首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The wave propagation in a finitely conducting, self-gravitating, non-relativistic hydromagnetic medium with temperature gradient and a heat-energy transport into it has been considered. Firstly, a General Dispersion Relation (G.D.R.) has been derived. The interest has been kept limited for the study of one dimensional wave propagation in a typical medium where magnetic field and it's gradient, density gradient, temperature gradient are all along the direction of wave propagation. The D.R. of such a medium follows from G.D.R. In particular, the effect of temperature gradient on the wave propagation has been studied. Analytical expressions for the wave parameters have been derived under different conditions. It has been found that the longitudinal waves could be sufficiently energetic for being unstable by the temperature gradient. Further, the modified Jeans' criterion (depending on temperature gradient), a criterion important for stability, has also been obtained.On assuming the gas medium in the central region ( 10 pc) of our Galaxy to behave like hydromagnetic fluid, and the direction of wave propagation (z-direction) as the direction perpendicular to the Galactic plane, few numerical estimations for the wave parameters (like wave lengths, phase velocity, etc.) have been made (as application of the above theoretical discussions). It has been found that the phase velocity of longitudinal waves at 1 pc level is at least 170 kms–1 while at the 10 pc level the longitudinal waves of length less than a parsec may propagate smoothly through the medium. It has been suggested that (i) in the central region ( 10 pc) of our Galaxy the temperature gradient could be one of the major causes of the mass-outflow along the direction perpendicular to the Galactic plane (ii) outside the central region ( 10 pc) of our Galaxy, there may be long term consequences of such mass-outflow like Halo formation.  相似文献   

2.
《Planetary and Space Science》2007,55(10):1358-1367
Propagation of plasma-acoustic wave has been studied in magnetized plasma contaminated with dust charged grains. It has shown that, because of the configuration of magnetized plasma contaminated with dust charge fluctuation, pseudopotential method fails to derive nonlinear wave equation. We thus exercise an alternate approach to yield wave equation in the form of Sagdeev-like potential equation which enables the success to study the nonlinear waves. Again a modified mathematical formalism known as tanh-method has the merit to evaluate the soliton features in relation to its expectation in space. The method has its success in finding the solitary waves along with other exciting formation of shock-like wave, soliton radiation in soliton propagation. The results have more realistic interpretation in showing explicitly the interaction of magnetic field and impurity caused by dust charge variation.  相似文献   

3.
Wave propagation is considered in self-gravitating collisionless magnetized plasma, when the Larmor frequency exceeds the plasma frequency. The external magnetic field is assumed to be strong and a modified two-fluids theory is used to describe the plasma. We find that there are three modes of wave propagation parallel to the magnetic field. The condition of hose instability is affected. The change in the dispersion relation due to the two-fluids theory is also discussed.  相似文献   

4.
The propagation of weak waves has been studied by taking into account the influence of thermal radiative field. The singular surface theory is used to determine the modes of wave propagation and to evaluate the behaviour at the wave head. The effects of thermal radiation, conduction and the initial wave front curvature on the nonlinear breaking of weak waves are discussed. It is concluded that, under the thermal radiation effects, the shock wave formation is either disallowed or delayed. On the other hand, the thermal conduction effects destabilize the waves.  相似文献   

5.
The effects of finite ion Larmor radius (FLR) corrections, Hall current and radiative heat-loss function on the thermal instability of an infinite homogeneous, viscous plasma incorporating the effects of finite electrical resistivity, thermal conductivity and permeability for star formation in interstellar medium have been investigated. A general dispersion relation is derived using the normal mode analysis method with the help of relevant linearized perturbation equations of the problem. The wave propagation is discussed for longitudinal and transverse directions to the external magnetic field and the conditions of modified thermal instabilities and stabilities are discussed in different cases. We find that the thermal instability criterion gets modified into radiative instability criterion. The finite electrical resistivity removes the effect of magnetic field and the viscosity of the medium removes the effect of FLR from the condition of radiative instability. The Hall parameter affects only the longitudinal mode of propagation and it has no effect on the transverse mode of propagation. Numerical calculation shows stabilizing effect of viscosity, heat-loss function and FLR corrections, and destabilizing effect of finite resistivity and permeability on the thermal instability. The outcome of the problem discussed the formation of star in the interstellar medium.  相似文献   

6.
The ducted propagation of PP micropulsations along field-aligned columns of enhanced ionization is considered, the ‘dotting’ of PP spectrograms being regarded as a consequence of simultaneous propagation along a group of such ducts. Theory introduced in a previous paper is modified so as to remove an inconsistency, and as a result of this modification there is coupling between the two types of circular polarization (L and R) which occur. Dispersion of a PP wave packet is, however, still characteristic of L mode propagation, and interpretation of PP spectrograms is largely unaffected.  相似文献   

