首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
研究了ZH型重金属螯合纤维对水溶液中Sr~(2+)的吸附行为,考察了pH值、纤维加入量、Sr~(2+)初始浓度、作用时间等对吸附行为的影响,并采用SEM、EDS和FTIR等现代分析测试手段探讨了ZH型重金属螯合纤维对Sr~(2+)的吸附机制。结果表明,在pH值为7.0、纤维加入量为2.0 g/L、Sr~(2+)初始质量浓度为50 mg/L的条件下,纤维对Sr~(2+)的吸附在4 h左右基本达到平衡。实验条件下ZH型重金属螯合纤维对Sr~(2+)的最大吸附量可达26.22 mg/g。等温吸附拟合结果表明,ZH型重金属螯合纤维对Sr~(2+)的吸附可能是以单分子层为主的单分子层和多分子层吸附共同作用的结果。纤维对Sr~(2+)的动力学吸附过程符合准二级动力学模型。红外光谱分析表明Sr~(2+)与纤维上—NH_2和—COOH等基团进行配位络合从而吸附在纤维表面,—CH_2—和C=CH_2等基团参与此吸附过程。能谱分析表明Sr~(2+)与纤维上Na~+和Ca~(2+)还存在着离子交换作用。  相似文献   

2.
 The adsorption of alkali metal cations on a hydroxylated corundum surface was investigated using high-level electronic structure calculations, with both cluster Hartree–Fock and periodic density-functional theory approaches. The work concentrates on the structural aspects of binding sites with threefold oxygen coordination at the basal (0001) surface. It was found that adsorption at different sites can give rise to a wide range of adsorption energies, which strongly depends on the freedom of surface hydrogen atoms to adjust their positions. Alkali metal adions from Li+ to Cs+ were studied with the cluster method, periodic plane-wave pseudopotential calculations being carried out for K+ adsorption to validate the cluster results. A site above an octahedral interstice was found to be the least preferred for cation adsorption, despite having the lowest repulsion from surface aluminium atoms. The strongest adsorption was found over an aluminium atom in the second layer, because the hydroxyl groups could reorient towards the neighbouring octahedral interstices, and hence significantly decrease repulsion with the cation. The adsorption energy and the first three interlayer spacings parallel to the basal surface change systematically with ionic size for each adsorption site. Many of these trends extend to adsorption of Ca2+, Co2+ and Pb2+, which were also investigated, although a redistribution of 3d electrons in Co2+ results in strong adsorption even at an unfavourable site. The results suggest that it may be possible not only to predict adsorption behaviour for a wide range of elements, but also to use experimental measurements of interplanar separations to gain information about contaminated surfaces. Received: 29 April 2002 / Accepted: 23 October 2002 Acknowledgements The authors thank the Natural Environment Research Council for support in carrying out this work.  相似文献   

3.
Adsorption of cobalt on synthetic hydrous manganese dioxide was studied as a function of pH and surface area in NaCl solutions and solutions containing sea water concentrations of Na, Ca and Mg. The amount of cobalt adsorbed increased sharply at pH 6, a significantly lower pH than that required for significant hydrolysis of Co(II) or precipitation of Co(OH)2(S) in bulk solution. Sea water concentrations of Na, Ca and Mg have little effect on adsorption until the cobalt concentration is less than 10?7 M.Micro-electrophoresis experiments from 1 × 10?3 M to 1 × 10?5 M to Co(II) show three charge reversals. The first is the pH of zero point charge of hydrous manganese dioxide. The second correlates well with the abrupt increase in adsorption at pH 6 and may reflect both specific adsorption of Co(II) and precipitation of Co(OH)2 on the surface. The third agrees well with literature values for the pH of zero point of charge of Co(OH)2.An adsorption isotherm was constructed for cobalt and these data were used to test the hypothesis that the enrichment of cobalt in the suspended matter of the Black Sea is due to adsorption of cobalt from sea water by manganese dioxide. The calculations indicate that adsorption is a feasible explanation for this example.  相似文献   

4.
The adsorption of copper and cobalt from aqueous solution on to illite and other substrates has been studied as a function of pH, solution composition and solid phase concentration. The results are interpreted in terms of a model whereby the trace metals are adsorbed in exchange for surface bound H+ ions. Adsorption varies with solution ionic strength and the concentrations of complex forming ligands; both of these parameters tend to reduce the trace metal adsorption. The Cu2+ is two orders of magnitude more reactive toward solid surfaces than Co2+ , which is consistent with the general reactivities of these two metal ions. It is also found that Mg2+ interferes with adsorption, presumably by competing with the trace metals for the surface sites. A quantitative model was developed which describes adsorption of these metals from natural waters ranging from river water to sea water as a function of pH, complexing ligands and magnesium activity.  相似文献   

