首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clayton  E.G.  Guzik  T.G.  Wefel  J.P. 《Solar physics》2000,195(1):175-194
During the 1990–1991 solar maximum, the CRRES satellite measured helium from 38 to 110 MeV n–1, with isotopic resolution, during both solar quiet periods and a number of large solar flares, the largest of which were seen during March and June 1991. Helium differential energy spectra and isotopic ratios are analyzed and indicate that (1) the series of large solar energetic particle (SEP) events of 2–22 June display characteristics consistent with CME-driven interplanetary shock acceleration; (2) the SEP events of 23–28 March exhibit signatures of both CME-driven shock acceleration and impulsive SEP acceleration; (3) below about 60 MeV n–1, the helium flux measured by CRRES is dominated by solar helium even during periods of least solar activity; (4) the solar helium below 60 MeV n–1 is enriched in 3He, with a mean 3He/4He ratio of about 0.18 throughout most of the CRRES mission `quiet' periods; and (5) an association of this solar component with small CMEs occurring during the periods selected as solar `quiet' times.  相似文献   

2.
Based on the data of the high-apogee satellite Prognoz-3, the April 29–30, 1973 solar particle event is analysed. The event's complex energetic particle, interplanetary magnetic field and solar wind plasma properties are discussed. The unusual behaviour of solar particles up to energies 100 MeV can well be explained in terms of the interaction with an interplanetary shock wave system passing the Earth. Assuming that the structure of the interplanetary shock wave system is similar to that considered first by Parker (1961) and Gold (1959) and reviewed later by Hundhausen (1972) and Dryer (1974, 1975), the main characteristics of the energetic particle fluxes, solar wind and interplanetary magnetic field can be understood.  相似文献   

3.
Torsti  J.  Valtonen  E.  Kocharov  L. G.  Vainio  R.  Riihonen  E.  Anttila  A.  Laitinen  T.  Teittinen  M.  Kuusela  J. 《Solar physics》1997,170(1):179-191
The energetic particle instrument ERNE on-board SOHO started its observations on December 15, 1995. The low-energy sensor of ERNE, LED, is capable of measuring particles in the energy range from 1 to 10 MeV nucl-1. From the beginning of the year 1996 until May 22, 1996, LED-observations included four energetic particle events above threshold intensities. An energetic particle event caused by a corotating interaction region that accelerated protons upto 10 MeV, was observed during January 20–25. Another similar particle event occured on May 6–12. The events were separated by four solar rotation periods. They had similar time profiles, but the one in May had a harder spectrum and a lower intensity level. The 4He-to-proton ratios were in accordance with the solar wind value. Energetic particles observed during April 22–23 and May 14–17 were accelerated at the Sun. The first one was apparently an outcome from an active region observed on the west limb by telescopes on-board SOHO. Protons were detected at energies from 1 to 10 MeV. For this event, the4He-to-proton ratio in the range 1.5–5 MeV nucl-1 was 3%. No 3He ions were detected. The period of May 14–15 was, in contrast, extremely 3He-rich: it had a3He-to-proton ratio of 1.5 ± 0.6 and a 3He-to- 4He ratio as high as 8. The period of May 14–17 comprised at least three individual, one-day-long events. The first two events were 3He-rich, while the last one seemed to have a normal composition.  相似文献   

4.
Power-law distribution for solar energetic proton events   总被引:1,自引:0,他引:1  
Analyses of the time-integrated fluxes of solar energetic particle events during the period 1965–1990 show that the differential distribution of events with flux F is given by a power law, with indices between 1.2 and 1.4 depending on energy. The power law represents a good fit over three to four orders of magnitude in fluence. Similar power-law distributions have been found for peak proton and electron fluxes, X-ray flares and radio and type III bursts. At fluences greater than 109 cm–2, the slope of the distribution steepens and beyond 1010 cm–2 the power-law index is estimated to be 3.5. At energies greater than 10 MeV, the slope of the distribution was found to be essentially independent of solar cycle, when the active years of solar cycles 20, 21, and 22 were analysed. The results presented are the first for a complete period of 27 years, covering nearly 3 complete solar cycles. Other new aspects of the results include the invariance of the exponent with solar cycle and also with integral energy.  相似文献   

