首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a comparison between the SCUBA (Submillimetre Common User Bolometer Array) Half Degree Extragalactic Survey (SHADES) at 450 and  850 μm  in the Lockman Hole East with a deep Spitzer Space Telescope survey at  3.6–24 μm  conducted in guaranteed time. Using stacking analyses we demonstrate a striking correspondence between the galaxies contributing the submm extragalactic background light, with those likely to dominate the backgrounds at Spitzer wavelengths. Using a combination BRIzK plus Spitzer photometric redshifts, we show that at least a third of the Spitzer -identified submm galaxies at  1 < z < 1.5  appear to reside in overdensities when the density field is smoothed at 0.5–2 Mpc comoving diameters, supporting the high-redshift reversal of the local star formation–galaxy density relation. We derive the dust-shrouded cosmic star formation history of galaxies as a function of assembled stellar masses. For model stellar masses  <1011 M  , this peaks at lower redshifts than the ostensible   z ∼ 2.2  maximum for submm point sources, adding to the growing consensus for 'downsizing' in star formation. Our surveys are also consistent with 'downsizing' in mass assembly. Both the mean star formation rates  〈d M */d t 〉  and specific star formation rates  〈(1/ M *) d M */d t 〉  are in striking disagreement with some semi-analytic predictions from the Millenium Simulation. The discrepancy could either be resolved with a top-heavy initial mass function, or a significant component of the submm flux heated by the interstellar radiation field.  相似文献   

2.
We have conducted ultra-deep optical and deep near-infrared observations of a field around the z =1.226 radio-quiet quasar 104420.8+055739 from the Clowes–Campusano LQG of 18 quasars at z ∼1.3, in search of associated galaxy clustering. Galaxies at these redshifts are distinguished by their extremely red colours, with I − K >3.75, and we find a factor ∼11 overdensity of such galaxies in a 2.25×2.25 arcmin2 field centred on the quasar. In particular, we find 15–18 galaxies that have colours consistent with being a population of passively evolving massive ellipticals at the quasar redshift. They form 'fingers' in the V − K K , I − K K colour–magnitude plots at V − K ≃6.9, I − K ≃4.3 comparable to the red sequences observed in other z ≃1.2 clusters. We find suggestive evidence for substructure among the red sequence galaxies in the K image, in the form of two compact groups, 40 arcsec to the north, and 60 arcsec to the south-east of the quasar. An examination of the wider optical images indicates that this substructure is significant, and that the clustering extends to form a large-scale structure 2–3  h −1 Mpc across. We find evidence for a high (≳50 per cent) fraction of blue galaxies in this system, in the form of 15–20 'red outlier' galaxies with I − K >3.75 and V − I <2.00, which we suggest are dusty, star-forming galaxies at the quasar redshift. Within 30 arcsec of the quasar we find a concentration of blue ( V − I <1) galaxies in a band that bisects the two groups of red sequence galaxies. This band of blue galaxies is presumed to correspond to a region of enhanced star formation. We explain this distribution of galaxies as the early stages of a cluster merger which has triggered both the star formation and the quasar.  相似文献   

3.
We describe ISAAC/ESO-VLT observations of the Hαλ6563 Balmer line of 33 field galaxies from the Canada–France Redshift Survey (CFRS) with redshifts selected between 0.5 and 1.1. We detect Hα in emission in 30 galaxies and compare the properties of this sample with the low-redshift sample of CFRS galaxies at   z ∼ 0.2  . We find that the Hα luminosity,   L (Hα)  , is tightly correlated to   M ( B AB)  in the same way for both the low- and high-redshift samples.   L (Hα)  is also correlated to L ([O  ii ]λ3727), and again the relation appears to be similar at low and high redshifts. The ratio L (lsqb;O  ii ])/   L (Hα)  decreases for brighter galaxies by as much as a factor of 2 on average. Derived from the Hα luminosity function, the comoving Hα luminosity density increases by a factor 12 from  〈 z 〉= 0.2  to  〈 z 〉= 1.3  . Our results confirm a strong rise of the star formation rate (SFR) at   z < 1.3  , proportional to  (1 + z )4.1±0.3  (with   H 0= 50 km s−1 Mpc−1, q 0= 0.5  ). We find an average  SFR(2800 Å)/SFR (Hα)  ratio of 3.2 using the Kennicutt SFR transformations. This corresponds to the dust correction that is required to make the near-ultraviolet data consistent with the reddening-corrected Hα data within the self-contained, I -selected CFRS sample.  相似文献   

