首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dissociative recombination coefficients α for capture of electrons by H3+ and H5+ ions have been determined as a function of electron temperature Te using a microwave afterglow-mass spectrometer apparatus. At ion and neutral temperatures Tu+ = Tn = 240 K, the coefficient α (H3+) is found to vary slowly with Te at first, decreasing from 1.6 × 10?7 cm3/s at Te = 240 K to 1.2 × 10?7 cm3/s at Te = 500 K, thereafter falling as Te?1 over the range 500 K ? Te, ? 3000 K. These results, which have a ± 20% uncertainty, agree satisfactorily over the common energy range (0.03–0.36 eV) with the recombination cross sections determined in merged beam measurements by Auerbach et al. At T+ = Tn = 128 K, the coefficient α(H5+) is found to be (1.8 ± 0.3) × 10?6 [Te(K)/300]?0.69 cm3/s over the range 128 K ? Te ? 3000 K, with a more rapid decrease, as Te?1, between 3000 K and 5500 K. The implications of these results for modelling planetary atmospheres and interstellar clouds are briefly touched on.  相似文献   

2.
Analysis of observed spectrograms is based on comparison with synthetic spectra. The O2(b1Σ+g?X3Σ?g Atm. (1,1) band in high latitude auroras observed from the ground is found to be the strongest in the Δv = 0 sequence. It is enhanced with altitude relative to the N2 1P(2, 0)and N+2 M(2,0) bands, but the O2 Atm. (2, 2) band has an unexpected low intensity. The range of rotational temperatures of the O2 Atm. bands varies from approx. 200 to above 500 K which indicates that the altitude of the centroid of the emission region varies from about 100 km to the F-region. The highest temperature is found in the midday aurora associated with the magnetospheric cusp. Conspicuous relative variations between the intensities of N2 and O2 spectra are documented, but a satisfactory explanation of the variety is not given. Deviations of the observed O2 Atm. band intensities from the vibrational intensity distribution predicted by Franck-Condor factors indicate that the excitation of the O2 Atm. bands in aurora is not mainly due to particle impact on O2, and the contribution due to energy transfer from hot O(1D) atoms has to be found in future research.  相似文献   

3.
It is proposed that the available measurements of the O2(b1Σg+ ?X3Σg?) atmospheric bands both in the nightglow and in the laboratory indicate that the excitation mechanism is a two-step process rather than the direct three body recombination of atomic oxygen. It is shown that such a two-step mechanism can explain observations of the atmospheric bands both in altitude and intensity.  相似文献   

4.
A study has been made using a variable temperature flowing afterglow Langmuir probe technique (VT-FALP) to determine the equilibrium temperature dependencies of the dissociative electron-ion recombination of the protonated cyanide ions (RCNH+, where R=H, CH3 and C2H5) and their symmetrical proton-bound dimers (RCNH+NCR). The power law temperature dependencies of the recombination coefficients, αe, over the temperature range 180 to 600 K for the protonated ions are αe(T)(cm3 s−1)=3.5±0.5×10−7 (300/T)1.38 for HCNH+, αe(T)=3.4±0.5×10−7 (300/T)1.03 for CH3CNH+, and αe(T)=4.6±0.7×10−7 (300/T)0.81 for CH3CH2CNH+. The equivalent values for the proton-bound dimers are αe(T)(cm3 s−1)=2.4±0.4×10−6(300/T)0.5 for (HCN)2H+ to αe(T)=2.8±0.4×10−6(300/T)0.5 for (CH3CN)2H+, and αe(T)=2.3±0.3×10−6(300/T)0.5 for (CH3CH2CN)2H+. The relevance of these data to molecular synthesis in the interstellar medium and the Titan ionosphere are discussed.  相似文献   