5.
Numerical integration of particle trajectories is performed to evaluate the statistical acceleration coefficients D TT for 1 to 100 MeV protons in a solar wind corotating interaction region (CIR) seen at 2.5 and 5.0 AU. Acceleration is followed in the solar wind reference frame and is due to random wave-particle interactions and to random drift motion in moderate scale field gradients. D TT due to the first effect reaches a peak value of 4 × 10 –7 MeV2 s–1 post shock at 10 MeV at 2.5 AU consistent with estimates based both upon cyclotron resonance and transit time damping theory. D TT from the second effect is less well established but is of the order of 10–7 MeV2 s–1 at 10 MeV, 5 AU. A comparison is made between the time constant for statistical acceleration within this CIR and estimates for diffuse shock acceleration and adiabatic deceleration. All three time constants are of the same order, but deceleration is faster than shock acceleration which in turn is faster than statistical acceleration.  相似文献   

6.
Observations of impulsive solar flare X-rays 10 keV by the OGO-5 satellite and the measurements of energetic solar electrons made with the Explorer-35 and Explorer-41 (IMP-5) satellites during the period March 1968–September 1969 have been analyzed in order to determine the ion density in the X-ray source region as well as the location of the electron acceleration region in the solar atmosphere. If we assume that the efficiency of escape of the accelerated electrons into interplanetary space is 10–3, the observations are found to be consistent with the following interpretation: (i) the ion density in the X-ray source region varies from event to event and lies between 109 and 1011 ions cm–3 for those events in which the impulsive X-ray emission could be detected; (ii) for those events in which no impulsive emission was detected above threshold, the ion density in the X-ray source was < 109 ions cm–3; (iii) at least in some small solar flares the region where the electrons are accelerated during the flash phase is located in the lower corona.  相似文献   

7.
Energetic particle (0.1 to 100 MeV protons) acceleration is studied by using high resolution interplanetary magnetic field and plasma measurements at 1 AU (HEOS-2) and at 5 AU (Pioneer 10). Energy changes of a particle population are followed by computing test particle trajectories and the energy changes through the particle interaction with the time varying magnetic field. The results show that considerable particle acceleration takes place throughout the interplanetary medium, both in the corotating interaction regions (CIR) (5 AU), and in quiet regions (1 AU). Although shocks may contribute to acceleration we suggest statistical acceleration within the CIRs is sufficient to explain most energetic particle observations (e.g., McDonaldet al., 1975; Barnes and Simpson, 1976).The first and second order statistical acceleration coefficients which include transit time damping and Alfvén resonance interactions, are found to be well represented byD T 8.5×10–6 T 0.5 MeV s–1 andD TT 4×10–6 T 1.5 MeV2 s–1 at 5 AU.By comparison, Fisk's estimates (1976), based on quasi-linear theory for transit-time damping, gaveD TT 5×10–7 T MeV2 s–1 at 1 AU.  相似文献   

8.
An analysis of the interplanetary medium structure is made during STIP 1. (September–October, 1975). Using a simple extrapolation method a reconstruction of the stream lines is made which shows that the interplanetary space during this time period was very quiet. Such a behaviour is expected because this interval is close to the minimum of the solar cycle activity.The evolution of two fast solar wind streams, which dominated the interplanetary medium for very long time periods, is studied.A peculiar solar proton event, with onset time before the optical flare, is explained according to Elliot mechanism — i.e., that energetic particles are stored for a long time and released, sometimes, before the optical flare.These particles can be seen only when the interplanetary medium is very quiet, (without shock waves) and the flare very isolated.  相似文献   

9.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

10.
Based on the observations of the Sun and the interplanetary medium, a series of solar activities in late October 2003 and their consequences are studied comprehensively. Thirteen X-ray flares with importance greater than M-class, six frontside halo coronal mass ejections (CMEs) with span angle larger than 100 and three associated eruptions of filament materials are identified by examining lots of solar observations from October 26 to 29. All these flares were associated with type III radio bursts, all the frontside halo CMEs were accompanied by type II or type II-like radio bursts. Particularly, among these activities, two major solar events caused two extraordinary enhancements (exceeding 1000 particles/(cm2s–1sterMev–1) of solar energetic particle (SEP) flux intensity near the Earth, two large ejecta with fast shocks preceding, and two great geomagnetic storms with Dst peak value of –363 and –401 nT, respectively. By using a cross correlation technique and a force-free cylindrical flux rope model, the October 29 magnetic cloud associated with the largest CME are analyzed, including its orientation and the sign of its helicity. It is found that the helicity of the cloud is negative, contrary to the regular statistical pattern that negative- and positive-helical interplanetary magnetic clouds would be expected to come from northern and southern solar hemisphere. Moreover, the relationship between the orientation of magnetic cloud and associated filament is discussed. In addition, some discussion concerning multiple-magnetic-cloud structures and SEP events is also given.  相似文献   