4.
We produce and analyse u -band (  λ≈ 355  nm) luminosity functions (LFs) for the red and blue populations of galaxies using data from the Sloan Digital Sky Survey (SDSS) u -band Galaxy Survey ( u GS) and Deep Evolutionary Exploratory Probe 2 (DEEP2) survey. From a spectroscopic sample of 41 575 SDSS u GS galaxies and 24 561 DEEP2 galaxies, we produce colour magnitude diagrams and make use of the colour bimodality of galaxies to separate red and blue populations. LFs for eight redshift slices in the range  0.01 < z < 1.2  are determined using the  1/ V max  method and fitted with Schechter functions showing that there is significant evolution in   M *  , with a brightening of 1.4 mag for the combined population. The integration of the Schechter functions yields the evolution in the u -band luminosity density (LD) out to   z ∼ 1  . By parametrizing the evolution as  ρ∝ (1 + z )β  , we find that  β= 1.36 ± 0.2  for the combined populations and  β= 2.09 ± 0.2  for the blue population. By removing the contribution of the old stellar population to the u -band LD and correcting for dust attenuation, we estimate the evolution in the star formation rate (SFR) of the Universe to be  βSFR= 2.5 ± 0.3  . Discrepancies between our result and higher evolution rates measured using the infrared and far-UV can be reconciled by considering possibilities such as an underestimated dust correction at high redshifts or evolution in the stellar initial mass function.  相似文献   

5.
39 galaxies are now known, from follow-up of faint IRAS sources and from submillimetre observations of high-redshift AGN, with far-infrared luminosities >1013 L. 13 of these, which have been found in 60- or 850-μm surveys, form an important unbiased subsample. 12 have been found by comparison of 60-μm surveys with quasar or radio galaxy catalogues, or from infrared surveys with colour selection biased towards AGN, while a further 14 have been found through submillimetre observations of known high-redshift AGN. In this paper I argue, on the basis of detailed modelling of the spectral energy distributions of hyperluminous galaxies with accurate radiative transfer models, and from evidence of high gas mass in several cases, that the bulk of the emission from these galaxies at rest frame wavelengths ≥50 μm is caused by star formation. Even after correction for the effects of lensing, hyperluminous galaxies with emission peaking at rest frame wavelengths ≥50 μm are therefore undergoing star formation at rates >103 M yr−1 and are strong candidates for being primeval galaxies, in the process of a major episode of star formation.  相似文献   

6.
We present optical spectra and near-infrared imaging of a sample of 31 serendipitous X-ray sources detected in the field of Chandra observations of the A 2390 cluster of galaxies. The sources have  0.5–7 keV  fluxes of  (0.6–8)×10-14 erg cm-2 s-1  and lie around the break in the  2–10 keV  source counts. They are therefore typical of sources dominating the X-ray Background in that band. 12 of the 15 targets for which we have optical spectra show emission lines at a range of line luminosities, and half of these show broad lines. These active galaxies and quasars have soft X-ray spectra. Including photometric redshifts and published spectra, we have redshifts for 17 of the sources, ranging from   z ∼0.2  up to   z ∼3  , with a peak between   z =1–2  . 10 of our sources have hard X-ray spectra indicating a spectral slope flatter than that of a typical unabsorbed quasar. Two hard sources that are gravitationally lensed by the foreground cluster are obscured quasars, with intrinsic  2–10 keV  luminosities of  (0.2–3)×1045 erg s-1  , and absorbing columns of   N H>1023 cm-2  . Both of these sources were detected in the mid-infrared by ISOCAM on the Infrared Space Observatory , which when combined with radiative transfer modelling leads to the prediction that the bulk of the reprocessed flux emerges at ∼100 μm.  相似文献   

