首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Given the second radial derivative Vrr(P) |δs of the Earth's gravitational potential V(P) on the surface δS corresponding to the satellite altitude, by using the fictitious compress recovery method, a fictitious regular harmonic field rrVrr(P)^* and a fictitious second radial gradient field V:(P) in the domain outside an inner sphere Ki can be determined, which coincides with the real field V(P) in the domain outside the Earth. Vrr^*(P)could be further expressed as a uniformly convergent expansion series in the domain outside the inner sphere, because rrV(P)^* could be expressed as a uniformly convergent spherical harmonic expansion series due to its regularity and harmony in that domain. In another aspect, the fictitious field V^*(P) defined in the domain outside the inner sphere, which coincides with the real field V(P) in the domain outside the Earth, could be also expressed as a spherical harmonic expansion series. Then, the harmonic coefficients contained in the series expressing V^*(P) can be determined, and consequently the real field V(P) is recovered. Preliminary simulation calculations show that the second radial gradient field Vrr(P) could be recovered based only on the second radial derivative V(P)|δs given on the satellite boundary. Concerning the final recovery of the potential field V(P) based only on the boundary value Vrr (P)|δs, the simulation tests are still in process.  相似文献   

2.
Given a continuous boundary value on the boundary of a "simply closed surface"S that encloses the whole Earth, a regular harmonic fictitious field V*(P) in the domain outside an inner sphere K i that lies inside the Earth could be determined, and it is proved that V*(P) coincides with the Earth’s real field V(P) in the whole domain outside the Earth. Since in the domain outside the inner sphere Ki and the fictitious regular harmonic function V*(P) could be expressed as a uniformly convergent spherical harm...  相似文献   

3.
The upward-downward continuation of a harmonic function like the gravitational potential is conventionally based on the direct-inverse Abel-Poisson integral with respect to a sphere of reference. Here we aim at an error estimation of the “planar approximation” of the Abel-Poisson kernel, which is often used due to its convolution form. Such a convolution form is a prerequisite to applying fast Fourier transformation techniques. By means of an oblique azimuthal map projection / projection onto the local tangent plane at an evaluation point of the reference sphere of type “equiareal” we arrive at a rigorous transformation of the Abel-Poisson kernel/Abel-Poisson integral in a convolution form. As soon as we expand the “equiareal” Abel-Poisson kernel/Abel-Poisson integral we gain the “planar approximation”. The differences between the exact Abel-Poisson kernel of type “equiareal” and the “planar approximation” are plotted and tabulated. Six configurations are studied in detail in order to document the error budget, which varies from 0.1% for points at a spherical height H=10km above the terrestrial reference sphere up to 98% for points at a spherical height H = 6.3×106km. Received: 18 March 1997 / Accepted: 19 January 1998  相似文献   

