首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study area, Hesaraghatta watershed is located between 77° 20′ to 77° 42′ E longitude and 13° 10′ to 13° 24′ N latitude with an area of 600.01 km2. Thematic layers such as Land Use/Land Cover, drainage, soil and hydrological soil group were generated from IRS–1D LISS III satellite data (FCC). An attempt was made to estimate runoff using Soil Conservation Service (SCS) curve number model and it was estimated to be 1960, 2066, 1870 and 1810 mm for sub-watersheds 1, 2, 3 and 4 respectively. Quantitative morphometric analysis was carried out for the entire watershed and the four sub-watersheds independently by estimating their (a) linear aspects like stream order, stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like shape factor, circulatory ratio, elongation ratio and drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. Drainage density was estimated to be 1.23 km/km2 designating the study area as a very coarse textured watershed.  相似文献   

2.
The study area covers 570 km2 comprising of 9 sub-watersheds (Dalavayihalli, Maddalenahalli, Talamaradahalli, Puluvalli tank, Nagalamadike, Gowdatimmanahalli, Naliganahalli, Devadabetta and Byadanur) range from 49 to 75 km2 forming part of Pennar river basin around Pavagada. The drainage network of 9 sub-watersheds was delineated using remote sensing data - Geocoded FCC of bands - 2 3 4 of IRS 1 C and 1 D (LISS III+PAN merged) on 1:50,000 scale and SOI topomaps were used as reference. The morphometric analysis of 9 sub-watersheds has been carried out using GIS softwares - Arclnfo and Are View. The drainage network shows that the terrain exhibits dendritic to sub-dendritic drainage pattern. Stream orders ranges from fourth to fifth order. Drainage density varies between 1.55 and 2.16 km/ km2 and has very coarse to coarse drainage texture. The relief ratio range from 0.006 to 0.021. The mean bifurcation ratio varies from 3.21 to 4.88 and falls under normal basin category. The elongation ratio shows that Devedabetta sub-watershed possesses circular shape while remaining sub-watersheds mark elongated pattern. Hence from the study it can be concluded that remote sensing techniques proved to be a competent tool in morphometric analysis.  相似文献   

3.
Abstract

The Muthirapuzha watershed (MW) is one among the major tributaries of Periyar – the longest west flowing river in Kerala, India. A morphometric analysis was carried out to determine the spatial variations in the drainage characteristics of MW and its 14 fourth order sub-watersheds (SW1–SW14) using Survey of India topographic maps and Landsat ETM+ imagery. The study revealed that the watershed includes a sixth order stream and lower order streams dominate the basin. Results did indicate that rainfall has a significant role in the drainage development whereas structure and relief of rocks dictate the drainage pattern. The asymmetry in the drainage distribution is correlated with the tectonic history of the Munnar plateau in the late Paleocene age. The watershed is moderate to well-drained and exhibited a geomorphic maturity in its physiographic development. The shape parameters revealed the elongated nature of MW and drainage network development in the watershed. Further, the analysis provided significant insight into the terrain characteristics. This study strongly brings to light, (a) the tendency of the watershed to soil loss and (b) the hydrological makeup of the sub-watersheds, which combined helped to formulate a comprehensive watershed management plan.  相似文献   

4.
The morphometric analysis of river basin helps to explore the interrelationship between hydraulic parameters and geomorphologic characteristics. The study has been conducted in the Upper Tons basin of Northern Foreland of Peninsular India. The river basin has been characterized using the topographical maps, CARTOSAT satellite image integrated using the GIS techniques. The drainage density analysis indicates lower values in the north-eastern regions and thus these regions can be categorized as better ground water potential zone. There are in total 10 sub-watersheds which have been delineated; SW-4 has maximum drainage density (4.75), stream frequency (5.61) and drainage texture (26.64) followed by SW-6–10. The prioritized sub-watershed numbers SW-4 and SW-6–10 need conservation practices because of their high erodibility and run-off. SW-1–3 and SW-5 regions have better permeable bed rocks and hence good for water harvesting. The areal parameter indicates elongated shape of basin and moderate to steeper ground slope. The results are supported by extensive field survey. This study can be applied for soil and water management, as well as disaster prevention from similar type of drainage basins.  相似文献   

