed differences from a universal function established in the surface layer. The magnitude of differences was not constant throughout the year even at the same observation height. Also the magnitude of the differences was different for each scalar, and scalar similarity in the context of the flux–gradient relationship did not always hold. The variation of the differences was explained by the relative contribution of overstorey vegetation to the total flux from the entire ecosystem. This suggests that a mismatch of the vertical source/sink distributions between scalars leads to a different strength of the near-field dispersion effect for each scalar, and this resulted in inequality of eddy diffusivity among scalars in the RSL. An empirical method that predicts the magnitude of differences is proposed. With this method, it is possible to estimate the eddy diffusivity of scalars provided that the relative contribution of overstorey vegetation to the total flux from the ecosystem is known. Also this method can be used to estimate the eddy diffusivity for scalars whose primary sources are at ground level, such as methane and nitrous oxide.  相似文献   

6.
A Eulerian-Lagrangian canopy microclimate model wasdeveloped with the aim of discerning physical frombiophysical controls of CO2 and H2O fluxes. The model couples radiation attenuation with mass,energy, and momentum exchange at different canopylevels. A unique feature of the model is its abilityto combine higher order Eulerian closure approachesthat compute velocity statistics with Lagrangianscalar dispersion approaches within the canopy volume. Explicit accounting for within-canopy CO2,H2O, and heat storage is resolved by consideringnon-steadiness in mean scalar concentration andtemperature. A seven-day experiment was conducted inAugust 1998 to investigate whether the proposedmodel can reproduce temporal evolution of scalar(CO2, H2O and heat) fluxes, sources andsinks, and concentration profiles within and above auniform 15-year old pine forest. The modelreproduced well the measured depth-averaged canopy surfacetemperature, CO2 and H2O concentrationprofiles within the canopy volume, CO2 storageflux, net radiation above the canopy, and heat andmass fluxes above the canopy, as well as the velocitystatistics near the canopy-atmosphere interface. Implications for scaling measured leaf-levelbiophysical functions to ecosystem scale are alsodiscussed.  相似文献   

7.
The Regional Atmospheric Modeling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES), developed and evaluated here, is used to explore the effects of three-dimensional canopy heterogeneity, at the individual tree scale, on the statistical properties of turbulence most pertinent to mass and momentum transfer. In RAFLES, the canopy interacts with air by exerting a drag force, by restricting the open volume and apertures available for flow (i.e. finite porosity), and by acting as a heterogeneous source of heat and moisture. The first and second statistical moments of the velocity and flux profiles computed by RAFLES are compared with turbulent velocity and scalar flux measurements collected during spring and winter days. The observations were made at a meteorological tower situated within a southern hardwood canopy at the Duke Forest site, near Durham, North Carolina, U.S.A. Each of the days analyzed is characterized by distinct regimes of atmospheric stability and canopy foliage distribution conditions. RAFLES results agreed with the 30-min averaged flow statistics profiles measured at this single tower. Following this intercomparison, two case studies are numerically considered representing end-members of foliage and midday atmospheric stability conditions: one representing the winter season with strong winds above a sparse canopy and a slightly unstable boundary layer; the other representing the spring season with a dense canopy, calm conditions, and a strongly convective boundary layer. In each case, results from the control canopy, simulating the observed heterogeneous canopy structure at the Duke Forest hardwood stand, are compared with a test case that also includes heterogeneity commensurate in scale to tree-fall gaps. The effects of such tree-scale canopy heterogeneity on the flow are explored at three levels pertinent to biosphere-atmosphere exchange. The first level (zero-dimensional) considers the effects of such heterogeneity on the common representation of the canopy via length scales such as the zero-plane displacement, the aerodynamic roughness length, the surface-layer depth, and the eddy-penetration depth. The second level (one-dimensional) considers the normalized horizontally-averaged profiles of the first and second moments of the flow to assess how tree-scale heterogeneities disturb the entire planar-averaged profiles from their canonical (and well-studied planar-homogeneous) values inside the canopy and in the surface layer. The third level (three-dimensional) considers the effects of such tree-scale heterogeneities on the spatial variability of the ejection-sweep cycle and its propagation to momentum and mass fluxes. From these comparisons, it is shown that such microscale heterogeneity leads to increased spatial correlations between attributes of the ejection-sweep cycle and measures of canopy heterogeneity, resulting in correlated spatial heterogeneity in fluxes. This heterogeneity persisted up to four times the mean height of the canopy (h c ) for some variables. Interestingly, this estimate is in agreement with the working definition of the thickness of the canopy roughness sublayer (2h c –5h c ).  相似文献   