4.
A new theory for high-resolution regional geoid computation without applying Stokess formula is presented. Operationally, it uses various types of gravity functionals, namely data of type gravity potential (gravimetric leveling), vertical derivatives of the gravity potential (modulus of gravity intensity from gravimetric surveys), horizontal derivatives of the gravity potential (vertical deflections from astrogeodetic observations) or higher-order derivatives such as gravity gradients. Its algorithmic version can be described as follows: (1) Remove the effect of a very high degree/order potential reference field at the point of measurement (POM), in particular GPS positioned, either on the Earths surface or in its external space. (2) Remove the centrifugal potential and its higher-order derivatives at the POM. (3) Remove the gravitational field of topographic masses (terrain effect) in a zone of influence of radius r. A proper choice of such a radius of influence is 2r=4×104 km/n, where n is the highest degree of the harmonic expansion. (cf. Nyquist frequency). This third remove step aims at generating a harmonic gravitational field outside a reference ellipsoid, which is an equipotential surface of a reference potential field. (4) The residual gravitational functionals are downward continued to the reference ellipsoid by means of the inverse solution of the ellipsoidal Dirichlet boundary-value problem based upon the ellipsoidal Abel–Poisson kernel. As a discretized integral equation of the first kind, downward continuation is Phillips–Tikhonov regularized by an optimal choice of the regularization factor. (5) Restore the effect of a very high degree/order potential reference field at the corresponding point to the POM on the reference ellipsoid. (6) Restore the centrifugal potential and its higher-order derivatives at the ellipsoidal corresponding point to the POM. (7) Restore the gravitational field of topographic masses ( terrain effect) at the ellipsoidal corresponding point to the POM. (8) Convert the gravitational potential on the reference ellipsoid to geoidal undulations by means of the ellipsoidal Bruns formula. A large-scale application of the new concept of geoid computation is made for the Iran geoid. According to the numerical investigations based on the applied methodology, a new geoid solution for Iran with an accuracy of a few centimeters is achieved.Acknowledgments. The project of high-resolution geoid computation of Iran has been support by National Cartographic Center (NCC) of Iran. The University of Tehran, via grant number 621/3/602, supported the computation of a global geoid solution for Iran. Their support is gratefully acknowledged. A. Ardalan would like to thank Mr. Y. Hatam, and Mr. K. Ghazavi from NCC and Mr. M. Sharifi, Mr. A. Safari, and Mr. M. Motagh from the University of Tehran for their support in data gathering and computations. The authors would like to thank the comments and corrections made by the four reviewers and the editor of the paper, Professor Will Featherstone. Their comments helped us to correct the mistakes and improve the paper.  相似文献   

5.
 The Somigliana–Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana–Pizzetti gravity Γ(φ,u) as a function of Jacobi spheroidal latitude φ and height u to the order ?(10−10 Gal), and Γ(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ?(10−10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana–Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (λ,φ,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet. Received: 23 June 2000 / Accepted: 2 January 2001  相似文献   

6.
Based upon a data set of 25 points of the Baltic Sea Level Project, second campaign 1993.4, which are close to mareographic stations, described by (1) GPS derived Cartesian coordinates in the World Geodetic Reference System 1984 and (2) orthometric heights in the Finnish Height Datum N60, epoch 1993.4, we have computed the primary geodetic parameter W 0(1993.4) for the epoch 1993.4 according to the following model. The Cartesian coordinates of the GPS stations have been converted into spheroidal coordinates. The gravity potential as the additive decomposition of the gravitational potential and the centrifugal potential has been computed for any GPS station in spheroidal coordinates, namely for a global spheroidal model of the gravitational potential field. For a global set of spheroidal harmonic coefficients a transformation of spherical harmonic coefficients into spheroidal harmonic coefficients has been implemented and applied to the global spherical model OSU 91A up to degree/order 360/360. The gravity potential with respect to a global spheroidal model of degree/order 360/360 has been finally transformed by means of the orthometric heights of the GPS stations with respect to the Finnish Height Datum N60, epoch 1993.4, in terms of the spheroidal “free-air” potential reduction in order to produce the spheroidal W 0(1993.4) value. As a mean of those 25 W 0(1993.4) data as well as a root mean square error estimation we computed W 0(1993.4)=(6 263 685.58 ± 0.36) kgal × m. Finally a comparison of different W 0 data with respect to a spherical harmonic global model and spheroidal harmonic global model of Somigliana-Pizetti type (level ellipsoid as a reference, degree/order 2/0) according to The Geodesist's Handbook 1992 has been made. Received: 7 November 1996 / Accepted: 27 March 1997  相似文献   

