首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the spatiotemporal changes pertaining to land use land cover (LULC) and the driving forces behind these changes in Doodhganga watershed of Jhelum Basin. An integrated approach utilizing remote sensing and geographic information system (GIS) was used to extract information pertaining to LULC change. Multi-date LULC maps were generated by analyzing remotely sensed images of three dates which include LandSat TM 1992, LandSat ETM+ 2001 and IRS LISS-III 2005. The LULC information was extracted by adopting on-screen image interpretation technique in a GIS environment at 1:25,000 scale. Based on the analysis, changes were observed in the spatial extent of different LULC types over a period of 13 years. Significant changes were observed in the spatial extent of forest, horticulture, built-up and agriculture. Forest cover in the watershed has decreased by 1.47 %, Agricultural by 0.93 % while as built-up area has increased by 0.92 %. The net decrease in forest cover and agriculture land indicate the anthropogenic interference into surrounding natural ecosystems. From the study it was found that the major driving forces for these changes were population growth and changes in the stream discharge. The changes in the stream discharge were found responsible for the conversion of agricultural land into horticulture, as horticulture has increased by 1.14 % in spatial extent. It has been found that increasing human population together with decreasing stream discharge account for LULC changes in the watershed. Therefore, the existing policy framework needs to focus upon mitigating the impacts of forces responsible for LULC change so as to ensure sustainable development of land resources.  相似文献   

2.
Flooding is a major environmental hazard in Poland with risks that are likely to increase in the future. Land use and land cover (LULC) have a strong influencing on flood risk. In the Polish Carpathians, the two main projected land use change processes are forest expansion and urbanization. These processes have a contradictory impact on flood risk, which makes the future impact of LULC changes on flooding in the Carpathians hard to estimate. In this paper, we investigate the impact of the projected LULC changes on future flood risk in the Polish Carpathians for the test area of Ropa river basin. We used three models of spatially explicit future LULC scenarios for the year 2060. We conduct hydrological simulations for the current state and for the three projected land use scenarios (trend extrapolation, ‘liberalization’ and ‘self-sufficiency’). In addition, we calculated the amount of flood-related monetary losses, based on the current flood plain area and both actual and projected land use maps under each of the three scenarios. The results show that in the Ropa river, depending on scenario, either peak discharge decreases due to the forest expansion or the peak discharge remains constant—the impact of LULC changes on the hydrology of such mountainous basins is relatively low. However, the peak discharges are very diverse across sub-catchments within the modeling area. Despite the overall decrease of peak discharge, there are areas of flow increase and there is a substantial projected increase in flood-related monetary losses within the already flood-prone areas, related to the projected degree of urbanization.  相似文献   

3.
In this study, the effects of changes in historical and projected land use land cover (LULC) on monthly streamflow and sediment yield for the Netravati river basin in the Western Ghats of India are explored using land use maps from six time periods (1972, 1979, 1991, 2000, 2012, and 2030) and the soil and water assessment tool (SWAT). The LULC for 2030 is projected using the land change modeller with the assumption of normal growth. The sensitivity analysis, model calibration, and validation indicated that the SWAT model could reasonably simulate streamflow and sediment yield in the river basin. The results showed that the spatial extent of the LULC classes of urban (1.80–9.96%), agriculture (31.38–55.75%), and water bodies (1.48–2.66%) increased, whereas that of forest (53.04–27.03%), grassland (11.17–4.41%), and bare land (1.09–0.16%) decreased from 1972 to 2030. The streamflow increased steadily (7.88%) with changes in LULC, whereas the average annual sediment yield decreased (0.028%) between 1972 and 1991 and increased later (0.029%) until 2012. However, it may increase by 0.43% from 2012 to 2030. The results indicate that LULC changes in urbanization and agricultural intensification have contributed to the increase in runoff, amounting to 428.65 and 58.67 mm, respectively, and sediment yield, amounting to 348 and 43 ton/km2, respectively, in the catchment area from 1972 to 2030. The proposed methodology can be applied to other river basins for which temporal digital LULC maps are available for better water resource management plans.  相似文献   