7.
We probe the relationship between star formation rate (SFR) and radio synchrotron luminosity in galaxies at  0 < z < 2  within the northern Spitzer Wide-area Infrared Extragalactic survey (SWIRE) fields, in order to investigate some of the assumptions that go into calculating the star formation history of the Universe from deep radio observations. We present new 610-MHz Giant Metrewave Radio Telescope (GMRT) observations of the European Large-Area ISO Survey-North 2 (ELAIS-N2) field, and using this data, along with previous GMRT surveys carried out in the ELAIS-N1 (North 1) and Lockman Hole regions, we construct a sample of galaxies which have redshift and SFR information available from the SWIRE survey. We test whether the local relationship between SFR and radio luminosity is applicable to   z = 2  galaxies, and look for evolution in this relationship with both redshift and SFR in order to examine whether the physical processes which lead to synchrotron radiation have remained the same since the peak of star formation in the Universe. We find that the local calibration between radio luminosity and star formation can be successfully applied to radio-selected high-redshift, high-SFR galaxies, although we identify a small number of sources where this may not be the case; these sources show evidence for inaccurate estimations of their SFR, but there may also be some contribution from physical effects such as the recent onset of starburst activity, or suppression of the radio luminosity within these galaxies.  相似文献   

8.
We identify eight   z > 1  radio sources undetected at 850 μm but robustly detected at 70 μm, confirming that they represent ultraluminous infrared galaxies (ULIRGs) with hotter dust temperatures  (〈 T d〉= 52 ± 10 K)  than submillimetre galaxies (SMGs) at similar luminosities and redshifts. These galaxies share many properties with SMGs: ultraviolet spectra consistent with starbursts, high stellar masses and radio luminosities. We can attribute their radio emission to star formation since high-resolution Multi-Element Radio Linked Interferometer Network (MERLIN) radio maps show extended emission regions (with characteristic radii of 2–3 kpc), which are unlikely to be generated by active galactic nucleus (AGN) activity. These observations provide the first direct confirmation of hot, dusty ULIRGs which are missed by current submillimetre surveys. They have significant implications for future observations from the Herschel Space Observatory and Submillimetre Common-User Bolometer Array 2 (SCUBA2), which will select high-redshift luminous galaxies with less selection biases.  相似文献   

9.
We have conducted observations of the environment around the z =2.15 radio-loud quasar 1550–269 in search of distant galaxies associated either with it or the z =2.09 C  iv absorber along its line of sight. Such objects will be distinguished by their red colours, R − K >4.5. We find five such objects in a 1.5 arcmin2 field around the quasar, with typical K ' magnitudes of ∼20.4 and no detected R -band emission. We also find a sixth object with K =19.6±0.3, and undetected at R , just two arcsec from the quasar. The nature of all these objects is currently unclear, and will remain so until we have determined their redshifts. We suggest that it is likely that they are associated with either the quasar or the C  iv absorber, in which case their properties might be similar to those of the z =2.38 red Ly α emitting galaxies discovered by Francis et al. The small separation between the quasar and the brightest of our objects suggests that it may be the galaxy responsible for the C  iv metal line absorption system. The closeness to the quasar and the red colour might have precluded similar objects from being uncovered in previous searches for emission from C  iv and damped absorbers.  相似文献   