11.
Schulze  B. M.  Richter  A. K.  Wibberenz  G. 《Solar physics》1977,54(1):207-228
For an observer in space the intensities and anisotropies of solar cosmic-ray events are governed by the duration and the functional shape of the injection processes near the Sun and by the propagation along the interplanetary magnetic field from the Sun to the observer. We study the influence of four different types of solar injections (Gaussian, exponential, step-function and coronal diffusion), and of a purely diffusive interplanetary propagation, where the diffusion coefficient has a power law dependence on the radial distance from the Sun, =Mr on both the time-intensity and the time-anisotropy profiles at 1 AU. The main results are as follows: A slow quasi-exponential decay of the intensity can be modelled in some cases; all finite injections produce high anisotropies during the main phase of an event; an effective solar injection length can be determined from simultaneous inspection of the intensities and anisotropies; the intensities and anisotropies do to first order not depend on the analytic shape of the various injection profiles. The model is applied to the November 18, 1968 solar event as observed by Pioneer 9 in the 7.5–21.5 MeV and 21.5–60 MeV energy channels. We obtain local diffusion coefficients in the range M= (2.5–5) × 1021 cm2 s–1 and injection periods of the order of 10–20 hr. Closer inspection reveals the change of interplanetary propagation conditions during the event.  相似文献   

12.
We investigate the organization of the low energy energetic particles (≤1 MeV) by solar wind structures, in particular corotating interaction regions (CIRs) and shocks driven by interplanetary coronal mass ejections, during the declining-to-minimum phase of Solar Cycle 23 from Carrington rotation 1999 to 2088 (January 2003 to October 2009). Because CIR-associated particles are very prominent during the solar minimum, the unusually long solar minimum period of this current cycle provides an opportunity to examine the overall organization of CIR energetic particles for a much longer period than during any other minimum since the dawn of the Space Age. We find that the particle enhancements associated with CIRs this minimum period recurred for many solar rotations, up to 30 at times, due to several high-speed solar wind streams that persisted. However, very few significant CIR-related energetic particle enhancements were observed towards the end of our study period, reflecting the overall weak high-speed streams that occurred at this time. We also contrast the solar minimum observations with the declining phase when a number of solar energetic particle events occurred, producing a mixed particle population. In addition, we compare the observations from this minimum period with those from the previous solar cycle. One of the main differences we find is the shorter recurrence rate of the high-speed solar wind streams (~10 solar rotations) and the related CIR energetic particle enhancements for the Solar Cycle 22 minimum period. Overall our study provides insight into the coexistence of different populations of energetic particles, as well as an overview of the large-scale organization of the energetic particle populations approaching the beginning of Solar Cycle 24.  相似文献   

13.
Power spectral analysis of cosmic-ray intensity recorded by eight stations was carried out over a wide range of frequencies from 2.3 × 10–8 Hz to 5.8 × 10–6 Hz (2–500 days) during the period 1964–1995. Spectrum results of large-scale fluctuations have revealed the existence of a broad peak near 250–285 days and a narrower peak at 45–50 days during the studied epochs as a stable feature in all neutron monitors covering a wide rigidity range. The cosmic-ray power spectrum displayed significant peaks of varying amplitude with the solar rotation period (changed inversely with the particle rigidities) and its harmonics. The amplitudes of 27-day and 13.5-day fluctuations are greater during the positive-polarity epochs of the interplanetary magnetic field (qA>0) than during the qA<0 epochs. The comparison of cosmic-ray power spectra during the four successive solar activity minima have indicated that at the low-rigidity particles the spectrum differences between the qA>0 and qA<0 epochs are significantly large. Furthermore, the spectrum for even solar maximum years are higher and much harder than the odd years. There are significant differences in the individual spectra of solar maxima for different cycles.  相似文献   

