首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《Ocean Modelling》2002,4(2):89-120
We compared the 13 models participating in the Ocean Carbon Model Intercomparison Project (OCMIP) with regards to their skill in matching observed distributions of CFC-11. This analysis characterizes the abilities of these models to ventilate the ocean on timescales relevant for anthropogenic CO2 uptake. We found a large range in the modeled global inventory (±30%), mainly due to differences in ventilation from the high latitudes. In the Southern Ocean, models differ particularly in the longitudinal distribution of the CFC uptake in the intermediate water, whereas the latitudinal distribution is mainly controlled by the subgrid-scale parameterization. Models with isopycnal diffusion and eddy-induced velocity parameterization produce more realistic intermediate water ventilation. Deep and bottom water ventilation also varies substantially between the models. Models coupled to a sea-ice model systematically provide more realistic AABW formation source region; however these same models also largely overestimate AABW ventilation if no specific parameterization of brine rejection during sea-ice formation is included. In the North Pacific Ocean, all models exhibit a systematic large underestimation of the CFC uptake in the thermocline of the subtropical gyre, while no systematic difference toward the observations is found in the subpolar gyre. In the North Atlantic Ocean, the CFC uptake is globally underestimated in subsurface. In the deep ocean, all but the adjoint model, failed to produce the two recently ventilated branches observed in the North Atlantic Deep Water (NADW). Furthermore, simulated transport in the Deep Western Boundary Current (DWBC) is too sluggish in all but the isopycnal model, where it is too rapid.  相似文献   

2.
Based on the theoretical spectral model of inertial internal wave breaking(fine structure) proposed previously, in which the effects of the horizontal Coriolis frequency component f-tilde on a potential isopycnal are taken into account, a parameterization scheme of vertical mixing in the stably stratified interior below the surface mixed layer in the ocean general circulation model(OGCM) is put forward preliminarily in this paper. Besides turbulence, the impact of sub-mesoscale oceanic processes(including inertial internal wave breaking product) on oceanic interior mixing is emphasized. We suggest that adding the inertial internal wave breaking mixing scheme(F-scheme for short) put forward in this paper to the turbulence mixing scheme of Canuto et al.( T-scheme for short) in the OGCM, except the region from 15°S to 15°N. The numerical results of F-scheme by using WOA09 data and an OGCM(LICOM, LASG/IAP climate system ocean model) over the global ocean are given. A notable improvement in the simulation of salinity and temperature over the global ocean is attained by using T-scheme adding F-scheme, especially in the mid- and high-latitude regions in the simulation of the intermediate water and deep water. We conjecture that the inertial internal wave breaking mixing and inertial forcing of wind might be one of important mechanisms maintaining the ventilation process. The modeling strength of the Atlantic meridional overturning circulation(AMOC) by using T-scheme adding F-scheme may be more reasonable than that by using T-scheme alone, though the physical processes need to be further studied, and the overflow parameterization needs to be incorporated. A shortcoming in F-scheme is that in this paper the error of simulated salinity and temperature by using T-scheme adding F-scheme is larger than that by using T-scheme alone in the subsurface layer.  相似文献   

3.
A basin-wide ocean general circulation model of the Pacific Ocean was used to investigate how the interior restoration in the Okhotsk Sea and the isopycnal diffusion affect the circulation and intermediate water masses. Four numerical experiments were conducted, including a run with the same isopycnal and thickness diffusivity of 1.0×103 m2/s, a run employing the interior restoration of temperature and salinity in the Okhotsk Sea with a time scale of 3 months, a run that is the same as the first run except for the enhanced isopycnal mixing, and a final run with the combination of the restoration in the Okhotsk Sea and large isopycnal diffusivity. Simulated results show that the intermediate water masses reproduced in the first run are relatively weak. An increase in isopycnal diffusivity can improve the simulation of both Antarctic and North Pacific intermediate waters, mainly increasing the transport in the interior ocean, but inhibiting the outflow from the Okhotsk Sea. The interior restoration generates the reverse current from the observation in the Okhotsk Sea, whereas the simulation of the temperature and salinity is improved in the high latitude region of the Northern Hemisphere because of the reasonable source of the North Pacific Intermediate Water. A comparison of vertical profiles of temperature and salinity along 50°N between the simulation and observations demonstrates that the vertical mixing in the source region of intermediate water masses is very important.  相似文献   