5.
Rare earth element (REE) adsorption onto sand from a well characterized aquifer, the Carrizo Sand aquifer of Texas, has been investigated in the laboratory using a batch method. The aim was to improve our understanding of REE adsorption behavior across the REE series and to develop a surface complexation model for the REEs, which can be applied to real aquifer-groundwater systems. Our batch experiments show that REE adsorption onto Carrizo sand increases with increasing atomic number across the REE series. For each REE, adsorption increases with increasing pH, such that when pH >6.0, >98% of each REE is adsorbed onto Carrizo sand for all experimental solutions, including when actual groundwaters from the Carrizo Sand aquifer are used in the experiments. Rare earth element adsorption was not sensitive to ionic strength and total initial REE concentrations in our batch experiments. It is possible that the differences in experimental ionic strength conditions (i.e., 0.002-0.01 M NaCl) chosen were insufficient to affect REE adsorption behavior. However, cation competition (e.g., Ca, Mg, and Zn) did affect REE adsorption onto Carrizo sand, especially for light rare earth elements (LREEs) at low pH. Rare earth element adsorption onto Carrizo sand can be successfully modeled using a generalized two-layer surface complexation model. Our model calculations suggest that REE complexation with strong surface sites of Carrizo sand exceeds the stability of the aqueous complexes LnOH2+, LnSO4+, and LnCO3+, but not that of Ln(CO3)2- or LnPO4o in Carrizo groundwaters. Thus, at low pH (<7.3), where major inorganic ligands did not effectively compete with surface sites for dissolved REEs, free metal ion (Ln3+) adsorption was sufficient to describe REE adsorption behavior. However, at higher pH (>7.3) where solution complexation of the dissolved REEs was strong, REEs were adsorbed not only as free metal ion (Ln3+) but also as aqueous complexes (e.g., as Ln(CO3)2- in Carrizo groundwaters). Because heavy rare earth elements (HREEs) were preferentially adsorbed onto Carrizo sand compared to LREEs, original HREE-enriched fractionation patterns in Carrizo groundwaters from the recharge area flattened along the groundwater flow path in the Carrizo Sand aquifer due to adsorption of free- and solution-complexed REEs.  相似文献   

6.
Adsorption of Cu2+, Zn2+, Cd2+, and Pb2+ onto goethite is enhanced in the presence of sulfate. This effect, which has also been observed on ferrihydrite, is not predicted by the diffuse layer model (DLM) using adsorption constants derived from single sorbate systems. However, by including ternary surface complexes with the stoichiometry FeOHMSO4, where FeOH is a surface adsorption site and M2+ is a cation, the effect of SO42− on cation adsorption was accurately predicted for the range of cation, goethite and SO42− concentrations studied. While the DLM does not provide direct molecular scale insights into adsorption reactions there are several properties of ternary complexes that are evident from examining trends in their formation constants. There is a linear relationship between ternary complex formation constants and cation adsorption constants, which is consistent with previous spectroscopic evidence indicating ternary complexes involve cation binding to the oxide surface. Comparing the data from this work to previous studies on ferrihydrite suggests that ternary complex formation on ferrihydrite involves complexes with the same or similar structure as those observed on goethite. In addition, it is evident that ternary complex formation constants are larger where there is a stronger metal-ligand interaction. This is also consistent with spectroscopic studies of goethite-M2+-SO42− and phthalate systems showing surface species with metal-ligand bonding. Recommended values of ternary complex formation constants for use in SO4-rich environments, such as acid mine drainage, are presented.  相似文献   

7.
油页岩中因含有大量的黏土矿物而对金属离子具有一定的吸附能力.采用静态吸附法对油页岩吸附钴离子的影响因素及吸附动力学进行了研究.结果表明,油页岩粒度、溶液浓度、溶液pH值、吸附时间等均对吸附性能有一定影响.油页岩对钴离子的吸附量随样品粒径的减小而增大;随着钴离子初始浓度的增加,油页岩对钴离子的吸附总量增加;溶液pH值在3~8范围内,油页岩对钴离子的吸附量和吸附率随着pH值的增大呈上升趋势.通过吸附动力学研究发现,油页岩对钴离子的吸附过程符合准二级动力学过程和粒子内扩散机理.  相似文献   