5.
The study areas Tikovil and Payppara sub-watersheds of Meenachil river cover 158.9 and 111.9 km2, respectively. These watersheds are parts of Western Ghats, which is an ecologically sensitive region. The drainage network of the sub-watersheds was delineated using SOI topographical maps on 1:50,000 scale using the Arc GIS software. The stream orders were calculated using the method proposed by Strahler's (1964 Strahler, A. N. 1964. “Quantitative geomorphology of drainage basins and channel networks”. In Hand book of applied hydrology. Vol. 4, Edited by: Chow, V. T. Vol. 4, 3944.  [Google Scholar]). The drainage network shows that the terrain exhibits dendritic to sub-dendritic drainage pattern. Stream order ranges from the fifth to the sixth order. Drainage density varies between 1.69 and 2.62 km/km2. The drainage texture of the drainage basins are 2.3 km–1 and 6.98 km–1 and categorized as coarse to very fine texture. Stream frequency is low in the case of Payappara sub-watershed (1.78 km–2). Payappara sub-watershed has the highest constant of channel maintenance value of 0.59 indicating much fewer structural disturbances and fewer runoff conditions. The form factor value varies in between 0.42 and 0.55 suggesting elongated shape formed for Payappara sub-watershed and a rather more circular shape for Tikovil sub-watershed. The mean bifurcation ratio (3.5) indicates that both the sub-watersheds are within the natural stream system. Hence from the study it can be concluded that GIS techniques prove to be a competent tool in morphometric analysis.  相似文献   

6.
Watershed prioritization has gained importance in natural resources management, especially in the context of watershed management. Morphometric analysis has been commonly applied to prioritization of watersheds. The present study makes an attempt to prioritize sub-watersheds based on morphometric and land use characteristics using remote sensing and GIS techniques in Kanera watershed of Guna district, Madhya Pradesh. Various morphometric parameters, namely linear and shape have been determined for each sub-watershed and assigned ranks on the basis of value/relationship so as to arrive at a computed value for a final ranking of the sub-watersheds. Land use/land cover change analysis of the sub-watersheds has been carried out using multi-temporal data of IRS LISS II of 1989 and IRS LISS III of 2001. The study demonstrates the significant land use changes especially in cultivated lands, open scrub, open forest, water bodies and wastelands from 1989 to 2001. Based on morphometric and land use/land cover analysis, the sub-watersheds have been classified into three categories as high, medium and low in terms of priority for conservation and management of natural resources. Out of the seven sub-watersheds, two sub-watersheds viz., SW1 and SW6 qualify for high priority, whereas SW7 has been categorised as medium priority based on the integration of morphometric and land use change analysis.  相似文献   

7.
Anandpur Sahib area of Rupnagar district (Punjab) was investigated using an integrated multi-disciplinary approach of geomorphological, structural, drainage and morphotectonic analysis through satellite data and GIS. Most commonly used geomorphic indices viz., channel sinuosity, drainage basin asymmetry, basin elongation ratio, mountain front sinuosity and valley floor to valley width ratio index have been used to identify the geomorphic indicators of active tectonics in the area. Existence of fluvial anomalies viz., abrupt changes in flow direction, flow against gradient, beheaded streams and river terraces reflect the strong structural control on the fluvial features. Asymmetric nature of drainage basin, elongated nature of the sub-watersheds, straight to curvilinear mountain fronts and narrow incised valley floors further substantiate the role of active tectonics in the region.  相似文献   