4.
Intercomparison of three South China Sea circulation models   总被引:2,自引:1,他引:1  
1IntroductionTheSouthChinaSeaisthelargesttropicalmarginaldeepsealocatingbetweenthewesternPacificOceanandtheeasternIndianOcean.AsapartofAsia-Australiamaritimecontinent,monsoonisaprimaryfactorforcingtheSouthChinaSeaCurrent(SCSC)variation.Drivenbynortheasterlymonsooninwinterandsouth-westerlymonsooninsummer,respectively,theSCSCbehavesacyclonicgyreandananticy-clonicgyre,correspondingly(Wyrtki,1961;Xuetal.,1982).Owingtotheshortageandexpen-sivenessofdirectobservationsintheSCS,fur-therunder…  相似文献   

5.
The uptake mechanism of anthropogenic CO2 in the Kuroshio Extension is examined by a Lagrangian approach using a biogeochemical model embedded in an ocean general circulation model. It is found that the uptake of anthropogenic CO2 is caused mainly by the increase of pCO2 dependency of seawater on temperature, which is caused by greater dissolved inorganic carbon concentration in the modern state than in the pre-industrial state. In contrast with the view of previous studies, the effect of the vertical entrainment, which brings waters that last contacted the atmosphere with the past lower CO2 concentration, is comparatively small. Winter uptake of anthropogenic CO2 increases with the rise of the atmospheric CO2 level, while summer uptake is relatively stable, resulting in a larger seasonal cycle of the uptake. This increase is significant, especially in the Kuroshio Extension region. It is newly suggested that this increase in the Kuroshio Extension region is largely caused by the combined effects of the increased pCO2 dependency of the sea water on the temperature and the seasonal difference in cooling.  相似文献   

6.
Study of oceanic circulation and climate requires models which can simulate tracer eddy diffusion and ad vection accurately. It is shown that the traditional Eulerian coordinates can introduce large artificial hori zontal diffusivity/viscosity due to the incorrect alignment of the axis. Therefore, such models can smear sharp fronts and introduce other numerical artifacts. For simulation with relatively low resolution, large lateral diffusion was explicitly used in models; therefore, such numerical diffusion may not be a problem. However, with the increase of horizontal resolution, the artificial diffusivity/viscosity associated with hori zontal advection in the commonly used Eulerian coordinates may become one of the most challenging ob stacles for modeling the ocean circulation accurately. Isopycnal eddy diffusion (mixing) has been widely used in numerical models. The common wisdom is that mixing along isopycnal is energy free. However, a careful examination reveals that this is not the case. In fact, eddy diffusion can be conceptually separated into two steps: stirring and subscale diffusion. Due to the thermobaric effect, stirring, or exchanging water masses, along isopycnal surface is associated with the change of GPE in the mean state. This is a new type of instability, called the thermobaric instability. In addition, due to cabbeling subscale diffusion of water parcels always leads to the release of GPE. The release of GPE due to isopycnal stirring and subscale diffusion may lead to the thermobaric instability.  相似文献   

7.
The multiple-parameter linear regression method (Monitoring global ocean carbon inventories. Ocean Observing System Development Panel, Texas A&M University, College Station, TX, 1995, 54pp; Global Biogeochem. Cycles 13 (1999) 179) is used to compare inorganic carbon data from the GEOSECS CO2 survey in the Pacific Ocean in 1973 to the WOCE/JGOFS global CO2 survey in the 1990s. A model of total dissolved inorganic carbon (DIC) as a function of five variables (AOU, θ, S, Si, and PO4) has been developed from the recent CO2 survey data (namely CGC91 and CGC96) in the Pacific Ocean. After correcting for a systematic DIC offset of −30.3±7 μmol kg−1 from the GEOSECS data, the residual DIC based on this model as computed from GEOSECS data has been used to estimate the anthropogenic CO2 penetration in the Pacific Ocean. In the Northeast Pacific, we obtained an increase of CO2 of 21.3±7.9 mol m−2 over the period from GEOSECS in 1973 to CGC91 in 1991. This gives a mean anthropogenic CO2 uptake rate of 1.3±0.5 mol m−2 yr−1 over this 17 year time period. In the South Pacific, north of 50°S between 180° and 120°W region, the integrated anthropogenic CO2 inventory is estimated to be 19.7±5.7 mol m−2 over the period from GEOSECS in 1974 to CGC96 in 1996. The equivalent mean CO2 uptake rate is estimated to be 0.9±0.3 mol m−2 yr−1 over the 22 years. These results are compared with the isopycnal method (Nature 396 (1998) 560) to estimate the anthropogenic CO2 signal in the Northeast Pacific (30°N, 152°W) at the crossover region between CGC91 and GEOSECS. The results of the isopycnal method are consistent with those derived from the MLR method. Both methods show an increase in anthropogenic CO2 inventory in the ocean over two decades that is consistent with the increase expected if the ocean uptake has kept pace with the atmospheric CO2 increase.  相似文献   