10.
We present the luminosity function of 90-μm-selected galaxies from the European Large Area ISO Survey (ELAIS), extending to z =0.3. Their luminosities are in the range 10965−2 L /L<1012, i.e. non-ultraluminous. From our sample of 37 reliably detected galaxies in the ELAIS S1 region from the Efstathiou et al. S 90100 mJy data base, we have found optical, 15-μm or 1.4-GHz identifications for 24 (65 per cent). We have obtained 2dF and UK Schmidt FLAIR spectroscopy of 89 per cent of identifications to rigid multivariate flux limits. We construct a luminosity function assuming that (i) our spectroscopic subset is an unbiased sparse sample, and (ii) there are no galaxies that would not be represented in our spectroscopic sample at any redshift. We argue that we can be confident of both assumptions. We find that the luminosity function is well described by the local 100-μm luminosity function of Rowan-Robinson, Helou & Walker. Assuming this local normalization, we derive luminosity evolution of (1+ z )2.45±0.85 (95 per cent confidence). We argue that star formation dominates the bolometric luminosities of these galaxies, and we derive comoving star formation rates in broad agreement with the Flores et al. and Rowan-Robinson et al. mid-infrared-based estimates.  相似文献   

11.
We explore the nature of X-ray sources with  70 μm  counterparts selected in the Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) fields: ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/  70 μm  sources in the redshift interval  0.5 < z < 1.3  are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are active galactic nuclei (AGN). Modelling of the optical to far-infrared (IR) spectral energy distribution indicates that most of them (27/28) have a strong starburst component  (>50 M yr−1)  that dominates in the IR. It is found that the X-ray and IR luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/  70 μm  sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/  70 μm  sources have lower specific star formation rates compared to the general  70 μm  population, consistent with AGN feedback moderating the star formation in the host galaxies.  相似文献   

12.
We describe some of the first X-ray detections of groups of galaxies at high redshifts  ( z ∼0.4)  , based on the UK deep X-ray survey of McHardy et al. Combined with other deep ROSAT X-ray surveys with nearly complete optical identifications, we investigate the X-ray evolution of these systems. We find no evidence for evolution of the X-ray luminosity function up to   z =0.5  at the low luminosities of groups of galaxies and poor clusters  ( L X≳1042.5 erg s-1)  , although the small sample size precludes very accurate measurements. This result confirms and extends to lower luminosities current results based on surveys at brighter X-ray fluxes. The evolution of the X-ray luminosity function of these low-luminosity systems is more sensitive to the thermal history of the intragroup medium (IGM) than to cosmological parameters. Energy injection into the IGM (from, for example, supernovae or active galactic nuclei winds) is required to explain the X-ray properties of nearby groups. The observed lack of evolution suggests that the energy injection occurred at redshifts   z >0.5  .  相似文献   

13.
We present luminosity and surface-brightness distributions of 40 111 galaxies with K -band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K - and r -band magnitude, K -band surface brightness and K -band radius are included explicitly in the  1/ V max  estimate of the space density and luminosity function. The bivariate brightness distribution in K -band absolute magnitude and surface brightness is presented and found to display a clear luminosity–surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K -band luminosity function are found to be   M *− 5 log  h =−23.19 ± 0.04, α=−0.81 ± 0.04  and  φ*= (0.0166 ± 0.0008)  h 3 Mpc−3  , although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be   j = (6.305 ± 0.067) × 108 L  h  Mpc−3  . However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.  相似文献   

14.
We present multiwavelength observations (from optical to submillimetre, including Spitzer and Submillimetre Common-User Bolometer Array) of H2XMMJ 003357.2−120038 (also GD 158_19), an X-ray selected, luminous narrow-line (type 2) quasar at   z = 1.957  selected from the HELLAS2XMM survey. Its broad-band properties can be reasonably well modelled assuming three components: a stellar component to account for the optical and near-infrared (IR) emission; an active galactic nucleus (AGN) component (i.e. dust heated by an accreting active nucleus), dominant in the mid-IR, with an optical depth at 9.7      along the line of sight (close to the equatorial plane of the obscuring matter) of  τ(9.7) = 1  and a full covering angle of the reprocessing matter (torus) of 140° and a far-IR starburst component (i.e. dust heated by star formation) to reproduce the wide bump observed longward of 70      .
The derived star formation rate is  ≈1500 M yr−1  . The overall modelling indicates that GD 158_19 is a high-redshift X-ray luminous, obscured quasar with coeval powerful AGN activity and intense star formation. It is probably caught before the process of expelling the obscuring gas has started, thus quenching the star formation.  相似文献   