8.
Peganum harmala seeds were assessed as biosorbent for removing Pb2+, Zn2+and Cd2+ ions from aqueous solutions. The effects of various parameters such as the aqueous solution pH, the contact time, the initial metal concentration and the amount of adsorbent in the process were investigated. The adsorption efficiencies increased with pH. It was found that about 95 % of lead, 75 % of zinc and 90 % of cadmium ions could be removed from 45 ml of aqueous solution containing 20 mg l?1 of each cation with 2 g of adsorbent at pH 4.5 after 15 min. The quantitative desorption of cadmium from adsorbent surface was achieved using 10 ml of a 0.5 M nitric acid solution. This condition was attained for lead and zinc ions with 10 ml of 1 M hydrochloric acid solution. Kinetic investigation of the process was performed by considering a pseudo-second-order model. This model predicts the chemisorption mechanism of the process. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models were tested for describing the equilibrium data. It was found that the Freundlich model describes the experimental data resulting from the adsorption of lead ions. However for cadmium and zinc ions, the adsorption equilibria were interpreted with the Langmuir model.  相似文献   

9.
As, Hg and Pb are examples of heavy metals which are present in different types of industrial effluents responsible for environmental pollution. Their removal is traditionally made by chemical precipitation, ion-exchange and so on. However, this is expensive and not completely feasible to reduce their concentrations to the levels as low as required by the environmental legislation. Biosorption is a process in which solids of natural origin are employed for binding the heavy metal. It is a promising alternative method to treat industrial effluents, mainly because of its low cost and high metal binding capacity. The kinetics was studied for biosorption experiments using coconut fiber for As (III), Hg (II) and Pb (II) ions adsorption. The specific surface area and surface charge density of the coconut fiber are 1.186×1025 (m2/g) and 5.39 ×1024 (meq/m2), respectively. The maximum adsorption capacity was found to be the highest for Pb (II) followed by Hg (II) and As (III). The modification of the adsorbent by thiolation affected the adsorption capacity. Equilibrium sorption was reached for the metal ions at about 60 min. The equilibrium constant and free energy of the adsorption at 30 °C were calculated. The mechanism of sorption was found to obey the particle-diffusion model. The kinetic studies showed that the sorption rates could be described by both pseudo first-order and pseudo second-order models. The pseudo second-order model showed a better fit with a rate constant value of 1.16 × 10?4/min. for all three metal ions. Therefore, the results of this study show that coconut fiber, both modified and unmodified, is an efficient adsorbent for the removal of toxic and valuable metals from industrial effluents.  相似文献   

10.
The purification property of pyrite was discussed by using in situ attenuated total reflection-Fourier transform infrared spectroscopy. Results showed that there might be dissolution–adsorption precipitation equilibrium of heavy metals on the surface of pyrite, which is dependent on the surface oxidation of pyrite and the neutralization reaction of carbonate within pyrite. If there was excessive carbonate within pyrite, the “dissolution” of metals would be less than that of the “adsorption precipitation,” making pyrite exhibit its purification property. Based on this property, pyrite was used to process simulated wastewater containing Pb2+, Hg2+, Cd2+, Cr(VI) and Cu2+. Results showed that the efficiencies of metal removal exceeded 96%. In addition, reflectance spectroscopy and absorption spectroscopy were also utilized to investigate the simulated metal-bearing wastewater treatment process. Analysis by diffused reflectance infrared Fourier transform spectroscopy confirmed that the superficial hydroxyl groups in pyrite reacted with metal ions during the wastewater treatment process. Reflectance spectroscopy in the visible region was used to characterize the variation in particle size and specific surface area of pyrite during the wastewater treatment process, which explained its increasing activity when reutilized. Further, analysis by absorption spectroscopy and X-ray photoelectron spectroscopy indicated that the process involved when using pyrite for the treatment of Cr(VI)-containing wastewater was an adsorption–precipitation process.  相似文献   