7.
The propagation of sonic discontinuity in conducting and radiating atmosphere has been discussed under the influence of magnetic field. The velocity of sonic wave and its termination into shock wave has been obtained. We have also obtained the critical time at which sonic wave terminates into shock wave. There is significant effect of magnetic field on sonic velocity and its termination into shock wave.  相似文献   

8.
Investigation of nonlinear wave modulation of electron-acoustic solitary wave packets in planar as well as nonplanar geometry is carried out for an unmagnetized two temperature plasma composed of cold and hot (featuring q-nonextensive distribution) electrons with stationary ions. It is shown that in such plasma, propagation of EA wave packets is governed by a modified NLSE which accounts for the geometrical effect and the nonextensivity of the hot electron species. It is found that the nature of the modulational instabilities would be significantly modified due to the geometrical effects, density ratio α of the hot-to-cold electrons species as well as their temperature ratio θ. Also, there exists a modulation instability period for the cylindrical and spherical envelope excitations, which does not exist in the one-dimensional case. Furthermore, spherical EA solitary wave packets are more structurally stable to perturbations than the cylindrical ones. The relevance of the current study to EA wave modulation in auroral zone plasma is highlighted.  相似文献   

9.
The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ions, and nonthermal electrons is studied. By using the reductive perturbation theory, the Kadomtsev–Petviashivili (KP) equation is derived. The energy of the soliton has been calculated. By using standard normal modes analysis a linear dispersion relation has been obtained. The effects of variable dust charge on the energy of the soliton and the angular frequency of the linear wave are also discussed. It is shown that the amplitude of solitary waves of the KP equation diverges at the critical values of plasma parameters. We derive solitons of a modified KP equation with finite amplitude in this situation.  相似文献   

10.
Field intensities within the ionospheric medium during nonlinear transient processes due to interactions among different modes of propagation have been derived taking into consideration the influence of geomagnetic field. The expression for angular distribution of power during wave propagation has also been evaluated.  相似文献   

11.
For low angular momentum axially symmetric accretion flow maintained in hydrostatic equilibrium along the vertical direction, the value of the Mach number at the critical points deviates from unity, resulting in the non-isomorphism of the critical and the sonic points. This introduces several undesirable complexities while analytically dealing with the stationary integral accretion solutions and the corresponding phase portraits. We propose that the introduction of an effective dynamical sound speed may resolve the issue in an elegant way. We linear perturb the full spacetime-dependent general relativistic Euler and the continuity equations governing the structure and the dynamics of accretion disc in vertical equilibrium around Schwarzschild black holes and identify the sonic metric embedded within the stationary background flow. Such metric describes the propagation of the linear acoustic perturbation inside the accretion flow. We construct the wave equation corresponding to that acoustic perturbation and find the speed of propagation of such perturbation. We finally show that the ordinary thermodynamic sound speed should be substituted by the speed of propagation of the linear acoustic wave which has been obtained through the dynamical perturbation. Such substitution will make the value of Mach number at the critical point to be equal to unity. Use of the aforementioned effective sound speed will lead to a modified stationary disc structure where the critical and the sonic points will be identical.  相似文献   

12.
A complete dispersion relation for a whistler mode wave propagation in an anisotropic warm ion-electron magnetoplasma in the presence of parallel electric field using the dispersion relation for a circularly polarized wave has been derived. The dispersion relation includes the effect of anisotropy for the ion and electron velocity distribution functions. The growth rate of electron-ion cyclotron waves for different plasma parameters observed atL = 6.6R E has been computed and the results have been discussed in detail in the light of the observed features of VLF emissions and whistlers. The role of the combination of ion-cyclotron and whistler mode electromagnetic wave propagation along the magnetic field in an anisotropic Maxwellian weakly-ionized magnetoplasma has been studied.  相似文献   

13.
Dynamical evolution of a relativistic beam ejected from a galactic centre is studied using the similarity method for the relativistic winds flowing through channels. The expansion phase is divided into two stages: A relativistic expansion and a non-relativistic expansion stage. By the dimensional analysis for a relativistic wind, the propagation law of the expanding wave front is obtained. When the front moves relativistically, the density of the ambient matter observed in the co-moving frame of the front increases by the Lorentz contraction and mass increment, and the propagation law obtained in the classical theory is modified by these relativistic effects. On the basis of a perturbation method, a new similarity method for a relativistic flow whose front velocity is varing with the expansion is presented. The flow structures of the relativistic wind are given. With the expansion of a beam, the inward-facing shock wave is more separated from the front of the outward-expanding shock wave and its shock strength becomes stronger than that of the outward-expanding shock wave when the ejected beam consists of energetic particles. The evolutions of the extragalactic double sources are considered. The relative position of the hot spot in the radio map is presented at each stage of the expansion and discussed with the observational radio maps. The time variation of the radio emission is predicted.  相似文献   