15.
Hubble Space Telescope images of a sample of 285 galaxies with measured redshifts from the Canada–France Redshift Survey (CFRS) and Autofib–Low Dispersion Spectrograph Survey (LDSS) redshift surveys are analysed to derive the evolution of the merger fraction out to redshifts z ∼1. We have performed visual and machine-based merger identifications, as well as counts of bright pairs of galaxies with magnitude differences δm ≤1.5 mag. We find that the pair fraction increases with redshift, with up to ∼20 per cent of the galaxies being in physical pairs at z ∼0.75–1. We derive a merger fraction varying with redshift as ∝(1+ z )3.2±0.6, after correction for line-of-sight contamination, in excellent agreement with the merger fraction derived from the visual classification of mergers for which m =3.4±0.6. After correcting for seeing effects on the ground-based selection of survey galaxies, we conclude that the pair fraction evolves as ∝(1+ z )2.7±0.6. This implies that an average L * galaxy will have undergone 0.8–1.8 merger events from z =1 to z =0, with 0.5 to 1.2 merger events occuring in a 2-Gyr time-span at around z ∼0.9. This result is consistent with predictions from semi-analytical models of galaxy formation. From the simple coaddition of the observed luminosities of the galaxies in pairs, physical mergers are computed to lead to a brightening of 0.5 mag for each pair on average, and a boost in star formation rate of a factor of 2, as derived from the average [O  ii ] equivalent widths. Mergers of galaxies are therefore contributing significantly to the evolution of both the luminosity function and luminosity density of the Universe out to z ∼1.  相似文献   

16.
Using cosmological hydrodynamic simulations, we measure the mean transmitted flux in the Lyα forest for quasar sightlines that pass near a foreground quasar. We find that the trend of absorption with pixel quasar separation distance can be fitted using a simple power-law form including the usual correlation function parameters r 0 and γ, so that     . From the simulations, we find the relation between r 0 and quasar host mass, and formulate this as a way to estimate quasar host dark matter halo masses, quantifying uncertainties due to cosmological and IGM parameters, and redshift errors. With this method, we examine data for ∼9000 quasars from the Sloan Digital Sky Survey (SDSS) Data Release 5, assuming that the effect of ionizing radiation from quasars (the so-called transverse proximity effect) is unimportant (no evidence for it is seen in the data). We find that the best-fitting host halo mass for SDSS quasars with mean redshift z = 3 and absolute G -band magnitude −27.5 is  log  M /M= 12.68+0.81−0.67  . We also use the Lyman-Break Galaxy (LBG) and Lyα forest data of Adelberger et al. in a similar fashion to constrain the halo mass of LBGs to be  log10  M /M= 11.41+0.54−0.59  , a factor of ∼20 lower than the bright quasars. In addition, we study the redshift distortions of the Lyα forest around quasars, using the simulations. We use the quadrupole to monopole ratio of the quasar Lyα forest correlation function as a measure of the squashing effect. We find its dependence on halo mass difficult to measure, but find that it may be useful for constraining cosmic geometry.  相似文献   