8.
Improper utilization of natural resources without any conservation work is the prime cause of the watershed deterioration. Fast developmental activities and population pressure in the hills of Khanapara?CBornihat area near Guwahati city (about 10?km east of Guwahati) results rapid alteration of the land use/land cover in the recent times. This also causes the growth of land use over the unsuitable topography. As a result, there is a general degradation of the natural resources within the area. So, urgent measures have to be adopted to take up the conservation measure for the management of natural resources. Watershed wise conservation is considered to be the most acceptable and convenient approach. In the context of watershed management, watershed prioritization gained importance in natural resource management. The present study makes an attempt to prioritize the sub-watersheds for adopting the conservation measure. The prioritization is based on land use and slope analysis using Remote Sensing and GIS techniques in Khanapara?CBornihat area of Assam and Meghalaya state (India). The study area of 323.17?sq. km is divided into three 5th order, four 4th order and two 3rd order sub-watersheds. Land use/Land cover change analysis of the sub-watersheds has been carried out using multi temporal data of SOI toposheets of 1972 and IRS LISS III imagery of 2006. The study shows the significance changes in land use pattern especially in settlement and forest lands from 1972 to 2006. Slope map of the sub-watersheds prepared from the contour values in the toposheets show the wide variation of slope in the area ranging from 0° to 87°. Based on the extent/nature of land use/land cover changes over time and land use/land cover??slope relationship analysis, the sub-watersheds are classified into three categories as high, medium and low in terms of priority for conservation and management of natural resources.  相似文献   

9.
Remote sensing techniques using satellite images and aerial photographs are convenient tools in morphometric analysis of a drainage basin. In the present study morphometric parameters of Khairkuli drainage basin, district Dehradun, are worked out using aerial photographs. The parameters worked out include bifurcation ratio, stream length, form factor, circulatory ratio, elongation ratio, drainage density, constant of channel maintenance and stream frequency. Hypsometric relations of drainage basin are also presented. Relation between cumulative stream length and the stream order establishes that the ratio between cumulative stream length Σ 1 u Σ 1 nu Lu and the stream order u is constant throughout the. successive orders of a drainage basin suggesting that geometrical similarity is preserved in the basins of increasing order. The morphometric parameters computed suggest that the area is covered by resistant permeable rocks (with fracture and karstic porosities) and vegetative cover, the drainage network is affected by tectonic disturbances. The peak flows generated from the basin are likely to be moderately high and of short duration.  相似文献   

10.
This study presents a method of automatic drainage skeletonization from flow-accumulated area without the use of threshold which conserves drainage geometry at chosen digital elevation model (DEM) scale. To get all possible drainage at the chosen scale, stream order raster is generated by incorporating flow accumulation and flow direction raster derived from corresponding DEM. This allows generation of drainage network without the use of threshold. Resultant stream order raster, termed as raw stream order raster (RSOR), is tested against threshold defined stream order raster to evaluate its efficiency. Use of RSOR allows extraction of stream heads to greater stream head extent. Again, DEM downscaling takes care of overestimation in number of streams. So, the proposed technique is effective in controlling two basic aspects of drainage characteristics – stream number and extent. In our case, drainage estimated from re-sampled medium-scale DEM has the closest matching with that of the reference topographical map.  相似文献   

11.
While drainage network models may be relatively easy to assemble as a prerequisite to site selection for infrastructure supporting suburbanisation with Water-Sensitive Urban Design (WSUD), this is unlikely to be the case if the terrain is very subdued. Both ab initio and retro-fit WSUD implementation for such terrain refers, in the first instance, to a drainage network model that includes information on the scope for optimising residential space while conforming to: (1) statutory planning rules about the provision of public open space; and (2) WSUD drainage network design such that runoff waters are retained long enough to allow at least temporary storage. It is shown in this research that a technique applied to condition a LiDAR DEM can accurately model the drainage network of a basin at the land-parcel scale. The drainage network for ab initio WSUD is best defined using multi-flow modelling, with the relative significance of stream segments indicated by their stream order derived using the Strahler method. In contrast, when applying the retro-fit WSUD, the relative significance of segments given by the Shreve stream order method was found to be more useful. The approaches described in this article are designed to support the initial site planning stage and avoid the need for immediate and expensive detailed field survey. At the same time they can be deployed to show how much scope there is for WSUD retro-fit in established housing areas up-stream of an infill development area. Thus, basin-wide appraisal is facilitated and the need for earthmoving is minimised.  相似文献   