11.
Various soil zones such as Bw, C1, and C3 are developed on spilite. Montmorillonite, vermiculite and chlorite is moderately occurred in the C1 and C3 soil zones, in contrast montmorillonite and vermiculite are absent in Bw soils whereas illite and sesquioxide are relatively increased. The high cation exchange capacity (CEC) of montmorillonite and vermiculte and moderate CEC of chlorite and illite resulted in the high adsorption of heavy metals. The adsorption of the heavy metals on spilite soil zones was studied at different concentrations and pH levels. Heavy metals like lead, cadmium, and copper were selected for adsorption studies considering their contribution as toxic metals in the environment. The initial solute concentrations ranged from 7.0 × 10−3 to 1.0 × 102 mg/L. The sorption behavior of Cd2+, Pb2+, and Cu2+ on soil zones of spilite was investigated using the batch equilibrium technique at 25°C. The characteristics of the adsorption process were investigated using Scatchard plot analysis (q/C vs. q) by the batch equilibrium technique at 25°C. In the adsorption of heavy metals, deviation from linearity in the plot of q/C versus q was observed, indicating the presence of multi-model interaction and non-Langmuirean behavior. When the Scatchard plot showed a deviation from linearity, greater emphasis was placed on the analysis of the adsorption data in terms of the Freundlich model, in order to construct the adsorption isotherms of the metal(s) at particular concentration(s) in solutions. The adsorption behavior of these metal ions on spilite soil zones is expressed by the Freundlich isotherms. Adsorption constants and correlation coefficients for the Cd, Pb, and Cu on spilite soil zones were calculated from Freundlich plots.  相似文献   

12.
A new organic–inorganic composite cation exchanger polyaniline Sn(IV) silicate has been synthesized. The physicochemical properties of this ion exchanger were determined using different analytical techniques including fourier transform infrared spectroscopy, simultaneous thermogravimetry–differential thermogravimetry analyses, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy and elemental analysis studies. Ion exchange capacity and effect of heating temperature on ion exchange capacity were also carried out on this ion exchange material. Adsorption properties for different metal ions have been investigated and the results revealed that polyaniline Sn(IV) silicate had the highest adsorption capacity for Cd2+ ion. It’s selectivity was tested by achieving some important binary separations. Dependence of adsorption on contact time, temperature, pH of the solution and exchanger dose had been studied to achieve the optimum conditions. Adsorption kinetic study showed that the adsorption process followed the first order kinetics. Adsorption data were fitted to linearly transformed Langmuir isotherm with R 2 (correlation coefficient) >0.99. The maximum removal of Cd2+ was found at pH 9. The adsorption was fast and the equilibrium established within 40 min. Thermodynamic parameters viz- entropy change, enthalpy change and Gibb’s free energy change were also calculated.  相似文献   

13.
The uptake or adsorption of copper, nickel and cobalt by finely divided oxide solids in aqueous ammoniacal medium has been investigated experimentally in order to determine how adsorption on leach residues can affect the recovery of leachable metals. Hematite, rutile, alumina and quartz were used as model solid adsorbents. In the case of ammoniacal leach solutions the controlling metal species appears to be the aqueous neutral hydroxo species. Adsorption behavior was found to have maxima and minima as a function of pH, the magnitude of which depends on ammonia concentration, the metal cation, and the adsorbent.  相似文献   

14.
A binary mixture of humic acid and geothite was prepared and used to modify kaolinite to produce geothite–humic acid (GHA)-modified kaolinite adsorbent useful for the adsorption of Pb2+, Cd2+, Zn2+, Ni2+ and Cu2+ from Single and Quinary (5) metal ion systems. The cation exchange capacity (CEC) and specific surface area of GHA-modified kaolinite clay adsorbent were found to be 40 meq/100 g and 13 m2/g, respectively, with the CEC being five times that of raw kaolinite clay (7.81 meq/100 g). The Langmuir–Freundlich equilibrium isotherm model gave better fit to experimental data as compared with other isotherm models. In Quinary metal ion system, the presence of Zn2+ and Cu2+ appears to have an antagonistic effect on the adsorption of Pb2+, Cd2+ and Ni2+, while the presence of Pb2+, Cd2+ and Ni2+ shows a synergistic effect on the adsorption of Zn2+ and Cu2+. The GHA-modified kaolinite showed strong preference for the adsorption of Pb2+ in both metal ion systems. Brouers–Weron–Sotolongo (BWS) kinetic model gave better fit to kinetic data compared with other kinetic models used. Data from BWS kinetic model indicate that adsorption of metal ions onto GHA-modified adsorbent in both metal ion systems followed strictly, diffusion-controlled mechanism with adsorption reaction proceeding to 50 % equilibrium in <2 min in the Single metal ion system and <1 min in the Quinary metal ion system. Adsorption of metal ions onto GHA-modified kaolinite is fairly spontaneous and endothermic in nature in both metal ion systems although the rate of metal ion uptake and spontaneity of reaction are reduced in the Quinary metal ion system.  相似文献   