8.
We observed the partial pressure of oceanic CO2, pCO2 sea, and related surface properties in the westernmost region of the subarctic North Pacific, seasonally from 1998 to 2001. The pCO2 sea in the Oyashio region showed a large decrease from winter to spring. In winter, pCO2 sea was higher than 400 μatm in the Oyashio region and this region was a source of atmospheric CO2. In spring, pCO2 sea decreased to extremely low values, less than 200 μatm (minimum, 139 μatm in 2001), around the Oyashio region with low surface salinity and this region turned out to be a strong sink. The spatial variations of pCO2 sea were especially large in spring in this region. The typical Oyashio water with minimal mixing with subtropical warm water was extracted based on the criterion of potential alkalinity. The contribution of main oceanic processes to the changes in pCO2 sea from winter to spring was estimated from the changes in the concentrations of dissolved inorganic carbon and nutrients, total alkalinity, temperature and salinity observed in surface waters in respective years. These quantifications indicated that photosynthesis made the largest contribution to the observed pCO2 sea decreases in all years and its magnitude was variable year by year. These year-to-year differences in spring biological contribution could be linked to those in the development of the density stratification due to the decrease in surface salinity. Thus, the changes in the surface physical structure could induce those in pCO2 sea in the Oyashio region in spring. Furthermore, it is suggested that the direction and magnitude of the air-sea CO2 flux during this season could be controlled significantly by the onset time of the spring bloom. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
《Ocean Modelling》2007,16(1-2):1-16
In many global ocean climate models, mesoscale eddies are parameterized as along isopycnal diffusion and eddy-induced advection (or equivalently skew-diffusion). The eddy-induced advection flattens isopycnals and acts as a sink of available potential energy, whereas the isopycnal diffusion mixes tracers along neutral directions. While much effort has gone into estimating diffusivities associated with this closure, less attention has been paid to the details of how this closure (which tries to flatten isopycnals) interacts with the mixed layer (in which vertical mixing tries to drive the isopycnals vertical). In order to maintain numerical stability, models often stipulate a maximum slope Smax which in combination with the thickness diffusivity Agm defines a maximum eddy-induced advective transport Agm1Smax. In this paper, we examine the impact of changing Smax within the GFDL global coupled climate model. We show that this parameter produces significant changes in wintertime mixed layer depth, with implications for wintertime temperatures in key regions, the distribution of precipitation, and the vertical structure of heat uptake. Smaller changes are seen in details of ventilation and currents, and even smaller changes as regards the overall hydrography. The results suggest that not only the value of the coefficient, but the details of the tapering scheme, need to be considered when comparing isopycnal mixing schemes in models.  相似文献   

10.
Under strong surface wind forcing during winter, direct current observations in the northern Sea of Japan show the existence of strong near-inertial currents in the deep water that is characterized by the extremely homogeneous vertical structures of temperature and salinity. However, the mechanism generating internal waves in the deep water of the northern Sea of Japan has not been well understood. In this study, to clarify the dynamical link between the surface wind forcing and near-inertial currents in the deep water of the northern Sea of Japan, we drive a general circulation model taking into account realistic wind stress, ocean bottom and land topography. In the northern Sea of Japan, the numerical results show that vertically coherent horizontal currents with a speed of ~ 0.05 m s?1 are excited throughout the homogeneous deep water. A two-layer model successfully reproduces the pattern of the horizontal current velocities shown by the general circulation model, indicating that internal waves emanate westward from the northwestern coast of Japan through coastal adjustment to the strong wind forcing event and, while propagating into the ocean interior, they excite evanescent near-inertial response throughout the lower layer below the interface.  相似文献   