12.
Resourcesat-I data is to provide continuity in operational remote sensing with its enhanced capabilities in the field of land and water resources management. Using GIS tools and image processing techniques are to identify the morphological features and water resources of the Meghadrigedda watershed. The morphometric parameters such as linear aspects and aerial aspects of six sub-watersheds of the watershed were determined and are computed. The drainage pattern is mainly dendritic type. The six sub-watersheds are elongated in shape. The Meghadrigedda reservoir supplies around 8 million gallon/day of water to the needs of Visakhapatnam city for domestic and industrial purpose. Most of the water tanks of the area have been silted and subjected to unauthorized occupations. Twelve recharge pits were located to excavate silted water tanks. To improve the ground water levels, thirteen suitable sites were identified for the construction of check dams in the Meghadrigedda watershed.  相似文献   

13.
Traditionally, stream and sub‐watershed characterization in GIS has been accom‐ plished using a DEM‐based terrain analysis approach; however, there is a large amount of existing vector hydrographic data difficult to accurately reproduce using DEMs. WaterNet is a GIS/hydrologic application for the integration and analysis of stream and sub‐watershed networks in vector format. Even with vector data, hydrologic inconsistencies between streams and sub‐watersheds do exist, and are revealed in the form of streams crossing drainage divides and sub‐watersheds with more than one outlet. WaterNet rectifies these inconsistencies and couples the two datasets. Most algorithms involving traces of dendritic networks employ a form of tree traversal which requires topologic information to be organized into specialized data structures. On the contrary, WaterNet develops topologic relationships from GIS attribute tables, which, in combination with sorting and querying algorithms, make the calculation process efficient and easy to implement. With the topologic relationships of the streams and sub‐watersheds, WaterNet can perform traces to calculate cumulative network parameters, such as flow lengths and drainage areas. WaterNet was applied to the catchment of the Texas Gulf coast for a total of 100 cataloging units (411,603 km2) and 60,145 stream lines (183,228 km).  相似文献   

14.
The Mumbai-Navi Mumbai cities (Bombay and New Bombay) are among the highest populated cities in the country. The population pressure has caused drastic landuse change in the last seventy years. Multi-date data from SOI topographical maps and Landsat TM digital data have been used to study the landuse change. The change has been quantified using A GIS It was observed that 55% reduction in forest/agricultural land, while a 300% increase in built-up land has taken place in the last seventy years. This has affected the natural drainage system of the cities, causing flooding during monsoons. The quantum of draînage basin area and stream length, in the ten basins which drain the area, under influence of built-up land was found by using a map overlay of the drainage network map and landuse map of 1994. The results shed light on the extent of drainage network disruption within these two neighbouring cities.  相似文献   

15.
16.
The drainage network of a sixth-order tropical river basin, viz. Ithikkara river basin, was extracted from different sources such as Survey of India topographic maps (1: 50,000; TOPO) and digital elevation data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (30 m) and Shuttle Radar Topography Mapping Mission (SRTM) (90 m). Basin morphometric attributes were estimated to evaluate the accuracy of the digital elevation model (DEM)-derived drainage networks for hydrologic applications as well as terrain characterization. The stream networks derived from ASTER and SRTM DEMs show significant agreement (with slight overestimation of lower order streams) with that of TOPO. The study suggests that SRTM (despite the coarser spatial resolution) provides better results, in drainage delineation and basin morphometry, compared to ASTER. Further, the variability of basin morphometry among the data sources might be attributed to spatial variation of elevation, raster grid size and vertical accuracy of the DEMs as well as incapability of the surface hydrologic analysis functions in the GIS platform.  相似文献   

17.
The study area is a part of Kagna river basin in the Gulburga district of Karnataka, India. It covers an area of 1320 km2 and it has been subdivided into 4 sub-basins namely Wadi, Chitapur, Sedam and Kurkunta, which range in area from 184 to 537 km2. The drainage pattern of these sub-basins are delineated using Geo-coded FCC bands 2,3,4 of IRS 1C and 1D(LISS III+PAN merged) on 1:50,000 scale and Survey of India toposheets as reference. The morphometric parameters are computed using ArcInfo and ArcView GIS softwares. The drainage pattern of the study area is dendritic to sub-dendritic with stream orders ranging from IV to VII orders. Drainage density ranges from 1.40 to 1.86 km/km2 suggesting coarse to moderate drainage texture. The change in values of stream length ratio indicate their late youth stage of geomorphic development. The values of bifurcation ratio ranging from 2.00 to 4.71 indicate that all the sub-basins fall under normal basin category. The values of form factor and circulatory ratio, suggest that the Kurkunta sub-basin is elongated and the remaining sub-basins are more or less circular in shape. Elongation ratio indicates that the Wadi sub-basin is a region of very low relief whereas the other sub-basins are associated with moderate to high relief and steep ground slopes. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