15.
This work is devoted to the physico-chemical study of cadmium and lead interaction with diatom-water interfaces for two marine planktonic (Thalassiosira weissflogii, TW; Skeletonema costatum, SC) and two freshwater periphytic species (Achnanthidium minutissimum, AMIN; Navicula minima, NMIN) by combining adsorption measurements with surface complexation modeling. Adsorption kinetics was studied as a function of pH and initial metal concentration in sodium nitrate solution and in culture media. Kinetic data were consistent with a two-step mechanism in which the loss of a water molecule from the inner coordination sphere of the metal is rate limiting. Reversible adsorption experiments, with 3 h of exposure to metal, were performed as a function of pH (2-9), metal concentration in solution (10−9-10−3 M), and ionic strength (10−3-1.0 M). While the shape of pH-dependent adsorption edge is similar among all four diatom species, the constant-pH adsorption isotherm and maximal binding capacities differ. Measurements of electrophoretic mobilities (μ) revealed negative surface potential for AMIN diatom, however, the absolute value of μ decreases with increase of [Pb2+]aq suggesting the metal adsorption on negative surface sites. These observations allowed us to construct a surface complexation model (SCM) for cadmium and lead binding by diatom surfaces that postulates the Constant Capacitance of the electric double layer and considers Cd and Pb complexation with mainly carboxylic and, partially, silanol groups. In the full range of investigated Cd concentration, the SCM is able to describe the concentration of adsorbed metal as a function of [Cd2+]aq without implying the presence of high affinity, low abundance sites, that are typically used to model the metal interactions with natural multi-component organic substances. At the same time, Cd fast initial reaction requires the presence of “highly reactive sites” those concentration represents only 2.5-3% of the total amount of carboxylic sites. For reversible adsorption experiments, the dominating carboxylic groups, whose concentration is allowed to vary within the uncertainty of experimental acid-base titrations, are sufficient to reproduce the metal adsorption isotherms. Results of this study strongly suggest that laboratory experiments performed in a wide range of metal to biomass ratios, represent robust and relatively simple method for assessing the distribution of metals between aqueous solution and planktonic and periphytic biomass in natural settings.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(19-20):3059-3067
In order to test the ability of a surface complexation approach to account for metal-bacteria interactions in near surface fluid-rock systems, we have conducted experiments that measure the extent of adsorption in mixed metal, mixed bacteria systems. This study tests the surface complexation approach by comparing estimated extents of adsorption based on surface complexation modeling to those we observed in the experimental systems. The batch adsorption experiments involved Ca, Cd, Cu, and Pb adsorption onto the surfaces of 2 g positive bacteria: Bacillus subtilis and Bacillus licheniformis. Three types of experiments were performed: 1. Single metal (Ca, Cu, Pb) adsorption onto a mixture of B. licheniformis and B. subtilis; 2. mixed metal (Cd, Cu, and Pb; Ca and Cd) adsorption onto either B. subtilis or B. licheniformis; and 3. mixed or single metal adsorption onto B. subtilis and B. licheniformis. %Independent of the experimental results, and based on the site specific stability constants for Ca, Cd, Cu, and Pb interactions with the carboxyl and phosphate sites on B. licheniformis and B. subtilis determined by Fein et al. (1997), by Daughney et al. (1998) and in this study, we estimate the extent of adsorption that is expected in the above experimental systems.Competitive cation adsorption experiments in both single and double bacteria systems exhibit little adsorption at pH values less than 4. With increasing pH above 4.0, the extent of Ca, Cu, Pb and Cd adsorption also increases due to the increased deprotonation of bacterial surface functional groups. In all cases studied, the estimated adsorption behavior is in excellent agreement with the observations, with only slight differences that were within the uncertainties of the estimation and experimental procedures. Therefore, the results indicate that the use of chemical equilibrium modeling of aqueous metal adsorption onto bacterial surfaces yields accurate predictions of the distribution of metals in complex multicomponent systems.  相似文献   