4.
The present study focuses on an assessment of the impact of future water demand on the hydrological regime under land use/land cover (LULC) and climate change scenarios. The impact has been quantified in terms of streamflow and groundwater recharge in the Gandherswari River basin, West Bengal, India. dynamic conversion of land use and its effects (Dyna-CLUE) and statistical downscaling model (SDSM) are used for quantifying the future LULC and climate change scenarios, respectively. Physical-based semi-distributed model Soil and Water Assessment Tool (SWAT) is used for estimating future streamflow and spatiotemporally distributed groundwater recharge. Model calibration and validation have been performed using discharge data (1990–2016). The impacts of LULC and climate change on hydrological variables are evaluated with three scenarios (for the years 2030, 2050 and 2080). Temperature Vegetation Dyrness Index (TVDI) and evapotranspiration (ET) are considered for estimation of water-deficit conditions in the river basin. Exceedance probability and recurrence interval representation are considered for uncertainty analysis. The results show increased discharge in case of monsoon season and decreased discharge in case of the non-monsoon season for the years 2030 and 2050. However, a reverse trend is obtained for the year 2080. The overall increase in groundwater recharge is visible for all the years. This analysis provides valuable information for the irrigation water management framework.  相似文献   

5.
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change.  相似文献   

6.
Wular Lake, one of the largest freshwater lakes of Jhelum River Basin, is showing signs of deterioration due to the anthropogenic impact and changes in the land use/land cover (LULC) and hydrometeorological climate of the region. The present study investigated the impacts of temporal changes in LULC and meteorological and hydrological parameters to evaluate the current status of Wular Lake environs using multisensor, multitemporal satellite and observatory data. Satellite images acquired for the years 1992, 2001, 2005, and 2008 were used for determining changes in the LULC in a buffer area of 5 km2 around the Wular Lake. LULC mapping and change analysis using the visual interpretation technique indicated significant changes around the Wular Lake during the last two decades. Reduction in lake area from 24 km2 in 1992 to 9 km2 in 2008 (?62.5 %) affected marshy lands, the habitat of migratory birds, which also exhibited drastic reduction from 85 km2 in 1992 to 5 km2 in 2008 (?94.117 %). Marked development of settlements (642.85 %) in the peripheral area of the Wular Lake adversely affected its varied aquatic flora and fauna. Change in climatic conditions, to a certain extent, is also responsible for the decrease in water level and water spread of the lake as witnessed by decreased discharge in major tributaries (Erin and Madhumati) draining into the Wular Lake.  相似文献   

7.
Land use and land cover (LULC) changes caused by human activities have strong influences on regional environment. Land surface temperate plays an important role in studying the impact of LULC changes on regional environment. In this paper, remotely sensed thermal infrared data were used to assess land surface temperature (LST) in the Weigan and Kuqa river oasis, Xingjiang, one of the important agricultural areas in the northwestern China. The present study deals with the extraction of LST and the relationship between LULC changes using Landsat 5 TM acquired on September 25, 1989, and September 6, 2011. The results indicate that the surface temperature of water body, bare land, and desert changed significantly between 1989 and 2011. In general, the LST was lower in 1989 than in 2011. There were no lower, higher, and highest temperature zones in 1989. However, the minimum temperature was 10.7 °C in 1989 and 15.8 °C in 2011. The maximum temperature was 29.3 °C in 1989 and 41.8 °C in 2011. Regarding the LULC types, the desert features in the Gobi Desert warmed more quickly than the oasis. So, the temperature of the oasis was lower than the surrounded areas, resulting in a so-called “cold island” phenomenon. Oasis cold island effect index (OCIEI) shows that stability of oasis had rising trend from 1989 to 2011. In addition, the impact of LULC changes on LST was analyzed and the driving forces were also analyzed from 1977 to 2011. This study is significant for further understanding of the energy exchange status of soil-plant-atmospheric system and the regional heat distribution in arid and semi-arid areas of the northwest China.  相似文献   

8.
The Huajiang and Hongfenghu demonstration areas represent typical karst landforms and rocky desertification landscapes in Guizhou, China. These were selected for a comparison of rocky desertification and land use cover. Based mainly on 5 m resolution Spot 5, remote sensing images, topographic maps (1:10,000) and land use maps, the intensity and extent of rocky desertification, and slope characteristics of the two areas were interpreted. Spatial overlay analysis was used to compare the land use/land cover (LULC) and rocky desertification within each. The results were compared using the concepts of rocky desertification occurrence (RDO) among LULC classes and the structure value of desertification land (SVDL). The results demonstrated that (1) the landforms and extent of rocky desertification in the two areas are significantly different and the proportion of very steep slopes is one of the reasons leading to large areas of rocky desertification; (2) the RDO and SVDL show significant differences between the two areas; also rocky desertification intensity in various LULC classes cannot be measured in terms of RDO. High RDO may occur in low-intensity desertification land, and vice versa; (3) the structural characteristics of rocky desertification among various LULC are consistent among the woodland, “bare land” and “other grassland” land use classes in the two areas, but sequence slight > moderate > intense is not consistent between the areas. For the rocky desertification control, the present authors consider that the spatial distribution differences of rocky desertification and LULC among areas with different landform types area combined with the intensity of rocky desertification should be used in designing appropriate measures for control of desertification and rehabilitation of land.  相似文献   

