首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
The ground signatures of multiple onset substorms have been investigated in night-side magnetograms from low to high latitudes and in observations of auroral-zone electron precipitation. Pi 2 onsets at three widely spaced stations are used for accurate timing of each onset. It is found that an evening auroral arc brightens at the onset of each Pi 2 train, also in the case of weak pulsations before the first low-latitude positive bay onset. The latter onset is, on the other hand, associated with the initiation of a westward travelling surge, and field-aligned currents moving with the surge cause a similar westward movement of the magnetic signatures in subauroral and low-latitude magnetograms. At the arrival of a surge at an evening side observatory, the westward electrojet is displaced rapidly poleward, with a sharp increase in local bay activity and high-energy electron precipitation. The westward expansion of new activity appears as a continuous motion along the oval and is associated with a local poleward displacement of the westward electrojet. Consecutive surge initiation and low-latitude onsets do not, however, always occur progressively farther west. Thus, the development of the expansion phase consists of a series of intensifications and auroral surge formations at 10–20 min intervals. Near the time of maximum auroral-zone bay activity and apparently also when maximum westward extent is reached, the whole nighttime oval seems to be shifted poleward. Our findings are thus not consistent with the Wiens and Rostoker (1975) northward-westward stepping model. An alternative model is therefore presented based on the fundamental role of the westward travelling surge in carrying substorm activity westward along the oval. The associated field-aligned current system will perturb the pre-existing magnetospheric current wedge and cause positive bay increases at low latitudes and westward moving magnetic signatures at subauroral stations.  相似文献   

2.
Photometer recordings of auroral emissions from N+2 and OI have demonstrated that the ratios between the emissions show a characteristic plateau just prior to the passage of a westward travelling surge. The plateau may be interpreted as a temporary (approx. 1 min) cessation in the spectral hardening of the precipitating particles associated with the surge. The characteristic energy of the plateau is about one keV above the level prior to the beginning of the surge. The results have been interpreted in terms of an instability that is switched on during the time of the plateau and then turned off when the electron density is increased above a certain limit.  相似文献   

3.
The resonant interaction of electrons with a coherent whistler-mode wave in the magnetosphere, and corresponding particle precipitation through the loss-cone, are considered. We show that, due to the inhomogeneity of the magnetic field, the phase untrapped resonant electrons play a basic role in the precipitation process. An effective change of their pitch-angles near the loss-cone is calculated and particle fluxes are estimated for quiet magnetospheric conditions (weak diffusion without the wave). It appears that observation of the precipitation caused by a single whistler-mode wave is within the scope of experimental possibilities. The duration of the precipitation process is of the order of the electron bounce period. It is also shown that precipitating current may produce an observable magnetospheric disturbance with a time characteristic of the order of the bounce period.  相似文献   

4.
In late 2014, when the current Solar Cycle 24 entered its declining phase, the white-light corona as observed by the LASCO-C2 coronagraph underwent an unexpected surge that increased its global radiance by 60%, reaching a peak value comparable to the peak values of the more active Solar Cycle 23. A comparison of the temporal variation of the white-light corona with the variations of several indices and proxies of solar activity indicate that it best matches the variation of the total magnetic field. The daily variations point to a localized enhancement or bulge in the electron density that persisted for several months. Carrington maps of the radiance and of the HMI photospheric field allow connecting this bulge to the emergence of the large sunspot complex AR 12192 in October 2014, the largest since AR 6368 observed in November 1990. The resulting unusually high increase of the magnetic field and the distortion of the neutral sheet in a characteristic inverse S-shape caused the coronal plasma to be trapped along a similar pattern. A 3D reconstruction of the electron density based on time-dependent solar rotational tomography supplemented by 2D inversion of the coronal radiance confirms the morphology of the bulge and reveals that its level was well above the standard models of a corona of the maximum type, by typically a factor of 3. A rather satisfactory agreement is found with the results of the thermodynamic MHD model produced by Predictive Sciences, although discrepancies are noted. The specific configuration of the magnetic field that led to the coronal surge resulted from the interplay of various factors prevailing at the onset of the declining phase of the solar cycles, which was particularly efficient in the case of Solar Cycle 24.  相似文献   