5.
W.A. Traub  N.P. Carleton 《Icarus》1974,23(4):585-589
A spectroscopic search for H2O and CH4 in Comet Kohoutek (1973f) was made using a Pepsios interferometer. No evidence was found for either molecule, allowing us to set an upper limit on their production rates (on about 21 January 1974) of Q(H2O) < 6.2 × 1028 sec?1 and Q(CH4) < 2.0 × 1030 sec?1. If the cometary surface is water-ice, this production rate leads to a product (1 ? A)·(πR02) < 2.2 km2, where A is the Bond albedo, R0 is the nuclear radius, and we assume that all the absorbed solar energy is used to evaporate H2O.  相似文献   

6.
It is proposed that energy transfer from excited O2 contributes to the production of O(1S) in aurora. An analysis is presented of the OI5577 Å emission in an IBC II+ aurora between 90 and 130 km. The volume emission rate of the emission at these altitudes is consistent with the production rate of O(1S) by energy transfer to O(3P) from N2 in the A3Σ2+ state and O2 in the A3Σu+, C3Δc1Σu? states, the N2A state being populated by direct electron impact excitation and BA cascade and the excited O2 states by direct excitation. Above the peak emission altitude (~105 km), energy transfer from N2A is the predominant production mechanism for O(1S). Below it, the contribution from quenching of the O2 states becomes significant.  相似文献   

7.
Far-IR (25-50 μm, 200-400 cm−1) nadir and limb spectra measured during Cassini's four year prime mission by the Composite InfraRed Spectrometer (CIRS) instrument have been used to determine the abundances of cyanogen (C2N2), methylacetylene (C3H4), and diacetylene (C4H2) in Titan's stratosphere as a function of latitude. All three gases are enriched at northern latitudes, consistent with north polar subsidence. C4H2 abundances agree with those derived previously from mid-IR data, but C3H4 abundances are about 2 times lower, suggesting a vertical gradient or incorrect band intensities in the C3H4 spectroscopic data. For the first time C2N2 was detected at southern and equatorial latitudes with an average volume mixing ratio of 5.5±1.4×10−11 derived from limb data (>3-σ significance). This limb result is also corroborated by nadir data, which give a C2N2 volume mixing ratio of 6±3×10−11 (2-σ significance) or alternatively a 3-σ upper limit of 17×10−11. Comparing these figures with photochemical models suggests that galactic cosmic rays may be an important source of N2 dissociation in Titan's stratosphere. Like other nitriles (HCN, HC3N), C2N2 displays greater north polar relative enrichment than hydrocarbons with similar photochemical lifetimes, suggesting an additional loss mechanism for all three of Titan's main nitrile species. Previous studies have suggested that HCN requires an additional sink process such as incorporation into hazes. This study suggests that such a sink may also be required for Titan's other nitrile species.  相似文献   

8.
A simple vibrational relaxation model which reproduces the observed altitude integrated vibrational distribution of the Herzberg I bands in the nightglow is used to derive the altitude profiles of the individual vibrational levels at 1 km intervals in the 85–115 km height range. The possible errors associated with using rocket-borne photometer measurements of a limited number of bands in the O2(A3Σu+?X3Σg?) system to infer the total Herzberg I emission profile are assessed.  相似文献   

9.
Excitation functions for collision-induced dissociation reactions of CO 3? and NO3? to give O? and the corresponding neutral species have been studied using an in-line tandem mass spectrometer. When these ions were prepared from certain gaseous mixtures, larger cross-sections and lower thresholds were observed for the dissociation processes than those found for the same ions in their apparent ground states. These observations suggest the existence of long-lived excited states of CO3?1 and NO3?1. The heats of formation of these excited ionic states were determined to be ?4.8 ± 0.1 and ?0.3 ± 0.2 eV for CO3?1 and NO3?1, respectively. Possible implications of these findings with respect to the D -region negative ion reaction scheme are discussed.  相似文献   

10.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

11.
Aeronomical determinations of the dissociative recombination reaction rate coefficient for O2+, α, depend directly on a knowledge of the rate coefficient for the charge exchange of O+ with O2, k. A re-evaluation of the aeronomical determination of α using Atmosphere Explorer satellite data is necessary in the light of a subsequent laboratory measurement of k. The results reported here are in reasonable agreement with laboratory determinations to within the uncertainty of the analysis for night-time conditions. However, for data obtained under sunlit conditions the aeronomical determination differs significantly from the laboratory measurements. The results imply that the state of the O2+ molecule resulting from the major thermospheric processes requires further examination.  相似文献   