9.
Information on use/land cover change is important for planners and decision makers to implement sustainable use and management of resources. This study was intended to assess the land use land cover (LULC) change in the Koga watershed. The MSS of 1973, TM images of 1986, 1995 and 2011 were used together with survey and demographic data to detect the drivers of land cover changes. The result revealed that a remarkable LULC change occurred in the study area for the past thirty eight years. The area of cultivated and settlement has increased by 7054.6 ha, while, grass and bush lands decreased by 4846.5 and 3376 ha respectively. Wetland also declined from 580.2 ha to 68.3 ha. The growing demand for cultivable land and fuel wood were the major causes to the deterioration of grass and bush lands. Hence, the appropriate land use policy should be employed to sustain available resource in the watershed.  相似文献   

10.
In recent times, soil erosion interlocked with land use and land cover (LULC) changes has become one of the most important environmental issues in developing countries. Evaluation of this complex interaction between LULC change and soil erosion is indispensable in land use planning and conservation works. This paper analysed the impact of LULC change on soil erosion in the north-western highland Ethiopia over the period 1986–2016. Rib watershed, the area with dynamic LULC change and severe soil erosion problem, was selected as a case study site. Integrated approach that combined geospatial technologies with revised universal soil loss equation model was utilized to evaluate the spatio-temporal dynamics of soil loss over the study period. Pixel-based overlay of soil erosion intensity maps with LULC maps was carried out to understand the change in soil loss due to LULC change. Results showed that the annual soil loss in the study area varied from 0 to 236.5 t ha?1 year?1 (tons per hectare per year) in 1986 and 0–807 t ha?1 year?1 in 2016. The average annual soil loss for the entire watershed was estimated about 40 t ha?1 year?1 in 1986 comparing with 68 t ha?1 year?1 in 2016, a formidable increase. Soil erosion potential that was estimated to exceed the average soil loss tolerance level increased from 34.5% in 1986 to 66.8% in 2016. Expansion of agricultural land at the expense of grassland and shrubland was the most detrimental factor for severe soil erosion in the watershed. The most noticeable change in soil erosion intensity was observed from cropland with mean annual soil loss amount increased to 41.38 t ha?1 year?1 in 2016 from 26.60 in 1986. Moreover, the most successive erosion problems were detected in eastern, south-eastern and northern parts of the watershed. Therefore, the results of this study can help identify the soil erosion hot spots and conservation priority areas at local and regional levels.  相似文献   

11.
Historical and exact information about the land use/land cover change is very important for regional sustainable development. The aim of this paper is to determine the rapid changes in land use/land cover (LULC) pattern due to agriculture expansion, environmental calamities such as flood and government policies over Upper Narmada basin, India. Multi-temporal Landsat satellite images for years 1990, 2000, 2010 and 2015 were used to analyze and monitor the changes in LULC with an overall accuracy of more than 85%. Results revealed a potential decrease in natural vegetation (? 9.52%) due to the expansion of settlement (+ 0.52%) and cropland (+ 9.43%) from 1990 to 2015. In the present study, Cellular Automata and Markov (CA–Markov), an integrated tool was used to project the short-term LULC map of year 2030. The projected LULC (2030) indicated the expansion of built-up area along with the cropland and degradation in the vegetation area. The outcomes from the study can help as a guiding tool for protection of natural vegetation and the management of the built-up area. Additionally, it will help in devising the strategies to utilize every bit of land in the study area for decision makers.  相似文献   

12.
汾河上游土地利用变化及其水文响应研究   总被引:4,自引:1,他引:3  
以河岔水文站以上的汾河流域为研究区,采用土地利用转移矩阵和SWAT模型模拟方法,就汾河上游土地利用变化对水文过程的影响进行研究. 流域从1995-2000年,以耕地向林地和草地转变为主;从2000-2010年,城市建设用地不断增加,主要是对耕地的占用. 结果显示,在相同气候背景、不同土地利用情景(1995、2000年2010年)下,流域1992-2000年多年平均产水量微弱增加(分别为85.69 mm、85.75 mm和85.82 mm),主要因为耕地持续减少,草地和城市建设用地不断增加. 但是各年产水量的大小关系不完全一致,枯水年和平水年与丰水年存在差异,而土壤水分呈现一致的减少状况. 子流域水平上,降水条件同样影响水文过程对土地利用变化的响应程度. 以上结果表明,汾河流域在退耕还林还草政策等影响下,土地利用发生变化并且直接影响流域的水文过程,但是流域水文过程对土地利用变化的响应还受到降水的影响.  相似文献   