7.
An inverse Poisson integral technique has been used to determine a gravity field on the geoid which, when continued by analytic free space methods to the topographic surface, agrees with the observed field. The computation is performed in three stages, each stage refining the previous solution using data at progressively increasing resolution (1o×1o, 5′×5′, 5/8′×5/8′) from a decreasing area of integration. Reduction corrections are computed at 5/8′×5/8′ granularity by differencing the geoidal and surface values, smoothed by low-pass filtering and sub-sampled at 5′ intervals. This paper discusses 1o×1o averages of the reduction corrections thus obtained for 172 1o×1o squares in western North America. The 1o×1o mean reduction corrections are predominantly positive, varying from −3 to +15mgal, with values in excess of 5mgal for 26 squares. Their mean andrms values are +2.4 and 3.6mgal respectively and they correlate well with the mean terrain corrections as predicted byPellinen in 1962. The mean andrms contributions from the three stages of computation are: 1o×1o stage +0.15 and 0.7mgal; 5′×5′ stage +1.0 and 1.6mgal; and 5/8′×5/8′ stage +1.3 and 1.8mgal. These results reflect a tendency for the contributions to become larger and more systematically positive as the wavelengths involved become shorter. The results are discussed in terms of two mechanisms; the first is a tendency for the absolute values of both positive and negative anomalies to become larger when continued downwards and, the second, a non-linear rectification, due to the correlation between gravity anomaly and topographic height, which results in the values continued to a level surface being systematically more positive than those on the topography.  相似文献   

8.
The problem of “global height datum unification” is solved in the gravity potential space based on: (1) high-resolution local gravity field modeling, (2) geocentric coordinates of the reference benchmark, and (3) a known value of the geoid’s potential. The high-resolution local gravity field model is derived based on a solution of the fixed-free two-boundary-value problem of the Earth’s gravity field using (a) potential difference values (from precise leveling), (b) modulus of the gravity vector (from gravimetry), (c) astronomical longitude and latitude (from geodetic astronomy and/or combination of (GNSS) Global Navigation Satellite System observations with total station measurements), (d) and satellite altimetry. Knowing the height of the reference benchmark in the national height system and its geocentric GNSS coordinates, and using the derived high-resolution local gravity field model, the gravity potential value of the zero point of the height system is computed. The difference between the derived gravity potential value of the zero point of the height system and the geoid’s potential value is computed. This potential difference gives the offset of the zero point of the height system from geoid in the “potential space”, which is transferred into “geometry space” using the transformation formula derived in this paper. The method was applied to the computation of the offset of the zero point of the Iranian height datum from the geoid’s potential value W 0=62636855.8 m2/s2. According to the geometry space computations, the height datum of Iran is 0.09 m below the geoid.  相似文献   

9.
The short wavelength geoid undulations, caused by topography, amount to several decimeters in mountainous areas. Up to now these effects are computed by means of digital terrain models in a grid of 100–500m. However, for many countries these data are not yet available or their collection is too expensive. This problem can be overcome by considering the special behaviour of the gravity potential along mountain slopes. It is shown that 90 per cent of the topographic effects are represented by a simple summation formula, based on the average height differences and distances between valleys and ridges along the geoid profiles, δN=[30.H.D.+16.(H−H′).D] in mm/km, (error<10%), whereH, H′, D are estimated in a map to the nearest 0.2km. The formula is valid for asymmetric sides of valleys (H, H′) and can easily be corrected for special shapes. It can be used for topographic refinement of low resolution geoids and for astrogeodetic projects. The “slope method” was tested in two alpine areas (heights up to 3800m, astrogeodetic deflection points every 170km 2) and resulted in a geoid accuracy of ±3cm. In first order triangulation networks (astro points every 1000km 2) or for gravimetric deflections the accuracy is about 10cm per 30km. Since a map scale of 1∶500.000 is sufficient, the method is suitable for developing countries, too.  相似文献   

10.
This research deals with some theoretical and numerical problems of the downward continuation of mean Helmert gravity disturbances. We prove that the downward continuation of the disturbing potential is much smoother, as well as two orders of magnitude smaller than that of the gravity anomaly, and we give the expression in spectral form for calculating the disturbing potential term. Numerical results show that for calculating truncation errors the first 180 of a global potential model suffice. We also discuss the theoretical convergence problem of the iterative scheme. We prove that the 5×5 mean iterative scheme is convergent and the convergence speed depends on the topographic height; for Canada, to achieve an accuracy of 0.01 mGal, at most 80 iterations are needed. The comparison of the “mean” and “point” schemes shows that the mean scheme should give a more reasonable and reliable solution, while the point scheme brings a large error to the solution. Received: 19 August 1996 / Accepted: 4 February 1998  相似文献   