8.
Analytical Lagrangian equations capable of predicting concentration profiles from known source distributions offer the opportunity to calculate source/sink distributions through inverted forms of these equations. Inverse analytical Lagrangian equations provide a practical means of estimating source profiles using concentration and turbulence measurements. Uncertainty concerning estimates of the essentially immeasurable Lagrangian length scale ( ${\mathcal{L}}$ ), a key input, impedes the operational practicality of this method. The present study evaluates ${\mathcal{L}}$ within a corn canopy by using field measurements to constrain an analytical Lagrangian equation. Measurements of net CO2 flux, soil-to-atmosphere CO2 flux, and in-canopy profiles of CO2 concentration provided the information required to solve for ${\mathcal{L}}$ in a global optimization algorithm for 30-min time intervals. For days when the canopy was a strong CO2 sink, the optimization frequently located ${\mathcal{L}}$ profiles that follow a convex shape. A constrained optimization then fit the profile shape to a smooth sigmoidal equation. Inputting the optimized ${\mathcal{L}}$ profiles in the forward and inverse Lagrangian equations leads to strong correlations between measured and calculated concentrations and fluxes. Coefficients of the sigmoidal equation were specific to each 30-min period and did not scale with any measured variable. Plausible looking ${\mathcal{L}}$ profiles were associated with negative bulk Richardson number values. Once the canopy senesced, a simple eddy diffusivity profile sufficed to relate concentrations and sources in the analytical Lagrangian equations.  相似文献   

9.
Numerical simulations of scalar transport in neutral flow over forested ridges are performed using both a 1.5-order mixing-length closure scheme and a large-eddy simulation. Such scalar transport (particularly of CO2) has been a significant motivation for dynamical studies of forest canopy–atmosphere interactions. Results from the 1.5-order mixing-length simulations show that hills for which there is significant mean flow into and out of the canopy are more efficient at transporting scalars from the canopy to the boundary layer above. For the case with a source in the canopy this leads to lower mean concentrations of tracer within the canopy, although they can be very large horizontal variations over the hill. These variations are closed linked to flow separation and recirculation in the canopy and can lead to maximum concentrations near the separation point that exceed those over flat ground. Simple scaling arguments building on the analytical model of Finnigan and Belcher (Q J Roy Meteorol Soc 130:1–29, 2004) successfully predict the variations in scalar concentration near the canopy top over a range of hills. Interestingly this analysis suggests that variations in the components of the turbulent transport term, rather than advection, give rise to the leading order variations in scalar concentration. The scaling arguments provide a quantitative measure of the role of advection, and suggest that for smaller/steeper hills and deeper/sparser canopies advection will be more important. This agrees well with results from the numerical simulations. A large-eddy simulation is used to support the results from the mixing-length closure model and to allow more detailed investigation of the turbulent transport of scalars within and above the canopy. Scalar concentration profiles are very similar in both models, despite the fact that there are significant differences in the turbulent transport, highlighted by the strong variations in the turbulent Schmidt number both in the vertical and across the hill in the large-eddy simulation that are not represented in the mixing-length model.  相似文献   

10.
The transport of a passive scalar from a continuous point-source release in an urban street network is studied using direct numerical simulation (DNS). Dispersion through the network is characterized by evaluating horizontal fluxes of scalar within and above the urban canopy and vertical exchange fluxes through the canopy top. The relative magnitude and balance of these fluxes are used to distinguish three different regions relative to the source location: a near-field region, a transition region and a far-field region. The partitioning of each of these fluxes into mean and turbulent parts is computed. It is shown that within the canopy the horizontal turbulent flux in the street network is small, whereas above the canopy it comprises a significant fraction of the total flux. Vertical fluxes through the canopy top are predominantly turbulent. The mean and turbulent fluxes are respectively parametrized in terms of an advection velocity and a detrainment velocity and the parametrization incorporated into a simple box-network model. The model treats the coupled dispersion problem within and above the street network in a unified way and predictions of mean concentrations compare well with the DNS data. This demonstrates the usefulness of the box-network approach for process studies and interpretation of results from more detailed numerical simulations.  相似文献   