14.
On the basis of kinetic theory, the electron-acoustic instability is studied in a three component plasma consisting of a hot electron-beam and stationary cool electrons and ions. The transformation of the instability into the modified two-stream instability for wave propagation oblique to the confining magnetic field is also investigated. In our model both the electrons and ions are magnetized, with the beam drifting across the external magnetic field. The dependence of the growth rate on plasma parameters, such as electron-beam density, electron-beam speed, magnetic field strength and propagation angle, is examined. In addition, we investigate the effect of anisotropies in the velocity distributions of the hot electron-beam and the cool electrons on the instability growth rate.  相似文献   

15.
Magnetohydrodynamics waves and instabilities in rotating, self-gravitating, anisotropic and collision-less plasma were investigated. The general dispersion relation was obtained using standard mode analysis by constructing the linearized set of equations. The wave mode solutions and stability properties of the dispersion relations are discussed in the propagations transverse and parallel to the magnetic field. These special cases are discussed considering the axis of rotation to be in transverse and along the magnetic field. In the case of propagation transverse to the magnetic field with axis of rotation parallel to the magnetic field, we derived the dispersion relation modified by rotation and self-gravitation. In the case of propagation parallel to the magnetic field with axis of rotation perpendicular to the magnetic field, we obtained two separate modes affected by rotation and self-gravitation. This indicates that the Slow mode and fire hose instability are not affected by rotation. Numerical analysis was performed for oblique propagation to show the effect of rotation and self-gravitation. It is found that rotation has an effect of reducing the value of the phase speeds on the fast and Alfven wave modes, but self-gravitation affect only on the Slow modes, thereby reducing the phase speed compare to the ideal magneto hydrodynamic (MHD) case.  相似文献   

16.
In this paper propagation of spherical shock waves with radiation heat flux is considered in an exponentially increasing medium. The shock wave moves with variable velocity and the total energy of the wave is variable. For different values of radiation parameter, the numerical solution has been made and the nature of the field variables are illustrated by the tables.  相似文献   

17.
P. S. Cally 《Solar physics》1987,108(1):183-189
It has been widely conjectured that magnetohydrodynamic (MHD) waves may provide the extra momentum or energy required to explain the high speed solar wind streams that originate in coronal holes. Although the magnetic structuring inherent in this problem has been incorporated into models of the bulk flow, this is not generally true of the associated treatments of wave propagation. In particular, as pointed out by Davila (1985), we might generally expect the magnetic geometry to substantially modify those waves whose wavelength is comparable to the hole width. Using both a geometrical optics and an eigenmode approach, Davila addressed the question of wave propagation in a simple uniform width flux slab model of a coronal hole and concluded
  1. the hole may act as a ‘leaky wave guide’, i.e., waves travelling along it may leak into the surrounding corona, but
  2. the group velocity of waves with periods in a physically relevant range (around 100 s) is downward, indicating that such waves cannot carry energy into the solar wind and therefore cannot be driving it.
We agree with (i) but argue that (ii) results from a mistaken interpretation of a dispersion relation, and is incorrect. Furthermore, we apply the cylindrical tube leaky wave approach of Cally (1986) to a simple coronal hole model, and find two wavetypes with substantial upward energy fluxes. However, of these, we argue that the so-called ‘trig modes’ (geometry modified fast waves) leak so profusely that they are unable to transport energy over the distance required; the non-axisymmetric ‘thin tube’ modes, though, do not suffer from this disability.  相似文献   

18.
A theoretical model of shock wave propagation in a self-gravitating radiative magneto-hydrodynamic medium has been studied. The effects of the magnetic field, radiation, and gravitation have been discussed separately. The results discussed depend upon the numerical variations of flow variables behind the shock.  相似文献   

19.
The relation between the ejected plasma cloud and the shock wave propagating ahead of it is examined for 27 pairs of such events. The flare sprays and the eruptive prominences observed in H line as well as the fast-moving sources of type-IV radio bursts have been considered as such ejected plasma clouds. Propagation of the shock wave in the solar corona has been examined from the observations of type-II radio bursts. Using the Parker model of the propagation of a shock wave, the shock wave velocity has been compared with the plasma cloud velocity. Energy interconnection between these two events has been studied. In the majority of the investigated cases there exists an energetic interconnection between the plasma cloud and the shock wave.  相似文献   

20.
The propagation of a magnetogasdynamic shock wave originating in a stellar interior, is ocnsidered when it approaches the surfaces of the star. The flow behind the shock wave is assumed isothermal rather than adiabatic to stimulate the conditions of large radiative transfer near the stellar surface. The product solution of McVittie has been used to obtain exact solution of the problem. It has been obtained that velocity, density, pressure and magnetic field increases as we move from shock surface towards the nucleus of the star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号