12.
The dipole moment of the A2Πu?x2Πg transition of O+2 is calculated as a function of internuclear distance using ab initio methods. The band absorption oscillator strengths and band transition probabilities of the second negative system are derived and the resulting lifetimes are compared with experimental data. The high-lying v″ levels of the ground state may decay into low-lying v′ levels of the excited state. The corresponding radiative lifetimes are calculated.  相似文献   

13.
We have studied the excitation of the Cameron bands of carbon monoxide (a3πX1Σ+) by electron impact on CO and CO2. This investigation was prompted by a recent study of the Martian airglow by Conway (1981) who concluded that the cross section for the dissociative excitation of the Cameron bands is seven times larger than the laboratory value reported by Ajello (1971a) and by a perplexing inconsistency between the optical cross section and CO(a3π) time-of-flight experiments. We have found now that three factors have contributed to these discrepancies: (1) spectral contamination of the (1,4) Cameron band used by Ajello to normalize the entire Cameron band cross section, (2) major revisions in the magnitude of the CO(a3π) radiative lifetime, and (3) new insights into the effects of the CO(a3π) velocity distribution on the field of view of the emission experiments. The new results largely reconcile the TOF and emission measurements, but they also suggest that the calculated photoelectron fluxes in the Martian atmosphere may be too large by a factor of 3.  相似文献   

14.
We present near-IR spectra of solid CO2 in H2O and CH3OH, and find they are significantly different from that of pure solid CO2. Peaks not present in either pure H2O or pure CO2 spectra become evident when the two are mixed. First, the putative theoretically forbidden CO2 (2ν3) overtone near 2.134 μm (4685 cm−1), that is absent from our spectrum of pure solid CO2, is prominent in the spectra of H2O/CO2=5 and 25 mixtures. Second, a 2.74-μm (3650 cm−1) dangling OH feature of H2O (and a potentially related peak at 1.89 μm) appear in the spectra of CO2-H2O ice mixtures, but are probably not diagnostic of the presence of CO2. Other CO2 peaks display shifts in position and increased width because of intermolecular interactions with H2O. Warming causes some peak positions and profiles in the spectrum of a H2O/CO2=5 mixture to take on the appearance of pure CO2. Absolute strengths for absorptions of CO2 in solid H2O are estimated. Similar results are observed for CO2 in solid CH3OH. Since the CO2 (2ν3) overtone near 2.134 μm (4685 cm−1) is not present in pure CO2 but prominent in mixtures, it may be a good observational (spectral) indicator of whether solid CO2 is a pure material or intimately mixed with other molecules. These observations may be applicable to Mars polar caps as well as outer Solar System bodies.  相似文献   

15.
The yield of metastable nitrogen atoms in dissociative recombination of N2+ (v = 0, 1)ions has been tudied for different experimental conditions. In a first experiment, the branching ratio for N(2D) production was directly measured as being higher than 1.85; for N2+ (v = 0) this implies that 2D + 2D is the main reaction channel; for N2+ (v = 1) a minor channel could be 2P + 2D, 2P being then quenched toward 2D by electrons. In a second experiment, at higher electron densities, the influence of superelastic collisions was studied; a steady state analysis yields the quenching rate coefficient k4, of 2D towards 4S equal to 2.4 × 10?10 cm3 s?1for Te = 3900 K and shows that 2D + 2D is always the major channel of the reaction for N2+ (v = 1), 2D + 2P being a minor channel. All these results are in good agreement with thermospheric models but imply that N2+ dissociative recombination is a less important source for nitrogen escape of Mars.  相似文献   