18.
ABSTRACT

To assess the effects of the Grain for Green Program (GGP) on soil erosion is essential to support better land management policies in the Chinese Loess Plateau. Studies on the evaluation of the effects of the GGP on soil erosion have garnered heightened attention. However, few studies examined the efficiency of GGP on soil erosion control through spatial relationship analysis. Thus, this study focuses on analyzing the spatial variation relationship between soil erosion and GGP in northern Shaanxi, Chinese Loess Plateau, from 1988 to 2015. The Universal Soil Loss Equation was used to quantify changes in soil erosion at the regional and watershed scales, and the Geographically Weighted Regression model was used to analyze the spatial relationships between land use and land cover (LULC) and soil erosion. Our results indicated that the major characteristic of LULC change during the GGP was a rapid increase of vegetation area and a rapid decrease of cropland. Bare lands contributed to the most serious soil loss, followed by croplands and sparse grasslands. The GGP had a globally positive influence on the decrease in soil erosion over the study area, but the amount of soil erosion in western and northern regions maintained a severe level. Spatial heterogeneity in the nature of the relationships among different vegetation, croplands, and soil erosion was also observed. The change rate of wood and the change rate of soil erosion in northern sub-watershed represented a negative relationship, while the change rate of sparse grassland was negatively correlated to the change rate of soil erosion in 21 sub-watersheds, account for 72% of the study area. The GGP implemented in northern sub-watersheds were more effective for soil erosion control than southern sub-watersheds. We propose that current areas of vegetation can support soil erosion control in the whole northern Shaanxi, but local-scale ecological restoration can be considered in northern sub-watersheds.  相似文献   

19.
This study is aimed at evolving a watershed prioritization of reservoir catchment based on vegetation, morphological and topographical parameters, and average annual soil loss using geographic information system (GIS) and remote sensing techniques. A large multipurpose river valley project, Upper Indravati reservoir, situated in the state of Orissa, India, has been chosen for the present work. Watershed prioritization is useful to soil conservationist and decision makers. This study integrates the watershed erosion response model (WERM) and universal soil loss equation (USLE) with a geographic information system (GIS) to estimate the erosion risk assessment parameters of the catchment. The total catchment is divided into 15 sub-watersheds. Various erosion risk parameters are determined for all the sub-watersheds separately. Average annual soil loss is also estimated for the sub-watersheds using USLE. The integrated effect of all these parameters is evaluated to recommend the priority rating of the watersheds for soil conservation planning.  相似文献   

20.
In this study, morphometric analysis and prioritization of the eight miniwatersheds of Mohr watershed, located between Bayad taluka of Sabarkantha district and Kapadwanj taluka of Kheda district in Gujarat State, India is carried out using Remote Sensing and GIS techniques. The morphometric parameters considered for analysis are stream length, bifurcation ratio, drainage density, stream frequency, texture ratio, form factor, circularity ratio, elongation ratio and compactness ratio. The Mohr watershed has a dendritic drainage pattern. The highest bifurcation ratio among all the miniwatersheds is 9.5 which indicates a strong structural control on the drainage. The maximum value of circularity ratio is 0.1197 for the miniwatershed 5F2B5b3. The miniwatershed 5F2B5a2 has the maximum elongation ratio (0.66). The form factor values are in range of 0.29 to 0.34 which indicates that the Mohr watershed has moderately high peak flow for shorter duration. The compound parameter values are calculated and prioritization rating of eight miniwatersheds in Mohr watershed is carried out. The miniwatershed with the lowest compound parameter value is given the highest priority. The miniwatershed 5F2B5b2 has a minimum compound parameter value of 3.12 is likely to be subjected to maximum soil erosion hence it should be provided with immediate soil conservation measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号