11.
在大洋环流模式中,铅直混合的参数化方法起着关键性的作用。将大洋细结构混合参数化方法首次应用于世界大洋环流模式中。使用中科院大气所(LASG)发展的20层世界大洋环流模式(OGCM)ML20,月平均风场作为强迫场,利用ML20模式在稳定初始状态下运行300a后的计算结果作为本实验进行数值模拟的初始场。该参数化方法对世界大洋环流模式的影响主要表现为:永久性温度跃层的厚度明显变薄;对深层水和底层水的模拟有改进;对南极中层水的模拟比较成功;但是对赤道海区的模拟结果欠佳。  相似文献   

12.
This modeling study investigates the impacts of increasing atmospheric CO2 concentration on acidification in the East Sea. A historical simulation for the past three decades (1980 to 2010) was performed using the Hadley Centre Global Environmental Model (version 2), a coupled climate model with atmospheric, terrestrial and ocean cycles. As the atmospheric CO2 concentration increased, acidification progressed in the surface waters of the marginal sea. The acidification was similar in magnitude to observations and models of acidification in the global ocean. However, in the global ocean, the acidification appears to be due to increased in-situ oceanic CO2 uptake, whereas local processes had stronger effects in the East Sea. pH was lowered by surface warming and by the influx of water with higher dissolved inorganic carbon (DIC) from the northwestern Pacific. Due to the enhanced advection of DIC, the partial pressure of CO2 increased faster than in the overlying air; consequently, the in-situ oceanic uptake of CO2 decreased.  相似文献   

13.
渤海海峡沉积物输运的参数化计算   总被引:1,自引:1,他引:0  
本文以2018年冬季渤海海峡两个站位的定点连续观测数据为基础,使用一维参数化方案,计算了观测站位底边界层内的水平悬浮物输运通量以及推移质输运量。在参数化方案中,简化的一维对流扩散方程被用于计算底边界层内的垂向悬浮物浓度。为了验证参数化方案的可靠性,本文基于观测数据对比了两种底剪切应力计算模型、四种临界起动剪切应力计算方法和两种一维对流扩散方程解法。对比结果表明:(1)不同模型计算的底剪切应力结果相近;(2)临界起动剪切应力受到颗粒间黏性作用的影响;(3)一维对流扩散方程的求解过程需要考虑沉积物浓度的分层效应和不同粒级颗粒临界起动剪切应力的差异。基于上述对比结果确定的最优参数化方案,进一步计算了观测站位的沉积物输运量:(1)在有再悬浮的时段,距底5 m内的水平悬浮物通量占全水深悬浮物通量的比例(T01站约为21%,T02站约为17%)显著高于相同层位水通量的占比;(2)依据参数化方案估算的冬季平均的悬浮物通量比忽略底边界层悬浮物浓度垂向变化的传统方法结果高约16%;(3)推移质输运量比悬移质输运量约低两个数量级。  相似文献   

14.
Marginal seas play important roles in regulating the global carbon budget, but there are great uncertainties in estimating carbon sources and sinks in the continental margins. A Pacific basin-wide physical-biogeochemical model is used to estimate primary productivity and air-sea CO_2 flux in the South China Sea(SCS), the East China Sea(ECS), and the Yellow Sea(YS). The model is forced with daily air-sea fluxes which are derived from the NCEP2 reanalysis from 1982 to 2005. During the period of time, the modeled monthly-mean air-sea CO_2 fluxes in these three marginal seas altered from an atmospheric carbon sink in winter to a source in summer. On annualmean basis, the SCS acts as a source of carbon to the atmosphere(16 Tg/a, calculated by carbon, released to the atmosphere), and the ECS and the YS are sinks for atmospheric carbon(–6.73 Tg/a and –5.23 Tg/a, respectively,absorbed by the ocean). The model results suggest that the sea surface temperature(SST) controls the spatial and temporal variations of the oceanic pCO_2 in the SCS and ECS, and biological removal of carbon plays a compensating role in modulating the variability of the oceanic pCO_2 and determining its strength in each sea,especially in the ECS and the SCS. However, the biological activity is the dominating factor for controlling the oceanic pCO_2 in the YS. The modeled depth-integrated primary production(IPP) over the euphotic zone shows seasonal variation features with annual-mean values of 293, 297, and 315 mg/(m~2·d) in the SCS, the ECS, and the YS, respectively. The model-integrated annual-mean new production(uptake of nitrate) values, as in carbon units, are 103, 109, and 139 mg/(m~2·d), which yield the f-ratios of 0.35, 0.37, and 0.45 for the SCS, the ECS, and the YS, respectively. Compared to the productivity in the ECS and the YS, the seasonal variation of biological productivity in the SCS is rather weak. The atmospheric pCO_2 increases from 1982 to 2005, which is consistent with the anthropogenic CO_2 input to the atmosphere. The oceanic pCO_2 increases in responses to the atmospheric pCO_2 that drives air-sea CO_2 flux in the model. The modeled increase rate of oceanic pCO_2 is0.91 μatm/a in the YS, 1.04 μatm/a in the ECS, and 1.66 μatm/a in the SCS, respectively.  相似文献   