11.
In order to achieve to GPS solutions of first-order accuracy and integrity, carrier phase observations as well as pseudorange observations have to be adjusted with respect to a linear/linearized model. Here the problem of mixed integer-real valued parameter adjustment (IRA) is met. Indeed, integer cycle ambiguity unknowns have to be estimated and tested. At first we review the three concepts to deal with IRA: (i) DDD or triple difference observations are produced by a properly chosen difference operator and choice of basis, namely being free of integer-valued unknowns (ii) The real-valued unknown parameters are eliminated by a Gauss elimination step while the remaining integer-valued unknown parameters (initial cycle ambiguities) are determined by Quadratic Programming and (iii) a RA substitute model is firstly implemented (real-valued estimates of initial cycle ambiguities) and secondly a minimum distance map is designed which operates on the real-valued approximation of integers with respect to the integer data in a lattice. This is the place where the integer Gram-Schmidt orthogonalization by means of the LLL algorithm (modified LLL algorithm) is applied being illustrated by four examples. In particular, we prove that in general it is impossible to transform an oblique base of a lattice to an orthogonal base by Gram-Schmidt orthogonalization where its matrix enties are integer. The volume preserving Gram-Schmidt orthogonalization operator constraint to integer entries produces “almost orthogonal” bases which, in turn, can be used to produce the integer-valued unknown parameters (initial cycle ambiguities) from the LLL algorithm (modified LLL algorithm). Systematic errors generated by “almost orthogonal” lattice bases are quantified by A. K. Lenstra et al. (1982) as well as M. Pohst (1987). The solution point of Integer Least Squares generated by the LLL algorithm is = (L')−1[L'◯] ∈ ℤ m where L is the lower triangular Gram-Schmidt matrix rounded to nearest integers, [L], and = [L'◯] are the nearest integers of L'◯, ◯ being the real valued approximation of z ∈ ℤ m , the m-dimensional lattice space Λ. Indeed due to “almost orthogonality” of the integer Gram-Schmidt procedure, the solution point is only suboptimal, only close to “least squares.” ? 2000 John Wiley & Sons, Inc.  相似文献   

12.
The term “entity” covers, when used in the field of electronic data processing, the meaning of words like “thing”, “being”, “event”, or “concept”. Each entity is characterized by a set of properties. An information element is a triple consisting of an entity, a property and the value of a property. Geodetic information is sets of information elements with entities being related to geodesy. This information may be stored in the form ofdata and is called ageodetic data base provided (1) it contains or may contain all data necessary for the operations of a particular geodetic organization, (2) the data is stored in a form suited for many different applications and (3) that unnecessary duplications of data have been avoided. The first step to be taken when establishing a geodetic data base is described, namely the definition of the basic entities of the data base (such as trigonometric stations, astronomical stations, gravity stations, geodetic reference-system parameters, etc...). Presented at the “International Symposium on Optimization of Design and Computation of Control Networks”, Sopron, Hungary, July 1977.  相似文献   

13.
An absolute measurement of the gravitational acceleration “g” has been made at the National Standards Laboratory, Chippendale, N.S.W., Australia. The determination was made by studying the free motion of a body projected vertically upwards in a vacuum and the time between its initial and final passages through two horizontal planes of known vertical separation was measured. The measured value ofg at a point 12 metres above the floor in room B. 37 of the National Standards Laboratory is 9.7967134 m/s2 The corresponding value at floor level at the BMR gravity station is 9.796717 m/s2 Paper presented at the meeting of the International Gravimetric Commission, Paris 7–11 September 1970.  相似文献   