5.
A self-consistent, time-dependent numerical model of the aurora and high-latitude ionos-phere has been developed. It is used to study the response of ionospheric and atmospheric properties in regions subjected to electron bombardment. The time history of precipitation events is arbitrarily specified and computations are made for a variety of electron spectral energy distributions and flux magnitudes. These include soft electron precipitation, such as might occur on the poleward edge of the auroral oval and within the magnetospheric cleft, and harder spectra representative of particle precipitation commonly observed within and on the equatorward edge of the auroral oval. Both daytime and night-time aurorae are considered. The results of the calculations show that the response of various ionospheric and atmospheric parameters depends upon the spectral energy distribution and flux magnitudes of the precipitating electrons during the auroral event. Various properties respond with different time constants that are influenced by coupling processes described by the interactive model. The soft spectrum aurora affects mainly the ionospheric F region, where it causes increases in the electron density, electron temperature and the 6300 Å red line intensity from normal quiet background levels during both daytime and night-time aurora. The fractional variation is greater for the night-time aurora. The hard spectrum aurorae, in general, do not greatly affect the F-2 region of the ionosphere; however, in the F-1 and E regions, large increases from background conditions are shown to occur in the electron and ion temperatures, electron and ion densities, airglow emission rates and minor neutral constituent densities during the build-up phase of the auroral event. During the decay phase of the aurora, most of these properties decrease at nearly the same rate as the specified particle precipitation flux. However, some ionospheric and atmospheric species have a long memory of the auroral event. The odd nitrogen species N(4S) and NO probably do not ever reach steady-state densities between auroral storms.  相似文献   

6.
S. W. Kahler 《Solar physics》1973,32(2):477-484
Energetic electrons, which play a major role in the explosive phases of flares, are proposed as the energy source for the production of surges. Flare data from a two-year interval are analyzed to show that the probability of having surges associated with flares is greater when there are accompanying decimeter type III bursts or impulsive 8800 MHz bursts. The model of chromospheric heating by impulsive electrons proposed by Hudson is examined and shown to provide an adequate explanation for the origin of flare surges. The proposed surge model is consistent with the temporal evolution of the flare-surge event and the required surge energy. Surges not accompanied by flares can also probably be explained by the model.  相似文献   

7.
Calculations are presented of energy spectra and angular and spatial distributions of electron fluxes in the ionosphere resulting from precipitation ofmonoenergetic (E = 25, 50 and 100 eV) electrons. The incident electrons are assumed to be isotropic over the downward direction. It is found that the resulting steady-state electron fluxes above ca. 300 km are highly anisotropic, and that the pitch angle distribution is energy dependent. About 15 per cent of the incident electrons are backscattered elastically to the protonosphere. A much larger number of electrons escape after they have deposited a part of their energy in the atmosphere. The mean energy of the escaping electrons is about half that of the incident electrons. About 50% of the incident energy is absorbed in the atmosphere, the remainder being returned to the protonosphere. The rate of absorption of energy is a maximum at heights between 300 and 400 km. Most of the energy is absorbed in ionization and excitation of atomic oxygen. An appreciable amount of energy is, however, absorbed as heat by the ambient electron gas. Altitude profiles are presented of the rates of ionization, excitation, and electron heating caused by soft electron precipitation.  相似文献   

8.
Hydromagnetic wave and modulated particle precipitation data are reported from conjugate areas near the particledrift shell L ~ 4. A modulation of electrons precipitating from the magnetosphere is observed in the conjugate regions when the accompanying hydromagnetic wave period is ~ 90 s and the wave polarization is linear. When the wave period changes abruptly to ~ 30 s and the polarizations at the observing stations are no longer linear, the modulation of the precipitating electrons is no longer observed. The change in hydromagnetic wave characteristics does not appear to be related to interplanetary plasma and magnetic field conditions. Rather, it is proposed to arise from a change in the wave generation mechanism from an internal magnetospheric source near the inner edge of the plasmapause (lower frequency) to an externally driven source outside the magnetosphere (higher frequency). This observation of a change in the wave characteristics (frequency and polarization) associated with modulated electron precipitation appears to be related to two previous examples wherein modulated electron precipitation was reported to be closely associated with the existence of a wave resonance region near the observing site.  相似文献   