15.
Detection and attribution of hydrographic and biogeochemical changes in the deep ocean are challenging due to the small magnitude of their signals and to limitations in the accuracy of available data. However, there are indications that anthropogenic and climate change signals are starting to manifest at depth. The deep ocean below 2000 m comprises about 50% of the total ocean volume, and changes in the deep ocean should be followed over time to accurately assess the partitioning of anthropogenic carbon dioxide (CO2) between the ocean, terrestrial biosphere, and atmosphere. Here we determine the changes in the interior deep-water inorganic carbon content by a novel means that uses the partial pressure of CO2 measured at 20 °C, pCO2(20), along three meridional transects in the Atlantic and Pacific oceans. These changes are measured on decadal time scales using observations from the World Ocean Circulation Experiment (WOCE)/World Hydrographic Program (WHP) of the 1980s and 1990s and the CLIVAR/CO2 Repeat Hydrography Program of the past decade. The pCO2(20) values show a consistent increase in deep water over the time period. Changes in total dissolved inorganic carbon (DIC) content in the deep interior are not significant or consistent, as most of the signal is below the level of analytical uncertainty. Using an approximate relationship between pCO2(20) and DIC change, we infer DIC changes that are at the margin of detectability. However, when integrated on the basin scale, the increases range from 8–40% of the total specific water column changes over the past several decades. Patterns in chlorofluorocarbons (CFCs), along with output from an ocean model, suggest that the changes in pCO2(20) and DIC are of anthropogenic origin.  相似文献   

16.
The seasonal variability of the carbon dioxide (CO2) system in the Southern Ocean, south of 50°S, is analysed from observations obtained in January and August 2000 during OISO cruises conducted in the Indian Antarctic sector. In the seasonal ice zone, SIZ (south of 58°S), surface ocean CO2 concentrations are well below equilibrium during austral summer. During this season, when sea-ice is not obstructing gas exchange at the air–sea interface, the oceanic CO2 sink ranges from −2 to −4 mmol/m2/d in the SIZ. In the permanent open ocean zone, POOZ (50–58°S), surface oceanic fugacity fCO2 increases from summer to winter. The seasonal fCO2 variations (from 10 to 30 μatm) are relatively low compared to seasonal amplitudes observed in the subtropics or the subantarctic zones. However, these variations in the POOZ are large enough to cross the atmospheric level from summer to winter. Therefore, this region is neither a permanent CO2 sink nor a permanent CO2 source. In the POOZ, air–sea CO2 fluxes calculated from observations are about −1.1 mmol/m2/d in January (a small sink) and 2.5 mmol/m2/d in August (a source). These estimates obtained for only two periods of the year need to be extrapolated on a monthly scale in order to calculate an integrated air–sea CO2 flux on an annual basis. For doing this, we use a biogeochemical model that creates annual cycles for nitrate, inorganic carbon, total alkalinity and fCO2. The changing pattern of ocean CO2 summer sink and winter source is well reproduced by the model. It is controlled mainly by the balance between summer primary production and winter deep vertical mixing. In the POOZ, the annual air–sea CO2 flux is about −0.5 mol/m2/yr, which is small compared to previous estimates based on oceanic observations but comparable to the small CO2 sink deduced from atmospheric inverse methods. For reducing the uncertainties attached to the global ocean CO2 sink south of the Polar Front the regional results presented here should be synthetized with historical and new observations, especially during winter, in other sectors of the Southern Ocean.  相似文献   