14.
Calibration of satellite gradiometer data aided by ground gravity data   总被引:1,自引:0,他引:1  
Parametric least squares collocation was used in order to study the detection of systematic errors of satellite gradiometer data. For this purpose, simulated data sets with a priori known systematic errors were produced using ground gravity data in the very smooth gravity field of the Canadian plains. Experiments carried out at different satellite altitudes showed that the recovery of bias parameters from the gradiometer “measurements” is possible with high accuracy, especially in the case of crossing tracks. The mean value of the differences (original minus estimated bias parameters) was relatively large compared to the standard deviation of the corresponding second-order derivative component at the corresponding height. This mean value almost vanished when gravity data at ground level were combined with the second-order derivative data set at satellite altitude. In the case of simultaneous estimation of bias and tilt parameters from ∂2 T/∂z 2“measurements”, the recovery of both parameters agreed very well with the collocation error estimation. Received: 10 October 1996 / Accepted 25 May 1998  相似文献   

15.
 The Cartesian moments of the mass density of a gravitating body and the spherical harmonic coefficients of its gravitational field are related in a peculiar way. In particular, the products of inertia can be expressed by the spherical harmonic coefficients of the gravitational potential as was derived by MacCullagh for a rigid body. Here the MacCullagh formulae are extended to a deformable body which is restricted to radial symmetry in order to apply the Love–Shida hypothesis. The mass conservation law allows a representation of the incremental mass density by the respective excitation function. A representation of an arbitrary Cartesian monome is always possible by sums of solid spherical harmonics multiplied by powers of the radius. Introducing these representations into the definition of the Cartesian moments, an extension of the MacCullagh formulae is obtained. In particular, for excitation functions with a vanishing harmonic coefficient of degree zero, the (diagonal) incremental moments of inertia also can be represented by the excitation coefficients. Four types of excitation functions are considered, namely: (1) tidal excitation; (2) loading potential; (3) centrifugal potential; and (4) transverse surface stress. One application of the results could be model computation of the length-of-day variations and polar motion, which depend on the moments of inertia. Received: 27 July 1999 / Accepted: 24 May 2000  相似文献   

16.
The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S 1(0, 0, , ) ofBox 0.1 (R = R 0) andV 1(0, 0, , ) ofBox 0.2 (R = R 0) which depend on theevaluation point {0, 0} S R0 2 and thesampling point {, } S R0 2 ofgravity anomalies (, ) with respect to a normal gravitational field of typegm/R (free air anomaly). If the evaluation point is taken as the meta-north pole of theStokes reference sphere S R0 2 , theStokes function, and theVening-Meinesz function, respectively, takes the formS() ofBox 0.1, andV 2() ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, } ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {, } onto the tangent plane T0S R0 2 at {0, 0} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S 2(),S 3(r),,S 6(r) as well as the correspondingStokes-Helmert functions H 2(),H 3(r),,H 6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V 2(),V 3(r),,V 6(r) as well as the correspondingVening-Meinesz-Helmert functions Q 2(),Q 3(r),,Q 6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS 2() – (sin /2)–1,S 3(r) – (sinr/2R 0)–1,,S 6(r) – 2R 0/r andV 2() + (cos /2)/2(sin2 /2),V 3(r) + (cosr/2R 0)/2(sin2 r/2R 0),, illustrate the systematic errors in theflat Stokes function 2/ or flatVening-Meinesz function –2/2. The newly derivedStokes functions S 3(r),,S 6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV 3(r),,V 6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type equidistant, conformal and equiareal.  相似文献   

17.
Modern models of the Earth's gravity field are developed in the IERS (International Earth Rotation Service) terrestrial reference frame. In this frame the mean values for gravity coefficients of the second degree and first order, C 21(IERS) and S 21(IERS), by the current IERS Conventions are recommended to be calculated by using the observed polar motion parameters. Here, it is proved that the formulae presently employed by the IERS Conventions to obtain these coefficients are insufficient to ensure their values as given by the same source. The relevant error of the normalized mean values for C 21(IERS) and S 21(IERS) is 3×10−12, far above the adopted cutoff (10−13) for variations of these coefficients. Such an error in C 21 and S 21 can produce non-modeled perturbations in motion prediction of certain artificial Earth satellites of a magnitude comparable to the accuracy of current tracking measurements. Received: 14 September 1998 / Accepted: 20 May 1999  相似文献   