13.
Flooding in urban area is a major natural hazard causing loss of life and damage to property and infrastructure. The major causes of urban floods include increase in precipitation due to climate change effect, drastic change in land use–land cover (LULC) and related hydrological impacts. In this study, the change in LULC between the years 1966 and 2009 is estimated from the toposheets and satellite images for the catchment of Poisar River in Mumbai, India. The delineated catchment area of the Poisar River is 20.19 km2. For the study area, there is an increase in built-up area from 16.64 to 44.08% and reduction in open space from 43.09 to 7.38% with reference to total catchment area between the years 1966 and 2009. For the flood assessment, an integrated approach of Hydrological Engineering Centre-Hydrological Modeling System (HEC-HMS), HEC-GeoHMS and HEC-River analysis system (HEC-RAS) with HEC-GeoRAS has been used. These models are integrated with geographic information system (GIS) and remote sensing data to develop a regional model for the estimation of flood plain extent and flood hazard analysis. The impact of LULC change and effects of detention ponds on surface runoff as well as flood plain extent for different return periods have been analyzed, and flood plain maps are developed. From the analysis, it is observed that there is an increase in peak discharge from 2.6 to 20.9% for LULC change between the years 1966 and 2009 for the return periods of 200, 100, 50, 25, 10 and 2 years. For the LULC of year 2009, there is a decrease in peak discharge from 10.7% for 2-year return period to 34.5% for 200-year return period due to provision of detention ponds. There is also an increase in flood plain extent from 14.22 to 42.5% for return periods of 10, 25, 50 and 100 years for LULC change between the year 1966 and year 2009. There is decrease in flood extent from 4.5% for 25-year return period to 7.7% for 100-year return period and decrease in total flood hazard area by 14.9% due to provisions of detention pond for LULC of year 2009. The results indicate that for low return period rainfall events, the hydrological impacts are higher due to geographic characteristics of the region. The provision of detention ponds reduces the peak discharge as well as the extent of the flooded area, flood depth and flood hazard considerably. The flood plain maps and flood hazard maps generated in this study can be used by the Municipal Corporation for flood disaster and mitigation planning. The integration of available software models with GIS and remote sensing proves to be very effective for flood disaster and mitigation management planning and measures.  相似文献   

14.
In the current years, changing the land cover/land use had serious hydrological impacts affecting the flood events in the Kelantan River basin. The flood events at the east coast of the peninsular Malaysia got highly affected in the recent decades due to several factors like urbanisation, rapid changes in the utilisation of land and lack of meteorological (i.e. change in climate) and developmental monitoring and planning. The Kelantan River basin has been highly influenced due to a rapid change in land use during 1984 to 2013, which occurred in the form of transformation of agricultural area and deforestation (logging activities). In order to evaluate the influence of the modifications in land cover on the flood events, two hydrological regional models of rainfall-induced runoff event, the Hydrologic Engineering Center (HEC)-Hydrologic Modeling System (HMS) model and improved transient rainfall infiltration and grid-based regional model (Improved TRIGRS), were employed in this study. The responses of land cover changes on the peak flow and runoff volume were investigated using 10 days of hourly rainfall events from 20 December to the end of December 2014 at the study area. The usage of two hydrological models defined that the changes in land use/land cover caused momentous changes in hydrological response towards water flow. The outcomes also revealed that the increase of severe water flow at the study area is a function of urbanisation and deforestation, particularly in the conversion of the forest area to the less canopy coverage, for example, oil palm, mixed agriculture and rubber. The monsoon season floods and runoff escalate in the cleared land or low-density vegetation area, while the normal flow gets the contribution from interflow generated from secondary jungle and forested areas.  相似文献   

15.
There is no doubt that land cover and climate changes have consequences on landslide activity, but it is still an open issue to assess and quantify their impacts. Wanzhou County in southwest China was selected as the test area to study rainfall-induced shallow landslide susceptibility under the future changes of land use and land cover (LULC) and climate. We used a high-resolution meteorological precipitation dataset and frequency distribution model to analyse the present extreme and antecedent rainfall conditions related to landslide activity. The future climate change factors were obtained from a 4-member multi-model ensemble that was derived from statistically downscaled regional climate simulations. The future LULC maps were simulated by the land change modeller (LCM) integrated into IDRISI Selva software. A total of six scenarios were defined by considering the rainfall (antecedent conditions and extreme events) and LULC changes towards two time periods (mid and late XXI century). A physically-based model was used to assess landslide susceptibility under these different scenarios. The results showed that the magnitude of both antecedent effective recharge and event rainfall in the region will evidently increase in the future. Under the scenario with a return period of 100 years, the antecedent rainfall in summer will increase by up to 63% whereas the event rainfall will increase by up to 54% for the late 21st century. The most considerable changes of LULC will be the increase of forest cover and the decrease of farming land. The magnitude of this change can reach + 22.1% (forest) and –9.2% (farmland) from 2010 until 2100, respectively. We found that the negative impact of climate change on landslide susceptibility is greater than the stabilizing effect of LULC change, leading to an over decrease in stability over the study area. This is one of the first studies across Asia to assess and quantify changes of regional landslide susceptibility under scenarios driven by LULC and climate change. Our results aim to guide land use planning and climate change mitigation considerations to reduce landslide risk.  相似文献   