9.
The deposition of energetic electrons in Jupiter's upper atmosphere provides a means, via auroral observations, of monitoring electron and plasma wave activity within the magnetosphere. Not only does particle precipitation indicate a potential change in atmospheric chemistry, it allows for the study of episodic, pronounced flux enhancements in the energetic electron population. A study has been made of the effects of such electron injections into the jovian magnetosphere and of their ability to provide the source population for variations in diffuse auroral emissions. To identify the source region of precipitating auroral electrons, we have investigated the pitch-angle distributions of high-resolution Galileo Energetic Particle Detector (EPD) data that indicate strong flux levels near the loss cone. The equatorial source region of precipitating electrons has been determined from the locations of Galileo's in situ measurements by tracing magnetic field lines using the KK97 model. The primary source region for Jupiter's diffuse aurora appears to lie in the magnetic equator at 15-40 RJ, with the predominant contribution to precipitation flux (tens of ergs cm−2 s−1 sr−1) stemming from <30 RJ. Variability of flux for energetic electrons in this region is also important to the irradiation of surfaces and atmospheres for the Galilean moons: Europa, Ganymede, and Callisto. The average diffuse auroral precipitation flux has been shown to vary by as much as a factor of six at a given radial location. This variability appears to be associated with electron injection events that have been identified in high-resolution Galileo EPD data. These electron flux enhancements are also associated with increased whistler-mode wave activity and magnetic field perturbations, as detected by the Galileo Plasma Wave Subsystem (PWS) and Magnetometer (MAG), respectively. Resonant interactions with the whistler-mode waves cause electron pitch-angle scattering and lead to pitch-angle isotropization and precipitation.  相似文献   

10.
The relationship between sudden geomagnetic field changes in the nightside cusp region and impulsive electron precipitation events in the auroral zone is investigated. The investigations are based on magnetic field measurements from the spacecraft Explorer 35, Explorer 33 and OGO-5 and on X-ray measurements with balloon-borne instruments from Kiruna/Sweden. The sudden field changes are characterized by a decrease of the field strength and a rotation of the field direction. The precipitation events represent strong flux increases within a few minutes. The field changes were accompanied by impulsive precipitation not only in the midnight sector but also on the dayside. They can be regarded as a manifestation of the unsteady magnetospheric processes during the expansion phase. Whereas both phenomena occurred simultaneously on the nightside, the increase of precipitation was delayed by ca. 5 min on the dayside. It is assumed that the simultaneous occurrence on the nightside can be related to the formation of a neutral line with a considerable length in dawn-dusk-direction. Mechanisms are also discussed which could be responsible for the time delay on the dayside.  相似文献   

11.
《Planetary and Space Science》2007,55(14):2164-2172
Both the MARSIS ionospheric sounder and the charged particle instrument package ASPERA-3 are experiments on board the Mars Express spacecraft. Joint observations have shown that events of intense ionospheric electron density enhancements occur in the lower ionosphere of magnetic cusp regions, and that these enhancements are not associated with precipitation of charged particles above a few hundred electron volts (<300 eV). To account for the enhancement by particle precipitation, electron fluxes are required with mean energy between 1 and 10 keV. No ionizing radiation, neither energetic particles nor X-rays, could be identified, which could produce the observed density enhancement only in the spatially limited cusp regions. Actually, no increase in ionizing radiation, localized or not, was observed during these events. It is argued that the process causing the increase in density is controlled mainly by convection of ionosphere plasma driven by the interaction between the solar wind and crustal magnetic field lines leading to excitation of two-stream plasma waves in the cusp ionosphere. The result is to heat the plasma, reduce the electron–ion recombination coefficient and thereby increase the equilibrium electron density.  相似文献   

12.
The dynamics of the intervals of pulsation of diminishing periods (IPDP) generation region and that of the auroral absorption (AA) are compared. It is known that IPDP is the manifestation of the ion-cyclotron instability due to precipitation and drift of protons and AA is the result of electron precipitation. The westward movement in space and time of the AA and IPDP generation region was revealed. This is the first experimental confirmation of the joint westward drift of the electron and proton in the form of neutral clouds in the magnetosphere during an auroral substorm.  相似文献   