11.
Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed.
“The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy
  相似文献   

12.
Observations of low-level jets (LLJs) at the Howland AmeriFlux site in the USA and the jet’s impact on nocturnal turbulent exchange and scalar fluxes over a tall forest canopy are discussed. Low-frequency motions and turbulent bursts characterize moderately strong LLJs, whereas low-frequency motions are suppressed during periods with strong LLJs and enhanced shear. An analysis based on the shear-sheltering hypothesis seeks to elucidate the effect of LLJs on flux measurements. In the absence of shear sheltering, large eddies penetrate the roughness sublayer causing enhanced mixing while during periods with shear sheltering, mixing is reduced. In the absence of the latter, ‘upside-down’ eddies are primarily responsible for the enhanced velocity variances, scalar and momentum fluxes. The integral length scales over the canopy are greater than the canopy height. The variance spectra and cospectra from the wavelet analysis indicate that large eddies (spatial scale greater than the low-level jet height) interact with active canopy-scale turbulence, contributing to counter-gradient scalar fluxes.  相似文献   

13.
Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1?year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa.  相似文献   

14.
An integrated canopy micrometeorological model is described for calculating CO2, water vapor and sensible heat exchange rates and scalar concentration profiles over and within a crop canopy. The integrated model employs a Lagrangian random walk algorithm to calculate turbulent diffusion. The integrated model extends previous Lagrangian modelling efforts by employing biochemical, physiological and micrometeorological principles to evaluate vegetative sources and sinks. Model simulations of water vapor, CO2 and sensible heat flux densities are tested against measurements made over a soybean canopy, while calculations of scalar profiles are tested against measurements made above and within the canopy. The model simulates energy and mass fluxes and scalar profiles above the canopy successfully. On the other hand, model calculations of scalar profiles inside the canopy do not match measurements.The tested Lagrangian model is also used to evaluate simpler modelling schemes, as needed for regional and global applications. Simple, half-order closure modelling schemes (which assume a constant scalar profile in the canopy) do not yield large errors in the computation of latent heat (LE) and CO2 (F c ) flux densities. Small errors occur because the source-sink formulation of LE andF c are relatively insensitive to changes in scalar concentrations and the scalar gradients are small. On the other hand, complicated modelling frames may be needed to calculate sensible heat flux densities; the source-sink formulation of sensible heat is closely coupled to the within-canopy air temperature profile.  相似文献   

15.
16.
The higher-order scalar concentration fluctuation properties are examined in the context of Monin–Obukhov similarity theory for a variety of greenhouse gases that have distinct and separate source/sink locations along an otherwise ideal micrometeorological field site. Air temperature and concentrations of water vapour, carbon dioxide and methane were measured at high frequency (10 Hz) above a flat and extensive peat-land soil in the San Joaquin–Sacramento Delta (California, USA) area, subjected to year-round grazing by beef cattle. Because of the heterogeneous distribution of the sources and sinks of CO2 and especially CH4 emitted by cattle, the scaling behaviour of the higher-order statistical properties diverged from predictions based on a balance between their production and dissipation rate terms, which can obtained for temperature and H2O during stationary conditions. We identify and label these departures as ‘exogenous’ because they depend on heterogeneities and non-stationarities induced by boundary conditions on the flow. Spectral analysis revealed that the exogenous effects show their signatures in regions with frequencies lower than those associated with scalar vertical transport by turbulence, though the two regions may partially overlap in some cases. Cospectra of vertical fluxes appear less influenced by these exogenous effects because of the modulating role of the vertical velocity at low frequencies. Finally, under certain conditions, the presence of such exogenous factors in higher-order scalar fluctuation statistics may be ‘fingerprinted’ by a large storage term in the mean scalar budget.  相似文献   