14.
Kocharov  L.  Torsti  J. 《Solar physics》2002,207(1):149-157
We summarize ERNE/SOHO observations of solar energetic particle events associated with impulsive soft X-ray flares and LASCO coronal mass ejections (CMEs). The new observational data support an idea that the >10 MeV proton acceleration may be initiated at different coronal sources, operating in the flaring active region and on the global coronal scale, in concert with CME development. However, the particle acceleration continues beyond the coronal scales and may culminate at the interplanetary CME well after the flare. We emphasize the importance of CME liftoff/aftermath processes in the solar corona and the possible role of seed particle re-acceleration, which may explain the existence of hybrid solar energetic particle events.  相似文献   

15.
On 23 May 1967 energetic (10–50 keV) solar flare X-rays were observed by the OGO-III ion chamber during the period 1808–2100 UT. The time-intensity profile for the X-ray event showed three distinct peaks at 1810, 1841 and 1942 UT. The second peak, which is equivalent to 2.9 × 10–3 ergs cm–2sec–1 above 20 keV, is the largest X-ray burst observed so far by the OGO-I and OGO-III ion chambers. The soft (2–12 Å) X-ray observations reported by Van Allen (1968) also show similar peaks, roughly proportional in magnitude to the energetic X-ray peaks. However, the intensity of energetic X-rays peaked in each case 5–10 min earlier than the soft X-ray intensity indicating a relatively hard photon energy spectrum near the peak of the energetic X-ray emission. The corresponding time-intensity profile for the solar radio emission also showed three peaks in the microwave region nearly coincident with the energetic X-ray peaks. The third radio peak was relatively rich in the metric emission. Beyond this peak both the energetic X-rays and the microwave emission decayed with a time constant of 8 min while the corresponding time constant for the soft X-rays was 43 min. In view of the earlier findings about the energetic X-rays it is indicated that the 23 May solar X-ray event was similar to those observed earlier. During the 23 May event the integral energy flux spectrum at the time of peak intensity is found to be consistent with the form e –E/E 0, E 0 being about 3.4 and 3.7 keV for the peaks at 1841 and 1942 UT, respectively. Assumption of a similar spectrum during the decay phase indicates that the spectral index E 0 decreased nearly exponentially with time.The OGO-III ion chamber, which is also sensitive to protons 12 MeV, observed a solar particle event starting at 2100 UT on 23 May. It could not be determined uniquely which of the two principal X-ray peaks was associated with the particle event, and in fact both may have contributed. The particle intensity reached its maximum value at 1003 UT on 25 May 1967. The equivalent peak radiation dosage was 24 R/hour behind the 0.22 g cm–2 thick aluminum wall of the chamber. This peak radiation dosage was considerably smaller than the maximum dosage (60 R/hour) during the 2 September 1966 solar particle event, the largest event observed so far by the OGO-I and OGO-III satellites. The temporal relationship between the solar X-ray and particle events on 23 May 1967 was similar to that observed in the solar flare events on 7 July 1966, 28 August 1966 and 27 February 1967.  相似文献   

16.
Differential energy spectra of low abundant elements between silicon and iron of energetic solar particles (SEP) in the August 4, 1972 event were measured in the energy region of 10 to 40 MeV amu–1 using rocket-borne Lexan detectors. The relative abundances of elements were determined and abundance enhancements, i.e., SEP/photospheric ratios, and their energy dependence were derived in 10–40 MeV amu–1 interval. It is found that there are four types of abundance enhancements as a function of energy as follows: (a) silicon, iron, and calcium show fairly strong energy dependence which decreases with increasing energy and at 20–40 MeV amu–1 reaches photospheric values; (b) in case of sulphur enhancement factors are independent of energy and the values are close to unity; (c) argon shows energy independent enhancements of about 3 to 4 in 10–40 MeV amu–1; (d) titanium and chromium show weakly energy-dependent, but very high abundance enhancement factor of about 10 to 40. These features are to be understood in terms of the atomic properties of these elements and on the physical conditions in the accelerating region. These are important not only for solar phenomena but also to gain insight into the abundance enhancements of cosmic-ray heavy nuclei.on leave from Tata Institute of Fundamental Research, Bombay, India.  相似文献   

17.
Relative abundances of energetic nuclei in the 4 July 1974 solar event are presented. The results show a marked enhancement of abundances that systematically increase with nuclear charge numbers in the range of the observation, 6 Z 26 for energies above 15 MeV nucl.–1 While such enhancements are commonly seen below 10 MeV nucl–1, most observations at higher energies are found to be consistent with solar system abundances. The energy spectrum of oxygen is observed to be significantly steeper than most other solar events studied in this energy region. It is proposed that these observations are characteristic of particle populations at energies 1 MeV nucl–1, and that the anomalous features observed here may be the result of the high energy extension of such a population that is commonly masked by other processes or populations that might occur in larger solar events.  相似文献   