17.
The problem associated with multi-metals contaminated soils has generated increasingly more attention. Thus, it is necessary within the field to study the mutual influence of environmental factors on competitive adsorption. The majority of studies carried out to date have concentrated on the variation of adsorption capacity or the removal efficiency, with only a single factor changed (including pH, ionic strength, and metal concentration). However, the interaction effect among various environmental factors was ignored in these studies. The purpose of this study was mainly aimed toward the investigation of the interaction of two influential factors, as well as the influential degree of each factor (such as the initial pH, ionic strength, initial metal concentration, and the competitive metal concentration) on competitive adsorption using the response surface method. These results demonstrated that the influential degree of each factor studied on the competitive adsorption of Zn2+ and Cd2+ followed the trend of having the initial concentration of the target metal?>?initial pH?>?concentration of competitive metal?>?ionic strength. When the metal concentration was held constant, we found that the competitive adsorption of Zn2+ initially increased, followed by a decrease with increasing initial pH. However, this was found to change minimally with increasing ionic strength. When the initial pH or ionic strength was held constant, the competitive ability was observed to increase with increasing Zn2+ concentration. However, with increasing Zn2+ or Cd2+ concentrations, the variation degree of the competitive adsorption was found to become smaller. These results provide novel information toward a better understanding of the effect of multifactors on the competitive adsorption of Zn2+ and Cd2+.  相似文献   

18.
Published Sorption isotherm data of Cd2+, Mn2+, Zn2+, and Co2+ on calcite are adequately described by the surface precipitation model which was originally developed by FArley et al. (1985) for the sorption of cations on metal oxides. In addition to monolayer adsorption, the model accounts for the formation of a surface phase with a composition that is described by a solid solution having as end members the sorbent calcium carbonate mineral and a pure carbonate precipitate of the sorbing trace metal. The model thus specifies a continuum between adsorption and precipitation. This feature is supported in the literature by observations on the reaction kinetics and the amount of surface coverage during trace metal sorption on calcite. The apparent adsorption constants of these trace metals, as derived from the model, can be ranked according to the degree to which their ionic radii match the ionic radius of Ca2+.  相似文献   

19.
The fate and transport of uranium in contaminated soils and sediments may be affected by adsorption onto the surface of minerals such as montmorillonite. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used to investigate the adsorption of uranyl (UO22+) onto Wyoming montmorillonite. At low pH (∼4) and low ionic strength (10−3 M), uranyl has an EXAFS spectrum indistinguishable from the aqueous uranyl cation, indicating binding via cation exchange. At near-neutral pH (∼7) and high ionic strength (1 M), the equatorial oxygen shell of uranyl is split, indicating inner-sphere binding to edge sites. Linear-combination fitting of the spectra of samples reacted under conditions where both types of binding are possible reveals that cation exchange at low ionic strengths on SWy-2 may be more important than predicted by past surface complexation models of U(VI) adsorption on related montmorillonites. Analysis of the binding site on the edges of montmorillonite suggests that U(VI) sorbs preferentially to [Fe(O,OH)6] octahedral sites over [Al(O,OH)6] sites. When bound to edge sites, U(VI) occurs as uranyl-carbonato ternary surface complexes in systems equilibrated with atmospheric CO2. Polymeric surface complexes were not observed under any of the conditions studied. Current surface complexation models of uranyl sorption on clay minerals may need to be reevaluated to account for the possible increased importance of cation exchange reactions at low ionic strengths, the presence of reactive octahedral iron surface sites, and the formation of uranyl-carbonato ternary surface complexes. Considering the adsorption mechanisms observed in this study, future studies of U(VI) transport in the environment should consider how uranium retardation will be affected by changes in key solution parameters, such as pH, ionic strength, exchangeable cation composition, and the presence or absence of CO2.  相似文献   

20.
Adsorption of divalent metal ions, including Cu2+, Pb2+, Zn2+, Cd2+ and Ni2+, on quartz surface was measured as a function of metal ion concentration at 30°C under conditions of solution pH= 6. 5 and ion strength I = 0. 1mol/L. Results of the experimental measurements can be described very well by adsorption isotherm equations of Freudlich. The correlation coefficients (r) of adsorption isotherm lines are > 0. 96. Moreover, the experimental data were interpreted on the basis of surface complexation model. The experimental results showed that the monodentate-coordinated metal ion surface complex species (SOM+) are predominant over the bidentate-coordinated metal ion surface complex species [(SO)2M] formed only by the ions Cu2+, Zn2+ and Ni2+. And the relevant apparent surface complexation constants are lgKM = 2.2–3.3 in order of KCd≥KPb > KZn > KNi≥KCu, and lgβM = 5.9-6.8 in order of βNi > βZn > βCu. Therefore, the reactive ability of the ions onto mineral surface of quartz follows the order of Cd > Pb > Zn > Ni> Cu under the above-mentioned solution conditions. The apparent surface complexation constants, influenced by the surface potential, surface species and hydrolysis of metal ions, depend mainly on the Born solvation coefficient of the metal ions. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号