18.
The resolution of a nonlinear parametric adjustment model is addressed through an isomorphic geometrical setup with tensor structure and notation, represented by a u-dimensional “model surface” embedded in a flat n-dimensional “observational space”. Then observations correspond to the observational-space coordinates of the pointQ, theu initial parameters correspond to the model-surface coordinates of the “initial” pointP, and theu adjusted parameters correspond to the model-surface coordinates of the “least-squares” point . The least-squares criterion results in a minimum-distance property implying that the vector Q must be orthogonal to the model surface. The geometrical setup leads to the solution of modified normal equations, characterized by a positive-definite matrix. The latter contains second-order and, optionally, thirdorder partial derivatives of the observables with respect to the parameters. This approach significantly shortens the convergence process as compared to the standard (linearized) method.  相似文献   

19.
 When standard boundary element methods (BEM) are used in order to solve the linearized vector Molodensky problem we are confronted with two problems: (1) the absence of O(|x|−2) terms in the decay condition is not taken into account, since the single-layer ansatz, which is commonly used as representation of the disturbing potential, is of the order O(|x|−1) as x→∞. This implies that the standard theory of Galerkin BEM is not applicable since the injectivity of the integral operator fails; (2) the N×N stiffness matrix is dense, with N typically of the order 105. Without fast algorithms, which provide suitable approximations to the stiffness matrix by a sparse one with O(N(logN) s ), s≥0, non-zero elements, high-resolution global gravity field recovery is not feasible. Solutions to both problems are proposed. (1) A proper variational formulation taking the decay condition into account is based on some closed subspace of co-dimension 3 of the space of square integrable functions on the boundary surface. Instead of imposing the constraints directly on the boundary element trial space, they are incorporated into a variational formulation by penalization with a Lagrange multiplier. The conforming discretization yields an augmented linear system of equations of dimension N+3×N+3. The penalty term guarantees the well-posedness of the problem, and gives precise information about the incompatibility of the data. (2) Since the upper left submatrix of dimension N×N of the augmented system is the stiffness matrix of the standard BEM, the approach allows all techniques to be used to generate sparse approximations to the stiffness matrix, such as wavelets, fast multipole methods, panel clustering etc., without any modification. A combination of panel clustering and fast multipole method is used in order to solve the augmented linear system of equations in O(N) operations. The method is based on an approximation of the kernel function of the integral operator by a degenerate kernel in the far field, which is provided by a multipole expansion of the kernel function. Numerical experiments show that the fast algorithm is superior to the standard BEM algorithm in terms of CPU time by about three orders of magnitude for N=65 538 unknowns. Similar holds for the storage requirements. About 30 iterations are necessary in order to solve the linear system of equations using the generalized minimum residual method (GMRES). The number of iterations is almost independent of the number of unknowns, which indicates good conditioning of the system matrix. Received: 16 October 1999 / Accepted: 28 February 2001  相似文献   

20.
The now classical collocation method in geodesy has been derived byH. Moritz (1970; 1973) within an appropriate Mixed Linear Model. According toB. Schaffrin (1985; 1986) even a generalized form of the collocation solution can be proved to represent a combined estimation/prediction procedure of typeBLUUE (Best Linear Uniformly Unbiased Estimation) for the fixed parameters, and of type inhomBLIP (Best inhomogeneously LInear Prediction) for the random effects with not necessarily zero expectation. Moreover, “robust collocation” has been introduced by means of homBLUP (Best homogeneously Linear weakly Unbiased Prediction) for the random effects together with a suitableLUUE for the fixed parameters. Here we present anequivalence theorem which states that the robust collocation solution in theoriginal Mixed Linear Model can identically be derived as traditionalLESS (LEast Squares Solution) in amodified Mixed Linear Model without using artifacts like “pseudo-observations”. This allows us a nice interpretation of “robust collocation” as an adjustment technique in the presence of “weak prior information”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号