17.
An experiment was conducted to study turbulent transport processes of scalar quantities within and above a rice plant canopy. A sonic anemometer-thermometer and a Lyman- humidiometer were used to measure the turbulent fluxes of sensible and latent heat and related turbulence statistics within a paddy field. The sensible and latent heat fluxes measured at two heights within and above the plant canopy showed that the upper layer of this plant canopy was an active source region and that the source strength of sensible and latent heat depended on the solar radiation and physiology of rice plants. Analysis of joint probability distributions of w and T and of w and q within this plant canopy showed that downdrafts were remarkably efficient for upward transport of sensible and latent heat in the daytime. The vertical fluxes of temperature and humidity variance were also divergent from the upper layer of plant canopies. The power spectra of temperature and humidity within the plant canopy decreased rapidly in the high frequency range, compared with the - 2/3 law relationship of nS(n) vs log n observed above plant canopies.  相似文献   

18.
Source areas for scalars and scalar fluxes   总被引:19,自引:2,他引:19  
The spatial resolution of meteorological observations of scalars (such as concentrations or temperature) and scalar fluxes (e.g., water-vapour flux, sensible heat flux) above inhomogeneous surfaces is in general not known. It is determined by the surface area of influence orsource area of the sensor, which for sensors of quantities that are subject to turbulent diffusion, depends on the flow and turbulence conditions.Functions describing the relationship between the spatial distribution of surface sources (or sinks) and a measured signal at height in the surface layer have been termed thefootprint function or thesource weight function. In this paper, the source area of levelP is defined as the integral of the source weight function over the smallest possible domain comprising the fractionP of the total surface influence reflected in the measured signal. Source area models for scalar concentration and for passive scalar fluxes are presented. The results of the models are presented as characteristic dimensions of theP=50% source areas (i.e., the area responsible for 50% of the surface influence): the maximum source location (i.e., the upwind distance of the surface element with the maximum-weight influence), the near and the far end of the source area, and its maximal lateral extension. These numerical model results are related directly to non-dimensional surface-layer scaling variables by a non-linear least squares method in a parameterized model which provides a user-friendly estimate of the surface area responsible for measured concentrations or fluxes. The source area models presented here allow conclusions to be made about the spatial representativeness and the localness (these terms are defined in the text) of flux and concentration measurements.  相似文献   

19.
The dissimilarity of temperature and humidity transfer in the marine surface layer (MSL) is investigated through the relative transport efficiency and correlation coefficient of these two scalars. We examine their variability and relationship with mean values, as well as spectral characteristics. It is shown that the dissimilarity between these two scalars in the MSL is a function of stability, the boundary-layer depth, and flow steadiness. In general the temperature and humidity are less correlated in shallow marine boundary layers compared to deep marine boundary layers, due to the stronger impact of the boundary-layer scale in breaking the “same source, same sink” assumption for scalar similarity. This is supported by the combination of our spectral analysis of scalar fluxes and corresponding measured and modelled boundary-layer depth. This assumption is also broken in near-neutral conditions, when there is an efficient latent heat transfer but negligible sensible heat transfer. Our data suggest that parametrization of humidity fluxes via similarity theory could still be reliable when the correlation coefficient $>$ 0.5, and in near-neutral conditions the humidity flux can be estimated without use of the sensible heat flux.  相似文献   

20.
Turbulent dispersion of spores was studied near a source located inside a wheat canopy. Two colors of Lycopodium spores were released simultaneously at a steady rate from line sources at two heights (0.4–0.5 m and 0.7–0.8 m) in a 0.8 to 1.0 m tall crop. The number of spores of each color released was estimated by weighing the sources before and after each release. Aerial spore concentrations were measured at 2 and 4 m downwind of the sources using rotorods placed at four heights above the canopy and small suction traps at two heights inside the canopy. Concentrations near the ground were estimated from deposits on sticky glass microscope slides placed on the ground. Experiments were conducted on six different days. Friction velocities ranged from about 0.3 to 0.5 m s–1. The average horizontal fluxes of spores were calculated as the product of the observed concentrations and average wind speeds. At a distance of 2 m downwind from the sources, more than 16 to 44% of the flux of spores released from the lower source and more than 41 to 50% of the flux of spores released from the upper source were estimated to be above the canopy. These fluxes were compared with fluxes calculated using both a K-theory model and a random-flight-fluid-parcel-trajectory simulation model. The fluxes predicted by the models were generally considerably less than the values determined experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号