17.
We combine photometric observations of high-redshift     quasars, obtained at submillimetre to millimetre wavelengths, to obtain a mean far-infrared (rest-frame) spectral energy distribution (SED) of the thermal emission from dust, parametrized by a single temperature ( T ) and power-law emissivity index ( β ). The best-fitting values are     and     . Our method exploits the redshift spread of this set of quasars, which allows us to sample the SED at a larger number of rest wavelengths than is possible for a single object: the wavelength range extends down to ∼60 μm, and therefore samples the turnover in the greybody curve for these temperatures. This parametrization is of use to any studies that extrapolate from a flux at a single wavelength, for example to infer dust masses and far-infrared luminosities.
We interpret the cool, submillimetre component as arising from dust heated by star formation in the host galaxy of the quasar, although we do not exclude the presence of dust heated directly by the active galactic nucleus (AGN). Applying the mean SED to the data, we derive consistent star formation rates ∼1000 M yr−1 and dust masses ∼109 M, and investigate a simple scheme of AGN and host galaxy co-evolution to account for these quantities. The time-scale for formation of the host galaxy is     , and the luminous quasar phase occurs towards the end of this period, just before the reservoir of cold gas is depleted. Given the youth of the Universe at     (1.6 Gyr), the coexistence of a massive black hole and a luminous starburst at high redshifts is a powerful constraint on models of quasar host galaxy formation.  相似文献   

18.
We present the K -band (2.2 μm) luminosity functions (LFs) of the X-ray-luminous clusters MS1054–0321 ( z  = 0.823), MS0451–0305 ( z  = 0.55), Abell 963 ( z  = 0.206), Abell 665 ( z  = 0.182) and Abell 1795 ( z  = 0.063) down to absolute magnitudes M K  = −20. Our measurements probe fainter absolute magnitudes than do any previous studies of the near-infrared LFs of clusters. All the clusters are found to have similar LFs within the errors, when the galaxy populations are evolved to redshift z  = 0. It is known that the most massive bound systems in the Universe at all redshifts are X-ray-luminous clusters. Therefore, assuming that the clusters in our sample correspond to a single population seen at different redshifts, the results here imply that not only had the stars in present-day ellipticals in rich clusters formed by z  = 0.8, but that they existed in as luminous galaxies then as they do today.   Additionally, the clusters have K -band LFs which appear to be consistent with the K -band field LF in the range −24 <  M K  < −22, although the uncertainties in both the field and cluster samples are large.  相似文献   

19.
A new method is presented to obtain a non-parametric maximum likelihood estimate of the luminosity function and the selection function of a flux-limited redshift survey. The method parametrizes the selection function as a series of stepwise power laws and allows possible evolution of the luminosity function. We also propose a new technique to estimate the rate of evolution of the luminosity function. This is based on a minimization of the observed large-scale power with respect to the evolutionary model. We use an ensemble of mock surveys extracted from an N -body simulation to verify the power of this method. We apply our estimators to the 1.2-Jy survey of IRAS galaxies. We find a far-infrared luminosity function in good agreement with previously published results and evidence for rather strong evolution. If the comoving number density of IRAS galaxies is assumed to scale ∝ (1 +  z ) P , we estimate P  = 4.3 ± 1.4.  相似文献   

20.
We show that the far-IR properties of distant Luminous and UltraLuminous InfraRed Galaxies (LIRGs and ULIRGs, respectively) are on average divergent from analogous sources in the local Universe. Our analysis is based on Spitzer Multiband Imaging Photometer (MIPS) and Infrared Array Camera (IRAC) data of   L IR > 1010 L, 70 μm  selected objects in the  0.1 < z < 2  redshift range and supported by a comparison with the IRAS Bright Galaxy Sample. The majority of the objects in our sample are described by spectral energy distributions (SEDs) which peak at longer wavelengths than local sources of equivalent total infrared luminosity. This shift in SED peak wavelength implies a noticeable change in the dust and/or star-forming properties from   z ∼ 0  to the early Universe, tending towards lower dust temperatures, indicative of strong evolution in the cold dust, 'cirrus', component. We show that these objects are potentially the missing link between the well-studied local IR-luminous galaxies, Spitzer IR populations and SCUBA sources – the   z < 1  counterparts of the cold   z > 1  SubMillimetre Galaxies (SMGs) discovered in blank-field submillimetre surveys. The Herschel Space Observatory is well placed to fully characterize the nature of these objects, as its coverage extends over a major part of the far-IR/sub-mm SED for a wide redshift range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号