16.
Ices in the solar system are observed on the surface of planets, satellites, comets and asteroids where they are continuously subordinate at particle fluxes (cosmic ions, solar wind and charged particles caught in the magnetosphere of the planets) that deeply modify their physical and structural properties. Each incoming ion destroys molecular bonds producing fragments that, by recombination, form new molecules also different from the original ones. Moreover, if the incoming ion is reactive (H+, On+, Sn+, etc.), it can concur to the formation of new molecules.Those effects can be studied by laboratory experiments where, with some limitation, it is possible to reproduce the astrophysical environments of planetary ices.In this work, we describe some experiments of 15-100 keV H+ and He+ implantation in pure sulfur dioxide (SO2) at 16 and 80 K and carbon dioxide (CO2) at 16 K ices aimed to search for the formation of new molecules. Among other results we confirm that carbonic acid (H2CO3) is formed after H-implantation in CO2, vice versa H-implantation in SO2 at both temperatures does not produce measurable quantity of sulfurous acid (H2SO3). The results are discussed in the light of their relevance to the chemistry of some solar system objects, particularly of Io, the innermost of Jupiter's Galilean satellites, that exhibits a surface very rich in frost SO2 and it is continuously bombarded with H+ ions caught in Jupiter's magnetosphere.  相似文献   

17.
A major loss process for the metastable species, O+(2D), in the thermosphere is quenching by electrons
O+(2D) + e → O+(4S) + e
.To date no laboratory measurement exists for the rate coefficient of this reaction. Thermospheric models involving this process have thus depended on a theoretically calculated value for the rate coefficient and its variation with electron temperature. Earlier studies of the O+(2D) ion based on the Atmosphere Explorer data gathered near solar minimum, could not quantify this process. However, Atmosphere Explorer measurements made during 1978 exhibit electron densities that are significantly enhanced over those occurring in 1974, due to the large increases that have occurred in the solar extreme ultraviolet flux. Under such conditions, for altitudes ? 280 km, the electron quenching process becomes the major loss mechanism for O+(2D), and the chemistry of the N+2 ion, from which the O+(2D) density is deduced, simplifies to well determined processes. We are thus able to use the in situ satellite measurements made during 1978 to derive the electron quenching rate coefficient. The results confirm the absolute magnitude of the theoretical calculation of the rate coefficient, given by the analytical expression k(Te) = 7.8 × 10?8 (Te/300)?0.5cm3s?1. There is an indication of a stronger temperature dependence, but the agreement is within the error of measurement.  相似文献   

18.
We have obtained the infrared spectra and the corresponding absolute band intensities for two HC3N isotopomers: DC3N and HC315N. Our results for DC3N are in good agreement with previous measurements except for the ν2 and ν3 stretching modes. For HC315N, this study is the first including intensity measurements.We have also studied the possible detection of these isotopomers in Titan's atmosphere using the CIRS spectrograph onboard the Cassini spacecraft. Our simulation of the expected spectra shows that for a signal-to-noise ratio better than 100, the 15N isotopomer of HC3N could be detected. But, further study of HC3N hot bands are needed since some of them overlap the HC315N Q-branch.  相似文献   

19.
We have investigated the role of several ion-molecule reactions in the conversion of N2O5 to HNO3. In the proposed conversion, an N2O5 molecule would react with an H2O molecule clustered to an inert ion to produce two HNO3 molecules. Subsequent clustering of an H2O molecule to the inert ion would make the reaction catalytic. If such an ion-catalysed conversion of N2O5 to HNO3 occurs, it would probably play a role in the stratospheric chemistry at high latitudes in winter. In this paper we present reaction rate constant measurements made in a flowing afterglow apparatus for hydrated H3O+, H+(CH3CN)m (m = 1, 2, 3), and several negative ions reacting with N2O5. Slow rate constants were found for these ions for hydration levels that are predominant in the stratosphere. With the known stratospheric ion density, these slow rate constants preclude significant N2O5 conversion by ion-molecule reactions.  相似文献   

20.
We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν2+ν3 band of CH3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν3 band of C2H2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C2H2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν3+ν9+ν11 band of C2H6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C2H6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH4 to the ν7 band of C2H6, and derive a mixing ratio of 9±4×10−6 for this species. Most of the C2H6 3.3 μm line emission arises in the altitude range 460-620 km (at ∼μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (∼30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (∼12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that they are composed of hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号