13.
Based on the model calculation of VLF hiss power flux spectrum resulting from convective beam amplification of incoherent Cerenkov whistler radiation by the beam of precipitating auroral electrons, which has been developed by Maggs (1976), we examine the altitude dependence of power flux levels. Their strong altitude dependence leads us to suggest that non-linear processes are important in determining the spectrum of VLF hiss at high altitude. It is also shown that estimated power fluxes inside the electron precipitation region at low altitude might not reach as high levels as observed when the electron beam is weak. In this case, wave propagation outside of the precipitation region will account for the high power flux levels as well as significant magnetic components of VLF hiss observed especially at low altitude. In addition, we show that the transformation of the electron beam in transit to lower altitudes, determined from Liouville's theorem, may influence appreciably VLF hiss power flux spectrum. Finally, it is pointed out that two types of VLF hiss spectrum observed at the ground level can be accounted for by the difference in strength of the electron beam.  相似文献   

14.
The paper discusses electron intensities observed on two rocket flights over auroral arcs. On both occasions there was an order-of-magnitude increase in the electron phase-space density as the rocket moved northwards across the arc from a southern region of relatively hard precipitation to an adjacent northern region of softer (but still intense) precipitation. These two distinct regions formed northern and southern ‘curtains’ to the arcs. Electrons observed to the south of one of the arcs had the same phase-space density as those in the southern curtain of the arc. It is concluded that the electrons producing the auroral arcs were accelerated at the boundary between two source plasmas in the magnetosphere. The possible identity of the source plasmas is discussed. From the various types of election energy spectra encountered it is suggested that time-varying magnetic fields played an important part in the acceleration of the electrons that produced the auroral arcs.  相似文献   

15.
Attempts to test the validity of the soft electron flux hypothesis for the excitation of SAR arcs have heretofore met with no apparent success. However, observations of other emissions during the times of some SAR arcs repeatedly favour the presence of the soft electron flux in the topside ionosphere.Although no new cases of coincident measurements of SAR arc intensities and the corresponding soft electron flux values are available, an instance has been analyzed in which an SAR arc was examined shortly after an OGO 6 measurement of the soft electron flux. The SAR arc observations were then interrupted by the weather, but in view of the behaviour of the electron flux during the arc development it is believed that this event lends strong observational support to the hypothesis that soft electrons can be an excitation source for SAR arcs.In the case considered, the precipitation of soft electron flux peaks at about the same location and time of occurrence as the SAR arc. The peak value is found to be 5.2 × 108 cm?2 sec?1, which is more than adequate to excite the observed arc.  相似文献   

16.
Ambient thermal electrons are found to be heated to temperatures as high as 105 K by the passage of a field-aligned beam of suprathermal electrons through the ionosphere at altitudes over 660 km. These secondary electrons will increase the proportion of 630 nm emission, caused by the primary electron precipitation, and change the secondary electron spectrum observed at lower altitudes from that expected on the basis of atmospheric collisions alone.  相似文献   

17.
A large surge event appearing in AR 5395 was observed at the Yunnan Observatory on March 19, 1989. H spectral profiles of the event are interpreted by using a two-cloud model and the contours of three parameters: excitation temperature, T exc, microturbulent velocity, V t ,and column density of hydrogen atoms at the second level, N 0,2, are obtained, respectively. The question about the unique feature of the solution obtained by the fitting method is also discussed. The results show that the surge is composed of some conglomerated materials with higher temperature and density; the mass ejection is probably intermittent. Neither T exc nor N 0,2 vary with the height over the solar limb but decrease from the center to the periphery of the surge. V t varies from 10 to 30 km s-1 and decreases with height. Some other important parameters, such as electron density, n e ,and electron pressure, P e ,etc., have also been estimated. In the surge, with N 0,2 about 2.0 × 1012 cm-2 and T exc about 8500 K on average, we obtained n e = 1.80 × 1010 cm-3 and P e = 0.023 dyn cm-2. The energy variations of the surge during the ascending phase are estimated.  相似文献   