16.
As a catchment phenomenon, land use and land cover change (LULCC) has a great role in influencing the hydrological cycle. In this study, decadal LULC maps of 1985, 1995, 2005 and predicted-2025 of the Subarnarekha, Brahmani, Baitarani, Mahanadi and Nagavali River basins of eastern India were analyzed in the framework of the variable infiltration capacity (VIC) macro scale hydrologic model to estimate their relative consequences. The model simulation showed a decrease in ET with 0.0276% during 1985–1995, but a slight increase with 0.0097% during 1995–2005. Conversely, runoff and base flow showed an overall increasing trend with 0.0319 and 0.0041% respectively during 1985–1995. In response to the predicted LULC in 2025, the VIC model simulation estimated reduction of ET with 0.0851% with an increase of runoff by 0.051%. Among the vegetation parameters, leaf area index (LAI) emerged as the most sensitive one to alter the simulated water balance. LULC alterations via deforestation, urbanization, cropland expansions led to reduced canopy cover for interception and transpiration that in turn contributed to overall decrease in ET and increase in runoff and base flow. This study reiterates changes in the hydrology due to LULCC, thereby providing useful inputs for integrated water resources management in the principle of sustained ecology.  相似文献   

17.
Land use/land cover (LU/LC) that are significant elements for the interconnection of human activities and environment monitoring can be useful to find out the deviations of saving a maintainable environment. Remote sensing is a very useful tool for the affair of land use or land cover monitoring, which can be helpful to decide the allocation of land use and land cover. Supervised classification-maximum likelihood algorithm in GIS was applied in this study to detect land use/land cover changes observed in Kan basin using multispectral satellite data obtained from Landsat 5 (TM) and 8 (OLI) for the years 2000 and 2016, respectively. The main aim of this study was to gain a quantitative understanding of land use and land cover changes in Kan basin of Tehran over the period 2000–2016. For this purpose, firstly supervised classification technique was applied to Landsat images acquired in 2000 and 2016. The Kan basin was classified into five major LU/LC classes including: Built up areas, garden, pasture, water and bare-land. Change detection analysis was performed to compare the quantities of land cover class conversions between time intervals. The results revealed both increase and decrease of the different LU/LC classes from 2000 to 2016. The results indicate that during the study period, built-up land, and pastures have increased by 0.2% (76.4 km2) and 0.3% (86.03 km2) while water, garden and bare land have decreased by 0, 0.01% (3.62 km2) and 0.4% (117.168 km2), respectively. Information obtained from change detection of LU/LC can aid in providing optimal solutions for the selection, planning, implementation and monitoring of development schemes to meet the increasing demands of human needs in land management.  相似文献   

18.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

19.
Wular Lake is the largest freshwater lake of India located in north western Himalayas of Kashmir Valley which has got deteriorated over the period of time due to the enough human interference within its catchment areas. The purpose of the present research study is to identify the changes in land use and land cover in the Wular catchment as well as its transformation into other classes and its impact on the overall water quality of the lake. For the present study Landsat (TM) image of 1992 and Landsat-8 (OLI) of 2015 have been used for assessing the changes in land use/land cover. Supervised classification technique was used to generate LULC maps of different categories pertaining to study area for years 1992 and 2015. Regarding water quality, water samples were collected from five different spots of the lake in four different seasons of the year—from December 2014 to September 2015. The sites from which samples were collected are Vintage Park, Ashtungo, Watlab, Makhdomyari and Ningal as site 1, 2, 3, 4, and 5 respectively. Some parameters of water like temperature, transparency, depth, conductivity and pH were examined on the spot during the sample collection by their respective measuring instruments. The rest of the parameters were examined in hydrological laboratory within 24 h after collection following the standard methods of APHA (Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC, 2005). The relationship between the LULC classes and water quality parameters has been calculated with the help of SHDI which has shown both positive and as well as negative results.  相似文献   

20.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号