18.
Valdés-Galicia  J. F.  Alexander  P. 《Solar physics》1997,176(2):327-354
A recent model of solar energetic particle propagation suggests that large fluxes of protons may produce their own turbulence. To verify this theoretical prediction it becomes essential to find out whether these fluxes cause appreciable changes in the interplanetary magnetic field (IMF) fluctuation regime. It is also important to check if the suggested optimum conditions for wave production are consistent with observational evidence. In the present work we perform a study of directional power and magnetic helicity spectra of the IMF fluctuations from a few hours before to a few hours after the maximum flux of 4–13 MeV protons observed on board the two Helios spacecraft during eight solar events. The time evolution of the directional power and helicity spectra show increases which may be associated with the solar energetic proton (SEP) flux in two of the analysed events. In one event, we present a decrease of turbulence and helicity coincident with the maximum flux of SEP may also admit an interpretation in terms of self-generated waves. The existence of solar wind phenomena such as sector boundaries or interplanetary shocks obscure possible signatures of proton self-generated waves in two events. One event with a low level of turbulence previous to the arrival of particles shows no turbulence increase which might be associated with them. The remaining two events show no evidence of particle-generated turbulence, but the conditions on which these were observed do not fulfil some assumptions of the model.  相似文献   

19.
Energetic Particle Fluxes during the Bastille Day Solar Eruption   总被引:2,自引:0,他引:2  
Mäkelä  Pertti  Torsti  Jarmo 《Solar physics》2001,204(1-2):213-225
We report on our observations of solar energetic particle fluxes of p, He, C, O, Ne, Mg, Si, and Fe ions measured by the Energetic and Relativistic Nucleon and Electron (ERNE) experiment associated with the Bastille Day solar flare and coronal mass ejection (CME) on 14 July 2000. We observed two clear maxima of the Fe/O ratio at the energies 8.5–15 MeV nucl−1. The first Fe/O maximum occurred ∼ 3 hours after the beginning of the particle event, and the second maximum ∼ 22 hours after the first one at the arrival of the shock associated with the Bastille Day eruption. We also observed a change in the energy spectrum of oxygen concurrent with a change in the direction of the interplanetary magnetic field at the start of the second enhancement of the Fe/O ratio. We propose an interpretation of the particle event where observed interplanetary particle fluxes are associated with two different particle sources near the Sun and in interplanetary space. We suggest that heavy ions observed during the first period of the Fe/O enhancement were released when a coronal shock reached a magnetic foot point connected to 1 AU. The second maximum of Fe/O occurred when spacecraft encountered Fe-rich material stored in magnetic field flux tubes early in the event and was possibly reaccelerated by the interplanetary shock.  相似文献   

20.
Data are presented from the IMP-4 satellite of 0.3–12 MeV electrons from the Sun between May 24, 1967 and May 2, 1969. Correlations with contemporary proton intensity increases at energies above 1 MeV are studied. Classical solar flare events such as those frequently observed from 30°W–60°W in solar longitude are not discussed. Categories of unusual events are defined and examples of each type are given. Discussion of these events centers around the emission and propagation of energetic particles from the point of origin on the Sun to the Earth. The results of this study are the following: (1) The differential electron energy spectrum (0.3–12 keV) from solar flares appears to be a constant of the flare process, with the spectral index = (-)3.0 ± 0.2. (2) Particle emission from solar flares contains a prompt component, which is injected into the interplanetary medium beyond the Sun and which is responsible for the diffusion characteristics of solar particle events, and a delayed component which is effectively contained in the lower solar atmosphere where it diffuses typically ± 100° in longitude and gradually escapes into interplanetary space. The delayed component gives rise to the corotating features commonly observed after the impulsive and diffusive onset from the prompt component. This is not the same as the two component model discussed by Lin (1970a) in which 40 keV electrons are often observed as a separate phenomenon and frequently precede higher energy particles observed at 1 AU. (3) Storage of electrons > 300 keV and protons > 1 MeV is essential to explain emission and propagation characteristics of solar particle events. In some rare cases the storage mechanism appears to be very efficient, culminating in a catastrophic decay of the trapping region. (4) The events with low proton/electron ratios all occur at least three weeks after the previous relativistic electron producing flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号