18.
This paper expands the earlier results of Rostoker and Samson (1981), who noted that there are two latitudinal areas of Pi 2 localization near the high latitude, substorm enhanced electrojets. The detailed study presented here outlines the morphology of the polarizations of the Pi 2's in and near the westward travelling surge. There are two latitudinal areas of Pi 2 localization. A poleward Pi 2 predominates within the surge and to the East, whereas an equatorward Pi 2 predominates equatorward and West of the surge. These Pi 2 localizations appear to correlate with the substorm enhanced westward and eastward electrojets respectively. However, the maximum in the Pi 2 power does not always coincide with the center of the electrojet. The poleward Pi 2 has largest amplitudes to the East of the head of the westward travelling surge. This Pi 2 shows a latitudinal polarization reversal from clockwise on the equatorside (viewed down on H-D plane) to counterclockwise on the poleside of a latitudinal demarcation line, which occurs just poleward of the initial breakup. This demarcation line is usually equatorward of the most poleward expansion of the surge. To the West of the surge front, where the equatorward Pi 2 predominates, there is again a latitudinal polarization reversal but in this case the polarization is counterclockwise equatorward and clockwise poleward of the demarcation line. This demarcation is equatorward of that for the poleward Pi 2, and appears to lie at the latitude of the initial breakup. Consequently, the westward travelling surge appears to mark the longitudinal transition from equatorward to poleward Pi 2. The elliptical polarization of the Pi 2's is most likely caused by azimuthai (longitudinal) expansion of the field-aligned currents in the surge, in association with reflection of the field-aligned current pulses from northern and southern high latitude ionospheres.  相似文献   

19.
We have constructed a one-dimensional model of the nightside ionosphere of Venus in which it is assumed that the ionization is maintained by day-to-night transport of atomic ions. Downward fluxes of O+, C+ and N+ in the ratios measured on the dayside at high altitudes are imposed at the upper boundary of the model (about 235 km). We discuss the resulting sources and sinks of the molecular ions NO+,CO+,N2+,CO2+ and O2+. As the O+ flux is increased, the peak density of O+ increases proportionally and the altitude of the peak decreases. The O2+ peak density is approximately proportional to the square root of the O+ flux and the peak rises as the O+ flux increases. NO+ densities near the peak are relatively unaffected by changes in the O+ flux. If the ionosphere is maintained mostly by transport, the ratio of the peak densities of O+ and O2+ indicates the downward flux ofO+, independent of the absolute magnitudes of the densities. The densities of mass-28 ions are, however, still considered to be the most sensitive indicator of the importance of electron precipitation. We examine here the inbound and outbound portions of six early nightside orbits with low periapsis and use data from the Pioneer Venus orbiter ion mass spectrometer, the retarding potential analyzer and the electron temperature probe to determine the relative importance of ion transport and electron precipitation. For most of the orbits, precipitation is inferred to be of low to moderate importance. Only for orbit 65, which was the first nightside orbit published by Taylor et al. [J. geophys. Res. 85, 7765 (1980)] and for the inbound portion of orbit 73 does the ionization structure appear to be greatly affected by electron precipitation.  相似文献   

20.
A simple model of the motion of charged particles in the closed field line magnetic field for L ? 4·5 is used together with Injun 3 measurements of 40 keV precipitated electrons made in the northern hemisphere to estimate theoretically the extent of electron precipitation, the energy input and the 3914 Å airglow in the South Atlantic geomagnetic anomaly. Using average values of the northern hemisphere precipitated electron flux, two regions of significantly enhanced electron precipitation are found in the southern hemisphere. One occurs in the region 10–20°E and 40–50°S, with L ≈ 2, and the second near 30°E and 65°S, with L ≈ 4.5. Approximately 0.04 erg cm?2 sec?1 are deposited by 40 keV electrons for 50 per cent of the time in the first region and half that amount in the second. This increases to ~0·1 and 0·02 erg cm?2 sec?1 respectively for 15 per cent of the time for near sunspot minimum conditions. The results show a gradual increase in precipitation on the western side of the anomaly followed by a rapid increase and sudden cut-off in precipitation within a few degrees west of minimum B. The flux on L = 2 reaches a “spike” in the southern hemisphere ~f35 times greater than the average flux precipitated on L = 2 in the northern hemisphere. This increase in precipitation arises from the loss of “trapped” particles to the atmosphere where the mirror heights are lowest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号