17.
Gravitational Potential Energy (GPE) change due to horizontal/isopycnal eddy diffusion and advection is examined. Horizontal/isopycnal eddy diffusion is conceptually separated into two steps: stirring and sub scale diffusion. GPE changes associated with these two steps are analyzed. In addition, GPE changes due to stirring and subscale diffusion associated with horizontal/isopycnal advection in the Eulerian coordinates are analyzed. These formulae are applied to the SODA data for the world oceans. Our analysis indicates that horizontal/isopycnal advection in Eulerian coordinates can introduce large artificial diffusion in the model. It is shown that GPE source/sink in isopycnal coordinates is closely linked to physical property distribution, such as temperature, salinity and velocity. In comparison with z-coordinates, GPE source/sink due to stir ring/cabbeling associated with isopycnal diffusion/advection is much smaller. Although isopycnal coordi nates may be a better choice in terms of handling lateral diffusion, advection terms in the traditional Eule rian coordinates can produce artificial source of GPE due to cabbeling associated with advection. Reducing such numerical errors remains a grand challenge.  相似文献   

18.
Seawater samples were collected in the North Pacific along 175°E during a cruise of the Northwest Pacific Carbon Cycle Study (NOPACCS) program in 1994. Many properties related to the carbonate system were analyzed. By using well-known ratios to correct for chemical changes in seawater, the CO2 concentration at a given depth was back calculated to its initial concentration at the time when the water left the surface in winter. We estimated sea-surface CO2 and titration alkalinity (TA) in present-day winter, from which we evaluated the degree of air-sea CO2 disequilibrium in winter was. Using a correction factor for air-sea CO2 disequilibrium in winter, we reconstructed sea-surface CO2 in pre-industrial times. The difference between the back-calculated initial CO2 and sea-surface CO2 in pre-industrial times should correspond to anthropgenic CO2 input. Although the mixing of different water masses may cause systematic error in the calculation, we found that the nonlinear effect induced by the mixing of different water masses was negligible in the upper layer of the North Pacific subtropical gyre along 175°E. The results of our improved method of assessing the distribution of anthropogenic CO2 in that region show marked differences from those obtained using the previous back-calculation method.  相似文献   

19.
利用三维高分辨率有限体积的近海海域模型FVCOM来分析2001年秋季期间风作用对坦帕湾区域盐度平衡的影响。为了区分风的影响,分别设计了两个实验:一个由潮汐和河流作为驱动,另一个由潮汐、河流以及风场共同驱动。结论如下:首先,风作用会使盐度产生变化,能够明显地使坦帕湾内的盐度增加,并导致水平和垂直方向上盐度梯度的减少;随后,本文分析了坦帕湾区域内的盐度平衡,主要的盐度平衡来自于全部(水平和垂直方向上)平流的盐度流量分歧以及除去海峡底部的垂直方向上盐度流量分歧;最后,对由风引起的盐度变化进一步进行分析,结果表明风作用不能改变盐度平衡地位的相对重要性,由风引起的盐度平衡改变高度依靠于特殊的地形,除此之外,全部平流盐度流量分歧和垂直散布盐度通量分歧能够抵消,并且两者都远大于水平散步盐度流量分歧。  相似文献   

20.
The oceanic biogeochemical fluxes in the North Pacific, especially its northwestern part, are discussed to prove their importance on a global scale. First, the air-sea exchange processes of chemical substances are considered quantitatively. The topics discussed are sea salt particles transported to land, sporadic transport of soil dust to the ocean and its role in the marine ecosystem, the larger gas transfer velocity of CO2 indicating the effect of bubbles, and DMS and greenhouse gases other than CO2. Next, chemical tracers are utilized to reveal the water circulation systems in the region, which are the Pacific Deep Water including its vertical eddy diffusivity, the North Pacific Intermediate Water and the Japan Sea Deep Water. Thirdly, the particulate transport process of chemical substances through the water column is clarified by analyzing the distribution of insoluble radionuclides and the results obtained from sediment trap experiments. Fourthly, the northern North Pacific is characterized by stating the site decomposing organic matter and Si playing a key role in the marine ecosystem. Both are induced by the upwelled Pacific Deep Water. Fifthly, the oceanic CO2 system related to global warming is presented by clarifying the distribution of anthropogenic CO2 in the western North Pacific, and roles of the upwelled Pacific Deep Water and the continental shelf zone in the absorption of atmospheric CO2. Finally, Mn and other chemical substances in sediments are discussed as recorders of the early diagenesis and indicators of low biological productivity during glacial ages in the northwestern North Pacific. It is concluded that the western North Pacific is characterized mainly by the Pacific Deep Water bringing nutrients to the northern North Pacific, located at the exit of the global deep water circulation and, therefore, the region plays a key role in the global biogeochemical fluxes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号